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In this work we study the existence of surjective Nash maps 
between two given semialgebraic sets S and T. Some key 
ingredients are: the irreducible components S∗i of S (and 
their intersections), the analytic path-connected components 
Tj of T (and their intersections) and the relations between 
dimensions of the semialgebraic sets S∗i and Tj . A first step to 
approach the previous problem is the former characterization 
done by the second author of the images of affine spaces under 
Nash maps.
The core result of this article to obtain a criterion to 
decide about the existence of surjective Nash maps between 
two semialgebraic sets is: a full characterization of the 
semialgebraic subsets S ⊂ Rn that are the image of the closed 
unit ball Bm of Rm centered at the origin under a Nash map 
f : Rm → Rn. The necessary and sufficient conditions that 
must satisfy such a semialgebraic set S are: it is compact, 
connected by analytic paths and has dimension d ≤ m.
Two remarkable consequences of the latter result are the 
following: (1) pure dimensional compact irreducible arc-
symmetric semialgebraic sets of dimension d are Nash images 
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of Bd, and (2) compact semialgebraic sets of dimension d
are projections of non-singular algebraic sets of dimension 
d whose connected components are Nash diffeomorphic to 
spheres (maybe of different dimensions).
© 2023 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY-NC-ND license 
(http://creativecommons .org /licenses /by -nc -nd /4 .0/).

1. Introduction

Although it is usually said that the first work in Real Geometry is due to Harnack 
[29], who obtained an upper bound for the number of connected components of a non-
singular real algebraic curve in terms of its genus, modern Real Algebraic Geometry was 
born with Tarski’s article [37], where it is proved that a projection of a semialgebraic set 
is a semialgebraic set.

A subset S ⊂ Rn is semialgebraic when it admits a description in terms of a finite 
boolean combination of polynomial equalities and inequalities, which we will call a semi-
algebraic description. A Nash manifold M ⊂ Rn is a semialgebraic set that is a smooth 
submanifold of Rn. The category of semialgebraic sets is closed under basic boolean op-
erations but also under usual topological operations: taking closures (denoted by Cl(·)), 
interiors (denoted by Int(·)), connected components, etc. If S ⊂ Rm and T ⊂ Rn are 
semialgebraic sets, a map f : S → T is semialgebraic if its graph is a semialgebraic set.

A relevant class of (continuous) semialgebraic maps is that of Nash maps, that is, 
smooth maps on a semialgebraic neighborhood of S that are in addition semialgebraic. 
More precisely, a Nash map on an open semialgebraic set U ⊂ Rm is a semialgebraic 
smooth map on f : U → Rn. Given a semialgebraic set S ⊂ Rm, a Nash map on S is 
the restriction to S of a Nash map on an open semialgebraic neighborhood U ⊂ Rm of 
S. These Nash maps include: polynomial and regular maps. A map f := (f1, . . . , fn) :
Rm → Rn is polynomial if its components fk ∈ R[x] := R[x1, . . . , xm] are polynomials. 
Analogously, f is regular if its components can be represented as quotients fk = gk

hk
of 

two polynomials gk, hk ∈ R[x] such that hk never vanishes on Rm.
By Tarski’s Theorem the image of a semialgebraic set under a semialgebraic map is a 

semialgebraic set, because it is a projection of a semialgebraic set. We are interested in 
studying ‘inverse type problems’ to Tarski’s result. A first enlightening example is the 
following:

Problem 1.1 (Bärchen-Schäfchen Problem). Is it possible to transform a semialgebraic 
Teddy bear T ⊂ R3 onto a semialgebraic sheep S ⊂ R3 by means of a Nash map and/or 
viceversa? (See Fig. 1.1.)

The general problem is the following:

Problem 1.2 (Tarski’s inverse problem). Let S ⊂ Rm and T ⊂ Rn be semialgebraic sets. 
Under which conditions does a surjective Nash map f : S → T exist?

http://creativecommons.org/licenses/by-nc-nd/4.0/
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Fig. 1.1. Semialgebraic Teddy bear and semialgebraic sheep (figures borrowed from [27, Fig.1.3]).

1.1. State of the art

In the 1990 Oberwolfach reelle algebraische Geometrie week [28] Gamboa proposed 
(see also [8, §3.IV, p.69]) the following problem:

Problem 1.3. Characterize the (semialgebraic) subsets of Rn that are either polynomial 
or regular images of Rm.

The previous problem pretends to characterize the semialgebraic sets that admit affine 
spaces as a kind of ‘algebraic models’. During the last two decades we have attempted 
to better understand polynomial and regular images of Rm. Our main objectives have 
been the following:

• To find obstructions to be either polynomial or regular images.
• To (constructively) prove that large families of semialgebraic sets with piecewise 

linear boundary (convex polyhedra, their interiors, complements and the interiors of 
their complements) are either polynomial or regular images of affine spaces.

In [13,14,22,18] we presented first steps to approach Problem 1.3. The most relevant 
one [22] shows that the set of points at infinity of S is a connected set. In [9] a complete 
solution for Problem 1.3 appears for the 1-dimensional case, whereas in [17,19,21,23–27,
38,39] a constructive full answer is provided for the representation as either polynomial 
or regular images of the semialgebraic sets with piecewise linear boundary commented 
above [25, Table 1]. A survey concerning these topics, which provides the reader a global 
idea of the state of the art, can be found in [20].

1.1.1. First alternative approach
The rigidity of polynomial and regular maps on Rm makes it difficult to approach 

Problem 1.3 in its full generality. A first possibility to overcome this is to change the 
domain of definition (using, for instance, closed unit balls or unit spheres). When con-
sidering compact domains (and of course compact images), one has more tools and 
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Weierstrass’ polynomial approximation plays an important role. In [32, §5.Prob.1] the 
following concrete related problem was proposed:

Problem 1.4. Let P be an arbitrary (compact) convex polygon in R2. Construct explicit 
polynomials f and g in R[u, v, w] such that P = (f, g)(B3).

A first main result in [27] provides a positive answer to a natural strong generalization 
to arbitrary dimension of Problem 1.4.

Theorem 1.5 ([27, Thm.1.2]). Let S ⊂ Rn be the union of a finite family of n-dimensional 
convex (compact) polyhedra. The following assertions are equivalent:

(i) S is connected by analytic paths.
(ii) There exists a polynomial map f : Rn → Rn such that f(Bn) = S.

The techniques involved to prove Theorem 1.5 are generalized in [25] to show Theo-
rem 1.6 below. A set S ⊂ Rn is strictly radially convex (with respect to a point p ∈ Int(S))
if for each ray � with origin at p, the intersection � ∩S is a segment whose relative interior 
is contained in Int(S). Convex sets are particular examples of strictly radially convex sets 
(with respect to any of its interior points [5, Lem.11.2.4]).

Theorem 1.6 ([27, Thm.1.3]). Let S ⊂ Rn be the union of a finite family of strictly 
radially convex semialgebraic sets that are polynomial images of the closed unit ball Bm. 
The following assertions are equivalent:

(i) S is connected by analytic paths.
(ii) There exists a polynomial map f : Rm+1 → Rn such that f(Bm+1) = S

1.1.2. Second alternative approach
Another possibility is to change the polynomial and regular maps by more flexible 

maps like Nash maps (smooth semialgebraic maps) [10] or regulous maps (continuous 
rational maps) [12]. Gamboa and Shiota proposed in 1990 to approach the following 
variant of Problem 1.3 in the same line as Problem 1.1.

Problem 1.7. Characterize the (semialgebraic) subsets of Rn that are Nash images of 
Rm.

The set Reg(S) of regular points of a semialgebraic set S ⊂ Rn is defined as follows. 
Let X be the Zariski closure of S in Rn and X̃ the complexification of X, that is, the 
smallest complex algebraic subset of Cn that contains X. Define Reg(X) := X \Sing(X̃)
and let Reg(S) be the interior of S \ Sing(X̃) in Reg(X). Observe that Reg(S) is a finite 
union of disjoint Nash manifolds maybe of different dimensions. We refer the reader to 
[10, §2.A] for further details concerning the set of regular points of a semialgebraic set. In 
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1990 Shiota proposed the following conjecture in order to provide a satisfactory answer 
to Problem 1.7.

Conjecture 1.8 (Shiota). Let S ⊂ Rn be a semialgebraic set of dimension d. Then S is a 
Nash image of Rd if and only if S is pure dimensional and there exists an analytic path 
α : [0, 1] → S whose image meets all connected components of Reg(S).

In [10] the second author provided a proof for Shiota’s conjecture as a particular case 
of the following characterization of the semialgebraic sets S ⊂ Rn of dimension d that 
are images of affine spaces under Nash maps.

Theorem 1.9 (Nash images [10, Main Thm.1.4]). Let S ⊂ Rn be a semialgebraic set of 
dimension d. The following assertions are equivalent:

(i) S is a Nash image of Rd.
(ii) S is a Nash image of Rm for some m ≥ d.
(iii) S is connected by Nash paths.
(iv) S is connected by analytic paths.
(v) S is pure dimensional and there exists a Nash path α : [0, 1] → S whose image meets 

all the connected components of Reg(S).
(vi) S is pure dimensional and there exists an analytic path α : [0, 1] → S whose image 

meets all the connected components of Reg(S).

1.1.3. Analytic path-connected components of a semialgebraic set
In order to present the main results of this article, we recall the concept of analytic 

path-connected components of a semialgebraic set introduced in [10, §9].

Definition 1.10. A semialgebraic set S ⊂ Rn admits a decomposition into analytic path-
connected components if there exist semialgebraic sets S1, . . . , Sr ⊂ S such that:

(i) Each Si is connected by analytic paths.
(ii) If T ⊂ S is a semialgebraic set connected by analytic paths that contains Si, then 

Si = T.
(iii) Si �⊂

⋃
j �=i Sj .

(iv) S =
⋃r

i=1 Si.

In [10, Thm.9.2] the existence and uniqueness of the analytic path-connected compo-
nents of a semialgebraic set is shown.

Theorem 1.11 ([10, Thm.9.2]). Let S ⊂ Rn be a semialgebraic set. Then S admits a 
decomposition into analytic path-connected components and this decomposition is unique. 
In addition, the analytic path-connected components of a semialgebraic set are closed in 
S.
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1.1.4. Irreducibility and irreducible components of a semialgebraic set
The ring N (S) of Nash functions on a semialgebraic set S ⊂ Rn is a noetherian ring 

[15, Thm.2.9] and we say that S is irreducible if and only if N (S) is an integral domain 
[15]. We next recall the concept of irreducible components of a semialgebraic set.

Definition 1.12. A semialgebraic set S ⊂ Rn admits a decomposition into irreducible 
components if there exist semialgebraic sets S1, . . . , Sr ⊂ S such that:

(i) Each Si is irreducible.
(ii) If T ⊂ S is an irreducible semialgebraic set that contains Si, then Si = T.
(iii) Si �⊂

⋃
j �=i Sj .

(iv) S =
⋃r

i=1 Si.

In [15, Thm.4.3, Rmk.4.4] the following result concerning the irreducible components 
of a semialgebraic set is proposed.

Theorem 1.13 ([15, Thm.4.3, Rmk.4.4]). Let S ⊂ Rn be a semialgebraic set. Then S
admits a decomposition into irreducible components and this decomposition is unique. In 
addition, the irreducible components of a semialgebraic set are closed in S.

1.2. Main results

Our purpose in this work is to approach Problem 1.2 (combining somehow the al-
ternative approaches to Problem 1.3 suggested above). The image of a semialgebraic 
set connected by analytic paths under a Nash map is connected by analytic paths. In 
addition, the image of an irreducible semialgebraic set under a Nash map is an irre-
ducible semialgebraic set [15, §3.1]. Consequently, as we will explain in detail later, 
obstructions to construct a surjective Nash map f : S → T between semialgebraic sets S
and T concentrate on the configuration of the intersections of pairwise different analytic 
path-connected components {Si}ri=1 (resp. irreducible components {S∗j}�j=1) of S and the 
configuration of their images, which are semialgebraic subsets Ti := f(Si) of T connected 
by analytic paths (resp. irreducible semialgebraic subsets T∗

j := f(S∗j ) of T).

1.2.1. General surjective Nash maps
Let S ⊂ Rm be a semialgebraic set of dimension d and let x ∈ S. By [6, Prop.2.8.10]

there exists an open semialgebraic neighborhood Ux of x in S, such that dim(Ux) =
dim(U ′) for each open semialgebraic neighborhood U ′ ⊂ Ux of x in S. The local dimension 
dim(Sx) of S at x is dim(Ux), see [6, Def.2.8.11]. The set S(e) := {x ∈ S : dim(Sx) = e}
of points of S of (local) dimension e is a semialgebraic subset of S, which is closed (in S) if 
d = e. In order to soften the quoted obstructions above, we assume that each irreducible 
component S∗i of S is mapped onto a semialgebraic subset Ti of T connected by analytic 
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paths and that 
⋂r

i=1 Ti �= ∅. Under these assumptions we propose the following solution 
to Problem 1.2.

Theorem 1.14 (Surjective Nash maps). Let S ⊂ Rm and T ⊂ Rn be semialgebraic sets, 
{S∗i }ri=1 the irreducible components of S and {Ti}ri=1 a family of (non-necessarily distinct) 
semialgebraic subsets of T connected by analytic paths such that 

⋂r
i=1 Ti �= ∅ and T =⋃r

i=1 Ti. Denote di := dim(S∗i ) and assume that the set S∗,(di)
i of points of S∗i of dimension 

di is non-compact if Ti is non-compact for i = 1, . . . , r. Then there exists a surjective 
Nash map f : S → T such that f(S∗i ) = Ti for i = 1, . . . , r if and only if ei := dim(Ti) ≤
dim(S∗i ) =: di for i = 1, . . . , r.

1.2.2. Key results
The proof of Theorem 1.14 strongly relies on the following two results. The first of 

them provides a positive answer to Problem 1.1, whereas the second is the counterpart 
for the non-compact case.

Theorem 1.15 (Bärchen-Schäfchen’s Theorem). Let S ⊂ Rm be a semialgebraic set of 
dimension d and T ⊂ Rn a compact semialgebraic set connected by analytic paths of 
dimension e ≤ d. Then there exists a Nash map f : Rm → Rn such that f(S) = T.

The previous result shows that any semialgebraic set S ⊂ Rm of dimension d ≥ e is a 
model to represent any compact semialgebraic set T ⊂ Rn connected by analytic paths 
of dimension e as a Nash image. In particular, a semialgebraic sheep is a Nash image of 
a semialgebraic Teddy bear and viceversa (see Problem 1.1).

Theorem 1.16 (Non-compact case). Let S ⊂ Rm be a semialgebraic set such that Cl(S(d)) ∩
S is non-compact for some d ≥ 2 and let T ⊂ Rn be a semialgebraic set connected by 
analytic paths. If T has dimension e ≤ d, there exists a Nash map f : Rm → Rn such 
that f(S) = T.

Remark 1.17. If T is non-compact, the converse of the previous result is also true, that 
is, Cl(S(d)) ∩S is non-compact for some d ≥ e. Suppose by contradiction that Cl(S(d)) ∩S

is compact for each d ≥ e. Define S1 :=
⋃

d≥e(Cl(S(d)) ∩S) and S2 :=
⋃

d<e(Cl(S(d)) ∩S). 
Then S1 is compact, dim(S2) < e and S = S1 ∪ S2. Suppose there exists a Nash map 
f : Rm → Rn such that f(S) = T. Then T = f(S1) ∪ f(S2), where f(S1) is compact 
and f(S2) has dimension < e. As T is pure dimensional of dimension e, we deduce 
T \ f(S2) ⊂ f(S1) are dense subsets of T, so T = Cl(f(S1)) = f(S1) is a compact 
semialgebraic set of dimension e, which is a contradiction.

The previous result (together with the corresponding remark) determines the semi-
algebraic sets S ⊂ Rm of dimension d ≥ e that are models to represent a non-compact 
semialgebraic set T ⊂ Rn connected by analytic paths of dimension e as a Nash image.
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1.2.3. Nash images of the closed unit ball
The core results to prove Theorems 1.15 and 1.16 are Theorem 1.9 already proved in 

[10] and Theorem 1.19 where we characterize the compact semialgebraic sets S ⊂ Rn

that are images of closed unit balls under Nash maps. This result provides a full answer 
to the natural counterpart to Problem 1.7 for the compact case:

Problem 1.18. Characterize the (compact semialgebraic) subsets of Rn that are Nash 
images of the closed unit ball of Rm.

The statement of Theorem 1.9 does not take into account whether S is compact or 
not and the involved Nash maps are rarely proper if d ≥ 2. As closed unit balls Bd are 
compact, the restrictions to Bd of the involved Nash maps are always proper maps.

Theorem 1.19 (Compact Nash images). Let S ⊂ Rn be a d-dimensional compact semial-
gebraic set. The following assertions are equivalent:

(i) There exists a Nash map f : Rd → Rn such that f(Bd) = S.
(ii) There exists a Nash map f : Rm → Rn such that f(Bm) = S for some m ≥ d.
(iii) S is connected by Nash paths.
(iv) S is connected by analytic paths.
(v) S is pure dimensional and there exists a Nash path α : [0, 1] → S whose image meets 

all the connected components of Reg(S).
(vi) S is pure dimensional and there exists an analytic path α : [0, 1] → S whose image 

meets all the connected components of Reg(S).

In Subsection 2.1 we will show that we can take ‘equivalent’ compact models to the 
closed unit ball to represent compact semialgebraic sets as their images under Nash maps. 
The technicalities of the constructions we develop in this article make the simplicial prism 
the suitable model to squeeze. In Subsection 3.1 we separately treat the 1-dimensional 
case and we characterize 1-dimensional Nash images of affine spaces in terms of their 
irreducibility.

Proposition 1.20 (The 1-dimensional case). Let S ⊂ Rn be a 1-dimensional compact 
semialgebraic set. Then S is a Nash image of some Bm if and only if S is irreducible. In 
addition, if such is the case, S is a Nash image of the compact interval [−1, 1].

1.3. Two consequences

We next present two additional consequences of Theorem 1.19.

1.3.1. Representation of arc-symmetric compact semialgebraic sets
Arc-symmetric semialgebraic sets were introduced by Kurdyka in [33] and subse-

quently studied by many authors. Recall that a semialgebraic set S ⊂ Rn is arc-
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symmetric if for each analytic arc γ : (−1, 1) → Rn with γ((−1, 0)) ⊂ S it holds that 
γ((−1, 1)) ⊂ S. In particular arc-symmetric semialgebraic sets are closed subsets of Rn. 
An arc-symmetric semialgebraic set S ⊂ Rn is irreducible if it cannot be written as the 
union of two proper arc-symmetric semialgebraic subsets [33, §2]. It follows from The-
orem 1.19 and [33, Cor.2.8] that a pure dimensional irreducible compact arc-symmetric 
semialgebraic set is a Nash image of Bd where d := dim(S).

Corollary 1.21. Let S ⊂ Rn be a pure dimensional irreducible compact arc-symmetric 
semialgebraic set of dimension d. Then S is a Nash image of Bd.

1.3.2. Elimination of inequalities
Another converse problem to Tarski’s Theorem is to find an algebraic set in Rn+k

whose projection is a given semialgebraic subset of Rn. This is known as the problem of 
eliminating inequalities. Motzkin proved in [34] that this problem always has a solution 
for k = 1. However, his solution is rather complicated and in general is a reducible 
algebraic set. Andradas–Gamboa proved in [2,3] that if S ⊂ Rn is a closed semialgebraic 
set whose Zariski closure is irreducible, then S is the projection of an irreducible algebraic 
set in some Rn+k. Pecker [35] provides some improvements on both results: for the first 
one by finding a construction of an algebraic set in Rn+1 that projects onto the given 
semialgebraic subset of Rn, far simpler than the original construction of Motzkin; for 
the second one by proving that if S is a locally closed semialgebraic subset of Rn with 
an interior point, then S is the projection of an irreducible algebraic subset of Rn+1.

In [10] it is proved that each semialgebraic set S ⊂ Rn is the projection of a non-
singular algebraic set X ⊂ Rn+k whose connected components are Nash diffeomorphic 
to affine spaces (maybe of different dimensions). In this article we improve the previous 
result when S is compact and we prove that there exists a non-singular compact algebraic 
set X ⊂ Rn+k that is Nash diffeomorphic to a finite pairwise disjoint union of spheres 
(maybe of different dimensions) and projects onto S.

Corollary 1.22. Let S ⊂ Rn be a compact semialgebraic set of dimension d. We have:

(i) If S is connected by analytic paths, it is the projection of an irreducible compact non-
singular algebraic set X ⊂ Rn+k (for some k ≥ 0) that has at most two connected 
components Nash diffeomorphic to the sphere Sd. In addition,
(1) Both connected components of X project onto S.
(2) There exists an automorphism of X that swaps the connected components of X.

(ii) In general S is the projection of an algebraic set X ⊂ Rn+k (for some k ≥ 0) 
of dimension d that is Nash diffeomorphic to a finite pairwise disjoint union (of 
dimension d) of spheres (maybe of different dimensions).

Even for dimension 1, it is not possible to impose the connectedness of X (see 
Lemma 6.2 and Example 6.3). Contrast the previous result with [10, Cor.1.8].



10 A. Carbone, J.F. Fernando / Advances in Mathematics 438 (2024) 109288
1.4. Structure of the article

The article is organized as follows. In Section 2 we recall some simple models (‘equiv-
alent’ to the closed unit ball) to represent in Section 3 d-dimensional compact semialge-
braic sets S ⊂ Rn connected by analytic paths as images of such simple models under 
Nash maps Rd → Rn. We also recall a procedure to construct polynomial paths inside d-
dimensional semialgebraic sets S ⊂ Rd connected by analytic paths that passes through 
certain control points at certain control times (Lemma 2.8). In Section 3 we prove Propo-
sition 1.20 and Theorem 1.19, which is the core result of this article and requires the 
development of our most sophisticated techniques. Such techniques are strongly inspired 
by those proposed in [27, Thm.1.3] to prove Theorem 1.6. In Section 4 we prove Theo-
rems 1.15 and 1.16, whereas Theorem 1.14 is proved in Section 5. Finally in Section 6 we 
approach Corollaries 1.21 and 1.22. We also show that Corollary 1.22 is somehow sharp 
(Lemma 6.2 and Example 6.3).

Acknowledgments

The authors thank the anonymous referee for valuable suggestions to improve the 
presentation of this article. The authors are very grateful to S. Schramm for a careful 
reading of the final version and for the suggestions to refine its redaction.

2. Compact models and preliminary results

In this section we present (most times without proofs, but with the corresponding 
references) some objects, tools and results that will be useful in the development of this 
article.

2.1. Compact models

Our first purpose is to present simple compact models to represent compact semial-
gebraic sets connected by analytic paths as their images under Nash maps. We analyze 
some relationships between these models, which will allow us to choose the most suitable 
one in each case. More precisely, in [27] we found surjective polynomial and regular maps 
between the following compact models (see Fig. 2.1):

• the standard sphere Sd := {x ∈ Rd+1 : ‖x‖2 = 1},
• the closed unit ball Bd := {x ∈ Rd : ‖x‖2 ≤ 1},
• the cylinder Cd := Bd−1 × [−1, 1],
• the hypercube Qd := [−1, 1]d,
• the standard simplex Δd := {x ∈ Rd : x1 ≥ 0, . . . , xd ≥ 0, x1 + · · · + xd ≤ 1},
• the simplicial prism Δd−1 × [−1, 1].
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Fig. 2.1. Compact models to represent semialgebraic sets as their Nash images.

The cylinder Cd is by [27, Lem.2.1] a polynomial image of Bd, whereas the standard 
d-dimensional simplex Δd is by [27, Lem.2.5] a polynomial image of Bd. The simplicial 
prism Δd−1× [−1, 1] is by [27, Cor.2.8] a polynomial image of Bd, whereas the hypercube 
Qd := [−1, 1]d is by [27, Cor.2.9] a polynomial image of Bd. Conversely, the d-dimensional 
closed ball Bd is by [27, Lem.2.10] a polynomial image of the d-dimensional hypercube 
Qd. The d-sphere is by [27, Lem.A.4] a regular image of the hypercube Qd (although 
it is not a polynomial image [27, §.1.2]) and the closed ball Bd is the projection of the 
d-sphere. We complete below some missing relations between the previous models for the 
sake of completeness. As a consequence, we can choose up to our convenience any of the 
previous models to represent a semialgebraic set S ⊂ Rn connected by analytic paths as 
a Nash image and immediately we know that S is a Nash image of each of them.

Corollary 2.1. The d-dimensional closed ball Bd is a polynomial image of the d-
dimensional cylinder Cd.

Proof. If d = 1, we have B0 × [−1, 1] = B1 = [−1, 1], so we can consider the case d ≥ 2. 
The hypercube Qd−1 := [−1, 1]d is by [27, Cor.2.9] a polynomial image of Bd−1, so the 
hypercube Qd is a polynomial image of the d-dimensional cylinder Cd = Bd−1 × [−1, 1]. 
The d-dimensional closed ball Bd is by [27, Lem.2.10] a polynomial image of the d-
dimensional hypercube Qd, so it is also a polynomial image of the d-dimensional cylinder 
Cd, as required. �
Lemma 2.2. The d-dimensional closed ball Bd is a polynomial image of the d-dimensional 
simplex Δd.

Proof. As Δ1 = [0, 1] and B1 = [−1, 1], the polynomial function h(t) = 2t− 1 satisfies 
h(Δ1) = [−1, 1], so we assume d ≥ 2. We proceed similarly to the proof of [27, Lem.2.10]
and we consider the univariate polynomial

h(t) := t2 (t− 2d2)2(2d2−1)

(2d2 − 1)2(2d2−1) ∈ R[t] � h′(t) = 4d2t(t− 2d2)2(2d2−1)−1

(2d2 − 1)2(2d2−1) (t− 1).

It satisfies h(0) = h(2d2) = 0 and h(1) = 1. In addition, h′ is positive on (0, 1) and 
negative on (1, 2d2), so h has a global maximum at t = 1 and it satisfies 0 ≤ h(t) ≤ 1
on the interval [0, 2d2].

Consider the simplex Δ′
d := {x1 ≥ −1, . . . , xd ≥ −1, x1 + · · · + xd ≤

√
d}. A tangent 

hyperplane to Sd−1 (which is the boundary of the closed unit ball Bd) is parallel to 
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x1 + · · · + xd = 0 if and only if the tangent point p ∈ Sd−1 has all its coordinates equal. 
As Δ′

d ⊂ {x1 ≥ −1, . . . , xd ≥ −1}, we pick the point p = ( 1√
d
, . . . , 1√

d
) and the tangent 

hyperplane {x1 + · · · + xd =
√
d}, so Bd ⊂ Δ′

d. In addition, we claim: Δ′
d ⊂ Bd(0, 

√
2d).

As Δ′
d is the convex hull of its vertices and Bd(0, 

√
2d) is convex, it is enough to check 

that the vertices of Δ′
d belong to Bd(0, 

√
2d). The vertices of Δ′

d are

vi := (−1, . . . ,−1,
√
d + d− 1,−1, . . . ,−1).

We have

‖vi‖2 = d− 1 + (
√
d + d− 1)2 = d2 + 2

√
d(d− 1) < 2d2,

so Bd ⊂ Δ′
d ⊂ Bd(0, 

√
2d). Consider the polynomial map

g : Rd → Rd, x �→ h(‖x‖2)x.

Observe that g(Bd) = g(Bd(0, 
√

2d)) = Bd, so g(Δ′
d) = Bd. If h : Rd → Rd is an affine 

map such that h(Δd) = Δ′
d, then the polynomial map f := g ◦ h satisfies f(Δd) = Bd, 

as required. �
Corollary 2.3. The d-dimensional closed ball Bd is a polynomial image of the d-
dimensional prism Δd−1 × [−1, 1].

Proof. If d = 1, we have Δ0 × [−1, 1] = B1 = [−1, 1], so we consider the case d ≥ 2. 
By Lemma 2.2 Bd−1 is a polynomial image of Δd−1, so Bd−1 × [−1, 1] is a polynomial 
image of Δd−1 × [−1, 1]. By Corollary 2.1 we conclude that Bd is a polynomial image of 
Δd−1 × [−1, 1], as required. �
2.2. Necessary conditions

All the (equivalent) models quoted above are by Theorem 1.9 Nash images of Rn. 
Thus, Nash images of the previous models are, apart from compact, connected by analytic 
paths [10, Cor.6.3], pure dimensional [10, Cor.6.3] and irreducible [10, Lem.7.3]. The 
following example borrowed from [10, Ex.7.12] (studied in detail in [27, Ex.1.2]) confirms 
that ‘pure dimensionality’ and ‘irreducibility’ are not enough to guarantee ‘connection 
by analytic paths’.

Example 2.4 ([10, Ex.7.12], [27, Ex.1.2]). The irreducible and pure dimensional semial-
gebraic set (see Fig. 2.2) S := {(4x2 − y2)(4y2 − x2) ≥ 0, y ≥ 0} ⊂ R2 is not connected 
by analytic paths.

In addition, recall that by Theorem 1.9 the following properties for a semialgebraic 
set S ⊂ Rn are equivalent:
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Fig. 2.2. The semialgebraic set S := {(4x2 − y2)(4y2 − x2) ≥ 0, y ≥ 0} ⊂ R2 (figure borrowed from [27, 
Fig.1.1]).

(i) S is connected by Nash paths.
(ii) S is connected by analytic paths.
(iii) S is pure dimensional and there exists a Nash path α : [0, 1] → S whose image meets 

all the connected components of the set of regular points of S.
(iv) S is pure dimensional and there exists an analytic path α : [0, 1] → S whose image 

meets all the connected components of the set of regular points of S.

2.3. Checkerboard sets

Let X ⊂ Y ⊂ Rn be algebraic sets such that Y is non-singular and has dimension d. 
Recall that X is a normal-crossings divisor of Y if for each point x ∈ X there exists a 
regular system of parameters x1, . . . , xd for Y at x such that X is given on an open Zariski 
neighborhood of x in Y by the equation x1 · · · xk = 0 for some k ≤ d. In particular, the 
irreducible components of X are non-singular and have codimension 1 in Y . If S ⊂ Rm

is a semialgebraic set, we write ∂S := Cl(S) \ Reg(S), which is in general different from 
the set Sing(S) := S \Reg(S) presented in the Introduction. We denote · zar the Zariski 
closures operator.

A pure dimensional semialgebraic set T ⊂ Rn is a checkerboard set if it satisfies the 
following properties:

• T
zar is a non-singular algebraic set.

• ∂T
zar is a normal-crossings divisor of Tzar.

• Reg(T) is connected.

Each checkerboard set is connected by analytic paths [10, Main Thm.1.4, Lem.8.2]. 
We will use in our proof of Theorem 1.19 the following result from [10] in an essential 
way.

Theorem 2.5 ([10, Thm.8.4]). Let S ⊂ Rm be a semialgebraic set connected by analytic 
paths of dimension d ≥ 2. Then there exists a checkerboard set T ⊂ Rn of dimension d
and a proper regular map f : Tzar → S

zar such that f(T) = S.
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2.3.1. Reduction to the case of checkerboard sets
In order to prove Theorem 1.19, we ‘only’ need to prove the following: If S ⊂ Rm is 

a compact semialgebraic set connected by analytic paths of dimension d, there exists a 
Nash map f : Rd → Rm such that f(Bd) = S.

We will prove Theorem 1.19 for dimension 1 in Subsection 3.1, so let us assume 
dim(S) ≥ 2. In this case Theorem 2.5 provides a checkerboard set T ⊂ Rn and a proper 
regular map f : Tzar → S

zar such that f(T) = S. As the map f is proper, if the semialge-
braic set S is compact, we may assume that also the checkerboard set T is compact (see 
the proof of [10, Thm.8.4]). Consequently, we are reduced to prove the following:

Theorem 2.6. Let T ⊂ Rn be a compact checkerboard set of dimension d ≥ 2. Then there 
exists a Nash map G : Rd → Rn such that G(Bd) = T.

By [27, Cor.2.8] there exists a polynomial map f : Rd → Rd such that f(Bd) =
Δd−1 × [0, 1]. Consider the inverse of the stereographic projection

ϕ : Rd → Sd \ {(0, . . . , 1)}, x := (x1, . . . , xd) �→
( 2x1

1 + ‖x‖2 , . . . ,
2xd

1 + ‖x‖2 ,
−1 + ‖x‖2

1 + ‖x‖2

)
and let π : Rd+1 → Rd be the projection onto the first d coordinates. The regular 
map g := π ◦ ϕ : Rd → Rd satisfies g(Rd) = g(Bd) = Bd. If there exists a Nash map 
F : Δd−1 × [0, 1] → Rn such that F (Δd−1 × [0, 1]) = T, the composition G := F ◦ f ◦ g :
Rd → Rd is a well defined Nash map such that G(Bd) = T.

Thus, in order to show Theorem 2.6, we can use the (more convenient) compact model 
Δd−1 × [0, 1] and we are reduced to show the following:

Theorem 2.7. Let T ⊂ Rn be a compact checkerboard set of dimension d ≥ 2. Then there 
exists a Nash map F : Δd−1 × [0, 1] → Rn such that F (Δd−1 × [0, 1]) = T.

2.4. Polynomial paths inside semialgebraic sets

We recall next a smart polynomial curve selection lemma ([11, Thm.1.6] and [26, 
Lem.3.1]). It allows to approximate continuous semialgebraic paths inside the closure of 
an open semialgebraic set by polynomial paths, with strong control on the derivatives. 
This lemma will be one of the main ingredients in our proof of Theorem 1.19. In [11, 
Thm.1.6] and [26, Lem.3.1] an extended study of polynomial and Nash paths inside the 
closure of open semialgebraic sets is made. We only need a simplified version of the 
results obtained in [11, Thm.1.6] and [26, Lem.3.1] that we state in Lemma 2.8.

We endow the space Cν([a, b], R) of differentiable functions of class Cν on the interval 
[a, b] with the Cν compact-open topology. Recall that a basis of open neighborhoods of 
g ∈ Cν([a, b], R) in this topology is constituted by the sets of the type:

Uν
g,ε := {f ∈ Cν([a, b],R) : ‖f (�) − g(�)‖[a,b] < ε : � = 0, . . . , ν}
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where ε > 0 and ‖h‖[a,b] := max{h(x) : x ∈ [a, b]}. One has Cν([a, b], Rn) =
Cν([a, b], R) × · · · × Cν([a, b], R) and we endow this space with the product topology. If 
X ⊂ [a, b], one analogously defines the Cν compact-open topology of the space Cν(X, Rn).

If α : [a, b] → Rn is a continuous semialgebraic path, recall that by [6, Prop.2.9.10]
there exists a finite set η(α) ⊂ [a, b] such that α is not Nash at the points of η(α), 
but α|[a,b]\η(α) is a Nash map. We denote the Taylor expansion of degree � ≥ 1 of α at 
t0 ∈ [a, b] \ η(α) with T �

t0α :=
∑�

k=0
1
�!α

(k)(t0)(t− t0)k.

Lemma 2.8 (Smart polynomial curve selection lemma). Let S ⊂ Rn be an open semial-
gebraic set and {p1, . . . , pr} ⊂ Cl(S) a finite set of points, not necessarily distinct. Let 
0 < t1 < · · · < tr < 1 and α : [0, 1] → S ∪ {p1, . . . , pr} be a continuous semialgebraic 
path such that α(ti) = pi for i = 1, . . . , r that satisfies η(α) ∩ {t1, . . . , tr} = ∅ and 
α([0, 1] \ {t1, . . . , tr}) ⊂ S. For each ε > 0 and each m ≥ 0 there exists a polynomial path 
β : [0, 1] → S ∪ {p1, . . . , pr} such that: ‖α(k) − β(k)‖ < ε for k = 0, . . . , m, Tm

ti β = Tm
ti α

for i = 1, . . . , r and β([0, 1] \ {t1, . . . , tr}) ⊂ S.

3. Building Nash images of the simplicial prism

The purpose of this section is to prove Theorem 2.7, which provides a complete charac-
terization of the Nash images of the closed ball. The proof is quite involved and intricate 
and we begin with some preliminary results to lighten the proof.

We will start with the 1-dimensional case, that requires a different proof. Then we will 
focus on the d-dimensional case for d ≥ 2. For the general case we will take advantage 
of the fact that each checkerboard set T ⊂ Rn admits ‘nice’ triangulations. Roughly 
speaking, we ‘build’ T as Nash image of the prism Δd−1 × [0, 1] ‘simplex by simplex’.

We consider a suitable subset of the space of Nash maps N (Rd, Rn) and we will 
parameterize it (of course not in an injective way) using an open semialgebraic set Θ0 of 
a large affine space. In this space, a continuous semialgebraic path σ : [0, 1] → Θ0 provides 
a continuous semialgebraic map Δd−1 × [0, 1] → Rn that is Nash on the horizontal slices 
Δd−1×{t}. Using Lemma 2.8, we approximate the path σ by a polynomial path in order 
to obtain a Nash map Δd−1 × [0, 1] → Rn. A difficult point is to guarantee that the 
obtained Nash map has T as its target space and that it is surjective.

3.1. The 1-dimensional case

Nash images of closed balls contained in the real line are its compact intervals and 
all of them are affinely equivalent to the interval B1 := [−1, 1]. Nash images of closed 
balls contained in a circumference are its connected compact subsets and all of them are 
Nash images of B1.

Examples 3.1. (i) The circumference S1 := {x2+y2 = 1} is a Nash image of B1. Consider 
the inverse of the stereographic projection from the point (0, 1), which is the map



16 A. Carbone, J.F. Fernando / Advances in Mathematics 438 (2024) 109288
f : R → S1 \ {(0, 1)}, t �→
( 2t

1 + t2
,
1 − t2

1 + t2

)
.

Next, we identify R2 with C and the coordinates (x, y) with x +
√
−1y. Consider the 

map

g : C → C, z := x +
√
−1y �→ z2 = (x2 − y2) +

√
−1(2xy).

The image of B1 under g ◦ f is S1.
(ii) Any connected compact proper subset S of S1 that is not a point is a Nash image 

of B1 because it is Nash diffeomorphic to [−1, 1].

We prove Proposition 1.20 next:

Proof of Proposition 1.20. Assume S is irreducible. Let X be the Zariski closure of S
in Rn and X̃ its complexification in Cn. Let (Ỹ , π) be the normalization of X̃ and σ̂
the involution of Ỹ induced by the involution σ of X̃ that arises from the restriction 
to X̃ of the complex conjugation in Cn. We may assume that Ỹ ⊂ Cm and that σ̂ is 
the restriction to Ỹ of the complex conjugation of Cm. By [15, Thm.3.15] and since S is 
irreducible, π−1(S) has a 1-dimensional connected component T such that π(T) = S. As 
π is proper and S is compact, also T is compact. As X has dimension 1, it is a coherent 
analytic set, so T ⊂ Y := Ỹ ∩ Rm. As Ỹ is a normal-curve, Y is a non-singular real 
algebraic curve. We claim: the connected components of Y are Nash diffeomorphic either 
to S1 or to the real line R.

By [36, Thm.VI.2.1] there exist a compact affine non-singular real algebraic curve 
Z, a finite set F , which is empty if Y is compact, and a union Y ′ of some connected 
components of Z \ F such that Y is Nash diffeomorphic to Y ′ and Cl(Y ′) is a compact 
Nash curve with boundary F . As Z is a compact affine non-singular real algebraic curve, 
its connected components are diffeomorphic to S1, so by [36, Thm.VI.2.2] the connected 
components of Z are in fact Nash diffeomorphic to S1. Now, each connected component 
of Y is Nash diffeomorphic to an open connected subset of S1, that is, Nash diffeomorphic 
either to S1 or to the real line R, as claimed.

As T is connected, compact and 1-dimensional, it is Nash diffeomorphic to a connected 
compact 1-dimensional semialgebraic subset of either S1 or R, so T is Nash diffeomorphic 
either to S1 or the compact interval [−1, 1]. By Examples 3.1 the semialgebraic set T
is a Nash image of B1, so S is also a Nash image of B1. The converse follows from [10, 
Lem.7.3], as required. �
3.2. Covering simplices with Nash maps

Given a convex polyhedron K, we denote its relative interior with Int(K) and its 
boundary K \ Int(K) with ∂K. We start the procedure to prove Theorem 2.7 with some 
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lemmas that will allow us to cover simplices with the images of suitable families of Nash 
maps whose domains are simplicial prisms. Denote

Δn−1 :=
{

(λ1, . . . , λn) ∈ Rn : λ1 ≥ 0, . . . , λn ≥ 0,
n∑

k=1

λk = 1
}
. (3.1)

The boundary ∂Δn−1 =
⋃n

i=1(Δn−1 ∩ {λi = 0}).

Lemma 3.2. Consider an (n −1)-dimensional simplex σ ⊂ Rn of vertices v1, . . . , vn. Pick 
a point p ∈ Rn \ σ and consider the n-dimensional simplex σ̂ of vertices {p, v1, . . . , vn}. 
Let F : Δn−1 × [0, 1] → Rn be a continuous semialgebraic map such that F |Δn−1×{0} :
Δn−1 ×{0} → σ is a homeomorphism, F (∂Δn−1 × (0, 1)) ⊂ {h0 ≥ 0} \ σ̂ and F (Δn−1 ×
{1}) = {p}. Then Int(σ̂) ⊂ F (Int(Δn−1) × (0, 1)) and σ̂ ⊂ F (Δn−1 × [0, 1]).

Proof. As Δn−1 × [0, 1] is compact and σ̂ = Cl(Int(σ̂)), it is enough to check: Int(σ̂) ⊂
F (Int(Δn−1) × (0, 1)).

Suppose there exists z ∈ Int(σ̂) \ F (Δn−1 × [0, 1]). Let us construct a (continuous) 
semialgebraic retraction ρ : Rn \ {z} → ∂σ̂. For each x ∈ Rn \ {z} let �x be the ray 
{z + t(x − z) : t ∈ [0, +∞)}. By [5, 11.1.2.3, 11.1.2.7] �x ∩ ∂σ̂ = {ρ(x)} is a singleton 
and if x ∈ ∂σ̂, then ρ(x) = x. Define ρ : Rn \ {z} → ∂σ̂, x �→ ρ(x). Let h0, . . . , hn ∈ R[x]
be polynomials of degree 1 such that the hyperplanes Hi := {hi = 0} contain the facets 
of σ̂. Assume σ̂ ⊂ {hi ≥ 0} for i = 0, . . . , n and σ ⊂ H0. Note that ρ(x) = z + λ(x − z), 
where λ is the smallest value μ > 0 such that hi(z +μ(x − z)) = 0 for some i = 0, . . . , n. 
As z ∈ Int(σ̂), we have hi(z) > 0 for i = 0, . . . , n. Thus,

1
λ

= max
{hi(z) − hi(x)

hi(z)
: i = 0, . . . , n

}
> 0.

Consequently,

ρ(x) = z + 1
max

{
hi(z)−hi(x)

hi(z) : i = 0, . . . , n
} (x− z),

so ρ : Rn \ {z} → ∂σ̂ is a continuous semialgebraic map such that ρ|∂σ̂ = id∂σ̂, that is, 
ρ is a semialgebraic retraction.

Observe that

max
{hi(z) − hi(x)

hi(z)
: i = 0, . . . , n

}
= hj(z) − hj(x)

hj(z)

for a given j = 0, . . . , n if and only if ρ(x) ∈ {hj = 0}. In addition, if x ∈ {h0 ≥
0} \ (Int(σ̂) ∪ Int(σ)), then hi0(x) ≤ 0 for some i0 = 1, . . . , n. Thus,

h0(z) − h0(x) ≤ 1 ≤ hi0(z) − hi0(x) ≤ max
{hi(z) − hi(x) : i = 0, . . . , n

}
,

h0(z) hi0(z) hi(z)
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so ρ(x) /∈ {h0 = 0, h1 > 0, . . . , hn > 0} = Int(σ). Consequently, ρ−1(Int(σ)) ⊂ Int(σ̂) ∪
Int(σ).

Consider the continuous semialgebraic map F ∗ := ρ ◦ F : Δn−1 × [0, 1] → ∂σ̂. Let us 
prove: the restriction map F ∗|∂(Δn−1×[0,1]) : ∂(Δn−1 × [0, 1]) → ∂σ̂ has degree 1 (as a 
continuous map between spheres of dimension n − 1).

Pick a point x ∈ Int(σ). Then (F ∗)−1(x) = F−1(ρ−1(x)) ⊂ F−1(Int(σ̂)) ∪F−1(Int(σ)). 
As

∂(Δn−1 × [0, 1]) = (∂Δn−1 × (0, 1)) ∪ (Δn−1 × {0}) ∪ (Δn−1 × {1}),

F |Δn−1×{0} : Δn−1 × {0} → σ is a homeomorphism, F (∂Δn−1 × (0, 1)) ∩ σ̂ = ∅ and 
F (Δn−1 × {1}) = {p}, we deduce

F−1(Int(σ̂)) ∩ ∂(Δn−1 × [0, 1]) = ∅,

F−1(Int(σ)) ∩ ∂(Δn−1 × [0, 1]) ⊂ Δn−1 × {0}.

Consequently, the preimage

(F ∗)−1(x) ∩ ∂(Δn−1 × [0, 1]) = (F ∗)−1(x) ∩ (Δn−1 × {0}).

As F |Δn−1×{0} : Δn−1 × {0} → σ is a homeomorphism and ρ|σ = idσ, also 
F ∗|Δn−1×{0} = F |Δn−1×{0} : Δn−1 × {0} → σ is a homeomorphism, so the preimage 
(F ∗)−1(x) ∩ ∂(Δn−1 × [0, 1]) = (F |Δn−1×{0})−1(x) is a singleton. As this happens for 
each x ∈ Int(σ), the restriction map F ∗|∂(Δn−1×[0,1]) has degree 1. As F ∗|∂(Δn−1×[0,1]) ex-
tends continuously to Δn−1×[0, 1], we deduce by [30, Thm.5.1.6(b)] that F ∗|∂(Δn−1×[0,1])
has degree 0, which is a contradiction.

Consequently, Int(σ̂) ⊂ F (Δn−1× [0, 1]). As F (Δn−1×{0}) = σ, F (∂Δn−1×(0, 1)) ⊂
{h0 ≥ 0} \ σ̂ and F (Δn−1 × {1}) = {p}, we conclude Int(σ̂) ⊂ F (Int(Δn−1) × (0, 1)), as 
required. �

Given a polynomial h ∈ R[x] of degree 1 and the hyperplane H := {h = 0} of Rn, 
denote the two subspaces determined by H with H+ := {h ≥ 0} and H− := {h ≤ 0}. 
Denote also �h := h − h(0). If K := {g1 ≥ 0, . . . , gm ≥ 0} ⊂ Rn is an n-dimensional 
convex polyhedron, where each gi ∈ R[x] is a polynomial of degree 1, then Int(K) =
{g1 > 0, . . . , gm > 0}. Thus, if K1, . . . , Ks ⊂ Rn are n-dimensional convex polyhedra, 
Int(K1 ∩ · · · ∩Ks) = Int(K1) ∩ · · · ∩ Int(Ks). The following construction will be useful 
for the proof of Lemma 3.3, which is an application of Lemma 3.2 and one of the keys 
to prove Theorem 2.7.

3.2.1. Covering of the exterior of a simplex
Let K ⊂ Rn be an n-dimensional convex polyhedron and σ ⊂ ∂K an (n − 1)-

dimensional simplex of vertices v1, . . . , vn. Let p ∈ Int(K) and σ̂ be the n-simplex of 
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Fig. 3.1. The polyhedra Kj (figure inspired by [26, Fig.4.2]).

vertices {p, v1, . . . , vn}. Let H1, . . . , Hn be the hyperplanes of Rn generated by the facets 
of σ̂ that contain p, which are those facets of σ̂ different from σ and suppose vi /∈ Hi. 
Assume that σ̂ ⊂

⋂n
j=1 H

+
j and consider the convex polyhedra Kj := K ∩

⋂
� �=j H

−
� , 

(see Fig. 3.1). Observe that p ∈ Kj and dim(Int(Kj)) = n, because p ∈ Int(K) and the 
hyperplanes H1, . . . , Hn are affinely independent.

3.2.2. Ck
I′-topology

Let I ′ ⊂ J ⊂ R be compact intervals and define Ck
I′(Δn−1 × J, Rm) as the space of 

continuous functions on Δn−1 × J that are Ck differentiable functions with respect to 
t on Δn−1 × I ′. Observe that both Δn−1 × I ′ and Δn−1 × J are compact. For each 
f ∈ Ck

I′(Δn−1 × J, R) and ε > 0 define

Uf,ε =
{
g ∈ Ck

I′(Δn−1 × J,R) : ‖f − g‖ < ε,
∥∥∥∂�f

∂t�
− ∂�g

∂t�
∥∥∥

Δn−1×I′
< ε, � = 1, . . . , k

}
.

The previous open sets are the basis of the Ck
I′-topology of Ck

I′(Δn−1 × J, Rm).

Lemma 3.3. Let K := {g1 ≥ 0, . . . , gs ≥ 0} ⊂ Rn be an n-dimensional convex polyhedron 
and σ ⊂ K an (n − 1)-dimensional simplex of vertices v1, . . . , vn. Fix p ∈ Int(K) and 
consider the simplex σ̂ of vertices {p, v1, . . . , vn}. Let Hi := {hi = 0} be the hyperplanes 
of Rn generated by the facets of σ̂ that contain p and assume vi /∈ Hi and σ̂ ⊂

⋂n
i=1 H

+
i . 

Let h0 ∈ R[t] be a polynomial of degree 1 such that σ ⊂ {h0 = 0} and σ̂ ⊂ {h0 ≥ 0}. 
There exist continuous semialgebraic paths αi : [−δ, 1 +δ] → K (for some δ > 0) that are 
Nash on the compact neighborhood I := [−δ, δ] ∪[1 −δ, 1 +δ] of {0, 1} and satisfy αi(0) = vi
and αi(1) = p for i = 1, . . . , n and ε > 0 such that the continuous semialgebraic map

F : Δn−1 × [−δ, 1 + δ] → K, (λ1, . . . , λn, t) �→
n∑

i=1
λiαi(t),

(which is Nash on Δn−1 × I), has the following property:
If G : Δn−1 × [−δ, 1 + δ] → Rn is another continuous semialgebraic map that is a 

Nash map on Δn−1 × I ′ for a neighborhood I ′ ⊂ I of {0, 1} and satisfies
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∂�G

∂t�
(λ, 0) = ∂�F

∂t�
(λ, 0), ∂

�G

∂t�
(λ, 1) = ∂�F

∂t�
(λ, 1)

for each λ ∈ Δn−1 and � = 0, 1, 2, 3, ‖G − F‖ < ε and ‖∂�G
∂t� − ∂�F

∂t� ‖Δn−1×I′ < ε for 
� = 1, 2, 3, then σ̂ ⊂ G(Δn−1 × [0, 1]), G(Δn−1 × {0}) = σ, G(Δn−1 × {1}) = {p}, 
G(Δn−1 × (0, 1)) ⊂ Int(K) and G(Δn−1 × ([−δ′, 0] ∪ [1, 1 + δ′])) ⊂ σ̂ for some 0 < δ′ < δ

small enough.

Proof. We assume σ ⊂ ∂K after changing K by K′ := K ∩ {h0 ≥ 0}, which is a convex 
polyhedron of dimension n (that contains σ in its boundary), because σ̂ ⊂ K′ is an 
n-dimensional simplex. We keep the notation K := {g1 ≥ 0, . . . , gs ≥ 0} and we assume 
that h0 coincides with some gi. The proof is now conducted in several steps:

Initial preparation. Let us construct the continuous semialgebraic paths αi : [−δ, 1 +
δ] → K. We claim: There exist δ > 0 and continuous semialgebraic paths αi : [−δ, 1 +δ] →
K such that:

(i) αi is Nash on I,
(ii) αi(t) = vi + t2ui + t3w + · · · and αi(1 + t) = p − t3w + · · · ,
(iii) αi([−δ, 0) ∪ (1, 1 + δ]) ⊂ Int(σ̂),
(iv) αi((0, 1)) ⊂ Si := Int(K ∩

⋂
j �=i H

−
j ),

(v) (hi◦αi)(t) = hi(vi) + �hi(ui)t2−ait3+ · · · where hi(vi) > 0, �hi(ui) < 0 and ai > 0,
(vi) (hj ◦αi)(t) = −ajt3 + · · · if i �= j and (hj ◦αi)(1 + t) = ajt3 + · · · , where aj > 0

and 1 ≤ i, j ≤ n,
(vii) (h0 ◦ αi)(t) = bi0t2 + · · · where bi0 > 0 and 1 ≤ i ≤ n,
(viii) (gk ◦ αi)(t) = cik + dikt2 + · · · where either cik > 0 or cik = 0 and dik > 0,
(ix) (gk ◦ αi)(1 + t) = eik + · · · where eik > 0.

We construct each continuous semialgebraic path αi piecewise. The open semialgebraic 
set Si defined in (iv) can be described as

Si = {g1 > 0, . . . , gs > 0} ∩
⋂
j �=i
j �=0

{hj < 0}.

Define ui := �vip (see Fig. 3.2) and observe that �hj(ui) = 0 if 1 ≤ i, j ≤ n and i �= j. 
This is because hj(p) = 0 and hj(vi) = 0 if 1 ≤ i, j ≤ n and i �= j. Recall that 
hi(vi) > 0 and hi(p) = 0, so �hi(ui) < 0 for 1 ≤ i ≤ n. In addition, bi0 := �h0(ui) > 0, 
because h0(p) > 0 and h0(vi) = 0 for 1 ≤ i ≤ n. As gk(vi) ≥ 0 (because σ̂ ⊂ K) and 
gk(vi) + �gk(ui) = gk(vi + ui) = gk(p) > 0 (because p ∈ Int(K)), we deduce that either 
cik := gk(vi) > 0 or cik = 0 and dik := �gk(ui) > 0.

As {�h1, . . . , �hn} are independent linear forms, the open semialgebraic set 
⋂n

j=1{�hj <

0} �= ∅. Pick a non-zero vector w ∈
⋂n

j=1{�hj < 0} and write aj := −�hj(w) > 0 for 
j = 1, . . . , n. Consider the polynomial path
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Fig. 3.2. A picture of the situation.

αi0 : R → Rn, t �→ vi + t2ui + t3w.

As h0(vi) = 0 and hj(vi) = 0 for 1 ≤ i, j ≤ n if i �= j, we deduce:

(h0 ◦ αi0)(t) = h0(vi) + �h0(ui)t2 + �h0(w)t3 = bi0t2 + �h0(w)t3.

(hj ◦ αi0)(t) = hj(vi) + �hj(ui)t2 + �hj(w)t3 = �hj(w)t3 = −ajt3 if i �= j,

(hi ◦ αi0)(t) = hi(vi) + �hi(ui)t2 + �hi(w)t3 = hi(vi) + �hi(ui)t2 − ait3.

In addition,

(gk ◦ αi0)(t) = gk(vi) + �gk(ui)t2 + �gk(w)t3 = cik + dikt2 + �gk(w)t3,

where either cik > 0 or both cik = 0 and dik > 0.
Consider the polynomial path

αi1 : R → Rn, t �→ p− (t− 1)3w.

Observe that

(h0 ◦ αi1)(1 + t) = h0(p) − �h0(w)t3,

(hj ◦ αi1)(1 + t) = hj(p) − �hj(w)t3 = ajt3

for 1 ≤ i, j ≤ n. As aj > 0, we have

(hj ◦ αi0)(t)
{
< 0 if t > 0,
> 0 if t < 0,

if i �= j and (hj ◦ αi1)(1 + t)
{
> 0 if t > 0,
< 0 if t < 0.

(3.2)

Denote eik := gk(p) > 0 and observe that

(gk ◦ αi1)(1 + t) = gk(p) − �gk(w)t3 = eik − �gk(w)t3.

Let 0 < δ < 1
2 be such that (h0 ◦ αi0)(t) > 0, (h0 ◦ αi1)(1 + t) > 0, (gk ◦ αi0)(t) > 0

and (gk ◦ αi1)(1 + t) > 0 for t ∈ [−δ, δ] \ {0} (recall that h0(p) > 0). Thus, by (3.2), 
αi0([−δ, 0)), αi1((1, 1 + δ]) ⊂ Int(σ̂) and αi0((0, δ]), αi1([1 − δ, 1)) ⊂ Si.
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As Si is a convex set and αi0(δ), αi1(1 − δ) ∈ Si, the segment that connects both 
points is contained in Si. Let

αi2 : [δ, 1 − δ] → Si, t �→ (1 − δ) − t

1 − 2δ αi0(δ) + t− δ

1 − 2δαi1(1 − δ)

be a parameterization of such segment. Define the continuous semialgebraic path

αi := αi0|[−δ,δ] ∗ αi2 ∗ αi1|[1−δ,1+δ] : [−δ, 1 + δ] → K,

which satisfies αi([−δ, 0) ∪ (1, 1 + δ]) ⊂ Int(σ̂), αi((0, 1)) ⊂ Si and in fact all the required 
conditions (i)-(ix).

Step 1. We have the following inclusions: σ̂ ⊂ F (Δn−1 × [0, 1]) ⊂ K and F (Δn−1 ×
([−δ, 0) ∪ (1, 1 + δ])) ⊂ Int(σ̂) ⊂ K.

Observe that F (Δn−1 × (0, 1)) ⊂ K, because K is convex and αi((0, 1)) ⊂ K. In 
addition, αi(1) = p for each i, so F (Δn−1 ×{1}) = p, and F (λ1, . . . , λn, 0) =

∑n
i=1 λivi, 

so F (Δn−1 × {0}) = σ ⊂ K and F |Δn−1×{0} is a homeomorphism. Thus, F (Δn−1 ×
[0, 1]) ⊂ K.

Let us analyze the restriction map F |∂Δn−1×(0,1) : ∂Δn−1 × (0, 1) → K. Recall that 
∂Δn−1 =

⋃n
i=1(Δn−1 ∩ {λi = 0}).

Fix an index i = 1, . . . , n and write λ(i) := (λ1, . . . , λi−1, 0, λi−1, . . . , λn) where ∑
j �=i λj = 1 and each λj ≥ 0 if j �= i. We have Int(H−

i ) ⊂ Rn \ σ̂ and

F (λ(i), t) =
∑
j �=i

λjαj(t) ∈ Int(K ∩H−
i ) = Int(K) ∩ Int(H−

i ) ⊂ K \ σ̂ (3.3)

for t ∈ (0, 1), because if j �= i each αj(t) ∈ Int(K) ∩ Int(H−
i ) and the latter is convex. 

Thus, F (∂Δn−1 × (0, 1)) ⊂ K \ σ̂. By Lemma 3.2 σ̂ ⊂ F (Δn−1 × [0, 1]).
As αi([−δ, 0) ∪ (1, 1 + δ]) ⊂ Int(σ̂) and Int(σ̂) is convex, one concludes that F (Δn−1×

([−δ, 0) ∪ (1, 1 + δ])) ⊂ Int(σ̂).

Let us construct in the following steps ε > 0 such that: if G is under the hypothesis of 
the statement, then σ̂ ⊂ G(Δn−1 × [0, 1]) ⊂ K and G(Δn−1 × ([−δ′, 0] ∪ [1, 1 + δ′])) ⊂ σ̂

for some 0 < δ′ ≤ ρ < δ small enough.

Step 2. Choice of ε > 0. By (3.3) F (λ, t) ∈ K \σ̂ ⊂ Rn\σ̂ for each (λ, t) ∈ ∂Δn−1×(0, 1). 
For each 0 < ρ < 1

2 define

ερ := 1
2 min

{
dist(F (λ, t), σ̂) : (λ, t) ∈ ∂Δn−1 × [ρ, 1 − ρ]

}
> 0.

If G : Δn−1×[−ρ, 1 +ρ] → Rn satisfies ‖F−G‖ < ερ, then G(∂Δn−1×[ρ, 1 −ρ]) ⊂ Rn\σ̂.
See assertions (i)-(ix) above for the definition of aj , bi0, cik, dik and eik. Consider

c∗ik :=
{
cik if cik > 0,
d if c = 0
ik ik
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and define

ε0 := 1
2 min{aj , bi0, c∗ik, eik : ∀ i, j, k} > 0. (3.4)

By hypothesis (v) and (vi):

(hi ◦ αi)(t) = hi(vi) + �hi(ui)t2 − ait3 + · · · ,

(hj ◦ αi)(t) = −ajt3 + · · · if i �= j,

(hj ◦ αi)(1 + t) = ajt3 + · · · .

As aj > 0 for each j = 1, . . . , n, there exists 0 < ρ0 < δ such that

−(hj ◦ αi)′′′|[−ρ0,ρ0] ≥ ε0 and (hj ◦ αi)′′′|[1−ρ0,1+ρ0] ≥ ε0. (3.5)

As hi is a polynomial of degree 1 for i = 1, . . . , n and 
∑n

j=1 λj = 1,

∂�

∂t�
((hi ◦ F )(λ, t)) =

n∑
j=1

λj(hi ◦ αj)(�)(t)

for each � ≥ 0. Consequently,

− ∂3

∂t3 (hi ◦ F )|Δn−1×[−ρ0,ρ0] ≥ ε0, (3.6)

∂3

∂t3 (hi ◦ F )|Δn−1×[1−ρ0,1+ρ0] ≥ ε0 (3.7)

for i = 1, . . . , n.
For each k = 1, . . . , s define Fk := {i = 1, . . . , n : cik �= 0}. As gk is a polynomial of 

degree 1 and 
∑n

j=1 λj = 1,

(gk ◦ F )(λ, t) =
n∑

i=1
λi(gk ◦ αi)(t) =

∑
i∈Fk

λicik +
∑
i∈Fk

λidikt2 +
∑
i/∈Fk

λidikt2 + · · ·

Define Γk := {λ ∈ Δn−1 : λi = 0, i ∈ Fk}. If Fk �= {1, . . . , n}, then Γk �= ∅ and 
μ0k := min{dik : i /∈ Fk} > 0. Otherwise, Fk = {1, . . . , n}, so Γk = ∅, and define 
μ0k := 1. If Fk �= {1, . . . , n} and λ := (λ1, . . . , λn) ∈ Γk, then 

∑
i/∈Fk

λi = 1 and each 
λi ≥ 0, so 

∑
i/∈Fk

λidik ≥ μ0k. Define

Vk :=

⎧⎪⎪⎨⎪⎪⎩
{λ ∈ Δn−1 :

∑
i∈Fk

λi <
1
4 , |

∑
i∈Fk

λidik| < 1
4μ0k} if Fk �= ∅, {1, . . . , n},

Δn−1 if Fk = ∅,

∅ if F = {1, . . . , n}.
k
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If Fk �= ∅, {1, . . . , n}, then Vk �= ∅ and if λ ∈ Vk, we have 
∑

i/∈Fk
λi > 3

4 , so ∑
i/∈Fk

λidik > 3
4μ0k and

1
2
∂2(gk ◦ F )

∂t2 (λ, 0) =
n∑

i=1
λidik =

∑
i∈Fk

λidik +
∑
i/∈Fk

λidik > −μ0k

4 + 3μ0k

4 = 1
2μ0k. (3.8)

If Fk = ∅, then 
∑n

i=1 λi = 1 and

1
2
∂2(gk ◦ F )

∂t2 (λ, 0) =
n∑

i=1
λidik ≥ μ0k >

1
2μ0k (3.9)

for each λ ∈ Δn−1 = Vk. Consequently, if Fk �= {1, . . . , n}, we have

∂2(gk ◦ F )
∂t2 (λ, 0) > μ0k for each λ ∈ Vk.

Define in addition

μ1k :=
{

min{(gk ◦ F )(λ, 0) =
∑

i∈Fk
λicik : λ ∈ Δn−1 \ Vk} > 0 if Fk �= ∅,

1 if Fk = ∅.
(3.10)

Recall that ρ0 > 0 was chosen in (3.5). Let 0 < ρ < ρ0 be such that

{
|gk(F (λ, t)) − gk(F (λ, 0))| < μ1k

2 if (λ, t) ∈ (Δn−1 \ Vk) × [−ρ, ρ],
∂2(gk◦F )

∂t2 (λ, t) > μ0k
2 if (λ, t) ∈ Cl(Vk) × [−ρ, ρ].

(3.11)

Observe that F (Δn−1× [ρ, 1 +ρ]) ⊂ Int(K) because Int(K) is convex and αi([ρ, 1 +ρ]) ⊂
Int(K) for i = 1, . . . , n, so

ε′ρ := 1
2 min{dist(F (λ, t),Rn \ Int(K)) : (λ, t) ∈ Δn−1 × [ρ, 1 + ρ]} > 0. (3.12)

Thus, if G : Δn−1×[−ρ, 1 +ρ] → Rn and ‖F−G‖ < ε′ρ, then G(Δn−1×[ρ, 1 +ρ]) ⊂ Int(K). 
In fact, if ‖F −G‖ < min{ερ, ε′ρ}, then

G(∂Δn−1 × [ρ, 1 − ρ]) ⊂ Int(K) \ σ̂.

Denote ε′0 := min{ε0, μ1k, 
μ0k
2 : k = 1, . . . , s} (recall that ε0 was defined in (3.4)) and 

Iρ := [−ρ, ρ] ∪ [1 − ρ, 1 + ρ] ⊂ I. The maps

Ψk : C3
Iρ(Δn−1 × [−ρ, 1 + ρ],Rn) → C3

Iρ(Δn−1 × [−ρ, 1 + ρ],R), H �→ gk ◦H,

Θi : C3
Iρ(Δn−1 × [−ρ, 1 + ρ],Rn) → C3

Iρ(Δn−1 × [−ρ, 1 + ρ],R), H �→ hi ◦H
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are continuous with respect to the C3
Iρ

-topology of the involved spaces (see §3.2.2). Let 
0 < ε < min{ερ, ε′ρ} be such that if ‖F − G‖ < ε and ‖ ∂�

∂t�F − ∂�

∂t�G‖Δn−1×Iρ < ε for 
� = 1, 2, 3, then |gk ◦ F − gk ◦ F | < ε′0

2 , |hi ◦ F − hi ◦ F | < ε′0
2 and

∣∣∣ ∂�

∂t�
(gk ◦ F ) − ∂�

∂t�
(gk ◦G)

∣∣∣
Δn−1×Iρ

=
∣∣∣ ∂�

∂t�
(Ψk(F )) − ∂�

∂t�
(Ψk(G))

∣∣∣
Δn−1×Iρ

<
ε′0
2 ,

(3.13)∣∣∣ ∂�

∂t�
(hi ◦ F ) − ∂�

∂t�
(hi ◦G)

∣∣∣
Δn−1×Iρ

=
∣∣∣ ∂�

∂t�
(Θi(F )) − ∂�

∂t�
(Θi(G))

∣∣∣
Δn−1×Iρ

<
ε′0
2
(3.14)

for � = 1, 2, 3 and G ∈ C3
Iρ

(Δn−1 × [−ρ, 1 + ρ], Rn). The chosen value ε > 0 depends only 
on K, σ̂, F and ρ > 0.

Let us check in the following steps: ε > 0 satisfies the conditions in the statement. Let 
G : Δn−1× [−ρ, 1 +ρ] → Rn be a continuous semialgebraic map satisfying the conditions 
in the statement. We have to prove: σ̂ ⊂ G(Δn−1 × [0, 1]) ⊂ K and G(Δn−1 × ([−δ′, 0] ∪
[1, 1 + δ′])) ⊂ σ̂ for some 0 < δ′ < δ.

Step 3. We prove next: G(Δn−1 × ([−ρ, 1 + ρ] \ {0})) ⊂ Int(K).
Since ‖F −G‖ < ε ≤ ε′ρ (see (3.12) for the definition of ε′ρ), we have

G(Δn−1 × [ρ, 1 + ρ]) ⊂ Int(K).

Fix k = 1, . . . , s and let λ ∈ Δn−1. Let us check: G(λ, t) ∈ Int(K) = {g1 > 0, . . . , gs > 0}
for each t ∈ [−ρ, ρ] \ {0}.

We distinguish two cases:
Case 1. λ ∈ Δn−1 \Vk. Observe that if Fk = ∅, then Δn−1 \Vk = ∅. By (3.11) and the 
choice of ε′0

|gk(F (λ, t)) − gk(F (λ, 0))| < μ1k

2 and |gk ◦G− gk ◦ F | < μ1k

2 ,

if t ∈ [−ρ, ρ]. By (3.10) we deduce

(gk ◦G)(λ, t) = (gk ◦ F )(λ, 0) + (gk ◦G)(λ, t) − (gk ◦ F )(λ, t)

+ (gk ◦ F )(λ, t) − (gk ◦ F )(λ, 0) > μ1k − μ1k

2 − μ1k

2 = 0

for each t ∈ [−ρ, ρ]. Thus, gk(G(λ, t)) > 0 for t ∈ [−ρ, ρ] and k = 1, . . . , s, that is, 
G(λ, t) ∈ Int(K) for t ∈ [−ρ, ρ].
Case 2. Vk �= ∅ and λ ∈ Vk. Then 0 ≤

∑
i∈Fk

λicik and 
∑n

i=1 λidik ≥ 1
2μ0k > 0 (see 

(3.8) and (3.9)). As
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gk(F (λ, t)) =
n∑

i=1
λi(gk ◦ αi)(t) =

∑
i∈Fk

λicik +
n∑

i=1
λi(dikt2 + · · · )

and F (λ, t) −G(λ, t) ∈ (t)4R[[t]], we have

gk(G(λ, t)) =
∑
i∈Fk

λicik +
n∑

i=1
λi(dikt2 + · · · ).

Define θk := gk(G(λ, ·)) −
∑

i∈Fk
λicik. Suppose there exists t0 ∈ [−ρ, ρ] \ {0} such 

that θk(t0) ≤ 0. As θk(t) > 0 for t close to 0, we may assume θk(t0) = 0. By Rolle’s 
theorem there exists t1 ∈ (0, t0) (or t1 ∈ (t0, 0)) such that θ′k(t1) = 0. As θ′k(0) = 0, there 
exists t2 ∈ (0, t1) (or t2 ∈ (t1, 0)) satisfying θ′′k(t2) = 0. We have by (3.11) and (3.13)

μ0k

2 ≤
∣∣∣ ∂2

∂t2 (gk ◦ F )(λ, t2)
∣∣∣ =

∣∣∣ ∂2

∂t2 (gk ◦ F )(λ, t2) − θ′′k(t2)
∣∣∣

=
∣∣∣ ∂2

∂t2 (gk ◦ F )(λ, t2) −
∂2

∂t2 (gk ◦G)(λ, t2)
∣∣∣ < ε′0

2 ≤ μ0k

4 ,

which is a contradiction. Consequently, θk(t) > 0 for each t ∈ [−ρ, ρ] \ {0} and k =
1, . . . , s. Thus, G(λ, t) ∈ Int(K) for t ∈ [−ρ, ρ] \ {0}.

Step 4. We prove σ̂ ⊂ G(Δn−1 × [0, 1]) as an application of Lemma 3.2. Observe that 
G|Δn−1×{0} = F |Δn−1×{0} is a homeomorphism and G|Δn−1×{1} = F |Δn−1×{1} = p. Let 
us show: G(∂Δn−1 × (0, 1)) ⊂ Int(K) \ σ̂ ⊂ {h0 ≥ 0} \ σ̂.

As ‖F−G‖ < ε ≤ ερ, we have G(∂Δn−1×[ρ, 1 −ρ]) ⊂ Rn\σ̂. We fix λ(i) ∈ Δn−1∩{λi =
0} and claim: G(λ(i), t) ∈ Int(H−

i ) = {hi < 0} for each t ∈ (0, ρ] ∪ [1 − ρ, 1).
Denote ϕi := hi(G(λ(i), ·)). Suppose there exists t0 ∈ (0, ρ] such that ϕi(t0) ≥ 0. As

hi(F (λ(i), t)) =
∑
j �=i

λj(hi ◦ αj)(t) =
∑
j �=i

λj(−ait3 + · · · )

and F (λ(i), t) −G(λ(i), t) ∈ (t)4R[[t]], we have

ϕi(t) = hi(G(λ(i), t)) =
∑
j �=i

λj(−ait3 + · · · ).

Thus, ϕi(t) < 0 for t > 0 close to 0, so we may assume ϕi(t0) = 0. Consequently, as 
ϕi(0) = 0, there exists by Rolle’s theorem t1 ∈ (0, t0) such that ϕ′

i(t1) = 0. As ϕ′
i(0) = 0, 

there exists t2 ∈ (0, t1) satisfying ϕ′′
i (t2) = 0. As ϕ′′

i (0) = 0, there exists t3 ∈ (0, t2) such 
that ϕ′′′

i (t3) = 0. We have by (3.6) and (3.14)

ε0 ≤
∣∣∣ ∂3

∂t3 (hi ◦ F )(λ(i), t3)
∣∣∣ =

∣∣∣ ∂3

∂t3 (hi ◦ F )(λ(i), t3) − ϕ′′′
i (t3)

∣∣∣
=

∣∣∣ ∂3

∂t3 (hi ◦ F )(λ(i), t3) −
∂3

∂t3 (hi ◦G)(λ(i), t3)
∣∣∣ ≤ ε0

2 ,
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which is a contradiction. Consequently, ϕi(t) < 0 for each t ∈ (0, ρ].
Analogously, one shows ϕi(t) < 0 for each t ∈ [1 − ρ, 1) and i = 1, . . . , n. Thus,

G(∂Δn−1 × (0, 1)) =
n⋃

i=1
G((Δn−1 ∩ {λi = 0}) × (0, 1)) ⊂

n⋃
i=1

{hi < 0} = Rn \ σ̂.

In addition, by Step 3 we know G(Δn−1 × (0, 1)) ⊂ Int(K), so

G(∂Δn−1 × (0, 1)) ⊂ Int(K) \ σ̂ ⊂ {h0 ≥ 0} \ σ̂.

By Lemma 3.2 we have σ̂ ⊂ G(Δn−1 × [0, 1]).

Step 5. Observe that

G(Δn−1 × {0}) = F (Δn−1 × {0}) = σ ⊂ σ̂,

G(Δn−1 × {1}) = F (Δn−1 × {1}) = {p} ⊂ σ̂.

Finally, we show: G(Δn−1 × ([−δ′, 0) ∪ (1, 1 + δ′])) ⊂ σ̂ for some 0 < δ′ ≤ ρ < δ.
For each λ := (λ1, . . . , λn) ∈ Δn−1 consider

hi(F (λ, t)) =
n∑

j=1
λj(hi ◦ αj)(t) = (hi ◦ αi)(t) +

∑
j �=i

λj(−ajt3 + · · · ).

As F (λ, t) −G(λ, t) ∈ (t)4R[[t]], we have

hi(G(λ, t)) = λi(hi(vi) + �hi(ui)t2 − ait3 + · · · ) +
∑
j �=i

λj(−ajt3 + · · · )

= λi(hi(vi) + �hi(ui)t2) −
n∑

j=1
λjajt3 + · · · .

Pick λ ∈ Δn−1 and define

ψi(t) := hi(G(λ, t)) − λi(hi(vi) + �hi(ui)t2) = −
n∑

j=1
λjajt3 + · · · .

As aj > 0, λj ≥ 0 and 
∑n

j=1 λj = 1, we have ψi(t) > 0 for t < 0 close enough to 0. 
Suppose that there exists t0 ∈ [−ρ, 0) such that ψi(t0) ≤ 0. As ψi(0) = 0 and ψi(t) > 0
for t < 0 close enough to 0, we may assume ψi(t0) = 0. As ψi(0) = 0, by Rolle’s theorem 
there exists t1 ∈ (t0, 0) such that ψ′

i(t1) = 0. As ψ′
i(0) = 0, there exists t2 ∈ (t1, 0)

satisfying ψ′′
i (t2) = 0. As ψ′′

i (0) = 0, there exists t3 ∈ (t2, 0) such that ψ′′′
i (t3) = 0. 

Recall that by (3.6)
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∂3

∂t3 (hi ◦ F )(λ, t) = −6
n∑

j=1
λjaj + · · · ≤ −ε0.

Thus, we have by (3.14)

ε0 ≤
∣∣∣ ∂3

∂t3 (hi ◦ F )(λ, t3)
∣∣∣ =

∣∣∣ ∂3

∂t3 (hi ◦ F )(λ, t3) − ψ′′′
i (t3)

∣∣∣
=

∣∣∣ ∂3

∂t3 (hi ◦ F )(λ, t3) −
∂3

∂t3 (hi ◦G)(λ, t3)
∣∣∣ ≤ ε0

2 ,

which is a contradiction. Consequently, ψi(t) > 0 for each t ∈ [−ρ, 0). As hi(vi) > 0, 
there exists 0 < δ′ ≤ ρ < δ such that hi(vi) + t2�hi(ui) > 0 on [−δ′, 0) for i = 1, . . . , n. 
Thus, hi(G(λ, t)) > 0 on Δn−1 × [−δ′, 0) for i = 1, . . . , n.

Let us show hi(G(λ, t)) > 0 for (λ, t) ∈ Δn−1 × (1, 1 + ρ] and i = 1, . . . , n. We have

hi(F (λ, 1 + t)) =
n∑

j=1
λj(hi ◦ αj) =

n∑
j=1

λjajt3 + · · ·

and we can repeat the previous argument taking φi(t) := hi(G(λ, 1 + t)). As F (λ, 1 +
t) −G(λ, 1 + t) ∈ (t)4R[[t]],

φi(t) = hi(G(λ, 1 + t)) =
n∑

j=1
λj(hi ◦ αj) =

n∑
j=1

λjajt3 + · · · .

As aj > 0, λj ≥ 0 and 
∑n

j=1 λj = 1, we have φi(t) > 0 for t > 0 close enough to 0. 
Suppose that there exists t0 ∈ (0, ρ] such that φi(t0) ≤ 0. As φi(0) = 0 and φi(t) > 0
for t > 0 close enough to 0, we may assume φi(t0) = 0. As φi(0) = 0, there exists by 
Rolle’s theorem t1 ∈ (0, t0) such that φ′

i(t1) = 0. As φ′
i(0) = 0, there exists t2 ∈ (0, t1)

satisfying φ′′
i (t2) = 0. As φ′′

i (0) = 0, there exists t3 ∈ (0, t2) such that φ′′′
i (t3) = 0. We 

have by (3.7) and (3.14)

ε0 ≤
∣∣∣ ∂3

∂t3 (hi ◦ F )(λ, 1 + t3)
∣∣∣ =

∣∣∣ ∂3

∂t3 (hi ◦ F )(λ, 1 + t3) − ψ′′′
i (t3)

∣∣∣
=

∣∣∣ ∂3

∂t3 (hi ◦ F )(λ, 1 + t3) −
∂3

∂t3 (hi ◦G)(λ, 1 + t3)
∣∣∣ ≤ ε0

2 ,

which is a contradiction. Thus φi(t) > 0 for each t ∈ (0, ρ], so hi(G(λ, t)) > 0 on 
Δn−1 × (1, 1 + ρ].

We conclude G(Δn−1 × ([−δ′, 0) ∪ (1, 1 + δ′])) ⊂ σ̂, as required. �
We will use the technical Lemma 3.3 to ‘cover’ simplices with Nash maps. For technical 

reasons, we will first approximate the continuous semialgebraic paths αi by Nash paths. 
Let us check that for (close enough) approximations we obtain the desired result.



A. Carbone, J.F. Fernando / Advances in Mathematics 438 (2024) 109288 29
Remark 3.4. For each i = 1, . . . , n let α∗
i : [−δ, 1 + δ] → K be a continuous semialgebraic 

path such that α∗
i |I is a Nash map, α∗

i is close to αi, (α∗
i |I)(�) is close to (αi|I)(�) for 

� = 1, 2, 3, (α∗
i )(�)(0) = (αi)(�)(0) and (α∗

i )(�)(1) = (αi)(�)(1) for � = 0, 1, 2, 3 (recall that 
I := [−δ, δ] ∪ [1 − δ, 1 + δ]).

(i) Then there exists ε∗ > 0 and

F ∗ : Δn−1 × [−δ, 1 + δ] → K, (λ, t) �→
n∑

i=1
λiα

∗
i (t)

that satisfy the same conditions as ε and F in the statement of Theorem 3.3.
Observe that

(F − F ∗)(λ, t) =
n∑

i=1
λi(αi(t) − α∗

i (t)),

(∂�F

∂t�
− ∂�F ∗

∂t�
)
(λ, t) =

n∑
i=1

λi(α(�)
i (t) − (α∗

i )(�)(t))

for � = 1, 2, 3. In addition, for � = 0, 1, 2, 3,

∂�F

∂t�
(λ, 0) =

n∑
i=1

λiα
(�)
i (0) =

n∑
i=1

λi(α∗
i )(�)(0) = ∂�F ∗

∂t�
(λ, 0),

∂�F

∂t�
(λ, 1) =

n∑
i=1

λiα
(�)
i (1) =

n∑
i=1

λi(α∗
i )(�)(1) = ∂�F ∗

∂t�
(λ, 1).

Take ε∗ := ε
2 > 0 and assume that ‖αi − α∗

i ‖ < ε∗ and ‖α(�)
i − (α∗

i )(�)‖I < ε∗ for 
� = 1, 2, 3. Let G : Δn−1 × [−δ, 1 + δ] → Rn be a continuous semialgebraic map that is 
Nash on a neighborhood Δn−1×I ′ ⊂ Δn−1×I of Δn−1×{0, 1} and satisfies ∂

�G
∂t� (λ, 0) =

∂�F∗

∂t� (λ, 0), ∂
�G
∂t� (λ, 1) = ∂�F∗

∂t� (λ, 1) for each λ ∈ Δn−1 and � = 0, 1, 2, 3, ‖G − F ∗‖ < ε∗

and ‖∂�G
∂t� − ∂�F∗

∂t� ‖Δn−1×I′ < ε∗ for � = 1, 2, 3. Then

∂�G

∂t�
(λ, 0) = ∂�F ∗

∂t�
(λ, 0) = ∂�F

∂t�
(λ, 0),

∂�G

∂t�
(λ, 1) = ∂�F ∗

∂t�
(λ, 1) = ∂�F

∂t�
(λ, 1)

for each λ ∈ Δn−1 and � = 0, 1, 2, 3, and

‖G− F‖ ≤ ‖G− F ∗‖ + ‖F ∗ − F‖ < ε∗ + ε∗ = ε,∥∥∥∂�G

∂t�
− ∂�F

∂t�
∥∥∥

Δn−1×I′
≤

∥∥∥∂�G

∂t�
− ∂�F ∗

∂t�
∥∥∥

Δn−1×I′
+

∥∥∥∂�F ∗

∂t�
− ∂�F

∂t�
∥∥∥

Δn−1×I′
< ε∗ + ε∗ = ε
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for � = 1, 2, 3. By Theorem 3.3 we have that σ̂ ⊂ G(Δn−1 × [0, 1]) ⊂ K and G(Δn−1 ×
([−ρ, 0] ∪ [1, 1 + ρ])) ⊂ σ̂ for some 0 < ρ < δ small enough, as required.

(ii) By (i) and Lemma 2.8 we may assume that each path αi : [−δ, 1 + δ] → K in the 
statement of Theorem 3.3 is Nash on [−δ, 1 + δ].

The following result provides sufficient conditions to guarantee that the high order 
derivatives of two continuous semialgebraic maps on Rd × [−1, 1] that are Nash on a 
neighborhood of a semialgebraic set S ×{0} are equal at the points of S ×{0}. This pro-
vides a sufficient condition to decide when the approximating maps satisfy the hypothesis 
of Lemma 3.3.

Lemma 3.5. Let S ⊂ Rd be a non-empty semialgebraic set. Let F, G : Rd × [−1, 1] → Rm

be two continuous semialgebraic maps that are Nash on a neighborhood of S × {0} and 
suppose that there exists a Nash function λ : [−1, 1] → R such that ‖F − G‖S×[−1,1] <

|λ|[−1,1] and that λ(t) = ak+1tk+1u2(t) where ak+1 �= 0 and u ∈ R[[t]]alg is a Nash 
series such that u(0) = 1. Then, for each x ∈ S we have

∂�F

∂t�
(x, 0) = ∂�G

∂t�
(x, 0)

for � = 0, . . . , k.

Proof. Pick x ∈ S and write

F (x, t) :=
∑
�≥0

1
�!
∂�F

∂t�
(x, 0)t�,

G(x, t) :=
∑
�≥0

1
�!
∂�G

∂t�
(x, 0)t�.

Thus, we have the following inequalities in the ring R[[t]]alg of algebraic power series 
with respect to any of its two orders (one characterized by t > 0 and the other one by 
t < 0):

∥∥∥∑
�≥0

1
�!

( ∂F

∂t�
(x, 0) − ∂G

∂t�
(x, 0)

)
t�
∥∥∥ ≤ ‖F (x, t) −G(x, t)‖ ≤ |ak+1||tk+1|u2.

Consequently, the series

∑
�≥0

1
�!

(∂�F

∂t�
(x, 0) − ∂�G

∂t�
(x, 0)

)
t�

is a series of order ≥ k + 1, so
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∂�F

∂t�
(x, 0) − ∂�G

∂t�
(x, 0) = 0

for � = 0, . . . , k, as required. �
3.3. Local charts and tubular neighborhoods

Let T ⊂ Rn be a compact checkerboard set of dimension d ≥ 2 and ∂T := T \Reg(T). 
The algebraic set M := T

zar ⊂ Rn is a Nash manifold and ∂T
zar ⊂ M is a Nash 

normal-crossings divisor of M . By [16, Thm.1.6] M can be covered by finitely many open 
semialgebraic subsets U ⊂ M endowed with Nash diffeomorphisms u := (u1, . . . , ud) :
U → Rd such that U ∩ ∂T

zar = {u1 · · ·uk = 0} for some k depending on U . Denote 
Λk := {x1 ≥ 0, . . . , xk ≥ 0} ⊂ Rd for k = 1, . . . , d and Λ0 = Rd. As T is compact, 
there exist finitely many Nash diffeomorphisms φi : Rd → Ui ⊂ M (with inverse maps 
ui := (ui1, . . . , uid) : Ui → Rd) for i = 1, . . . , r such that:

• If Ui ∩ ∂T
zar �= ∅, then Ui ∩ ∂T

zar = {ui1 · · ·uiki
= 0}.

• T =
⋃r

i=1 φi(Λki
) for some 0 ≤ ki ≤ d.

• Reg(T) =
⋃r

i=1 φi(Int(Λki
)).

Let (Ω, ν) be a Nash tubular neighborhood for the Nash manifold M := T
zar endowed 

with a Nash retraction ν such that dist(z, M) = ‖ν(z) − z‖ for each z ∈ Ω (see [6, 
Cor.8.9.5]). When T is compact, shrinking Ω if necessary, we may assume Cl(ν−1(T)) is 
compact and ν admits a Nash extension to Cl(ν−1(T)).

3.4. Some preliminary estimations

We want to provide some estimations in order to apply Lemma 3.5 later in our con-
struction. Let x ∈ M and y ∈ Rn be such that x + y ∈ Ω, then

‖ν(x + y) − x‖ ≤ ‖ν(x + y) − (x + y)‖ + ‖y‖

= dist(x + y,M) + ‖y‖ ≤ ‖x + y − x‖ + ‖y‖ = 2‖y‖.

Let F := {ψ : Rd → Rd linear map} ≡ (Rd,∗)d and ψ1, . . . , ψr ∈ F. If w ∈ Rd and 
λ1, . . . , λr ∈ R are such that (φ1 ◦ ψ1)(w) +

∑r
i=1 λi(φi ◦ ψi)(w) ∈ Ω, then

∥∥∥ν((φ1 ◦ ψ1)(w) +
r∑

i=1
λi(φi ◦ ψi)(w)

)
− (φ1 ◦ ψ1)(w)

∥∥∥
≤ 2

∥∥∥ r∑
i=1

λi(φi ◦ ψi)(w)
∥∥∥ ≤ 2

r∑
i=1

|λi|‖(φi ◦ ψi)(w)‖.
(3.15)
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Recall that Bd(0, ε) (resp. Bd(0, ε)) denotes the closed ball (resp. open ball) of Rd of 
centre the origin and radius ε > 0.

Lemma 3.6 (Lipschitz Nash charts). Let M ⊂ Rn be a Nash manifold and consider a 
Nash chart θ := (θ1, . . . , θn) : Rd → M . Let π : Rn → Rd be the projection onto the first 
d coordinates and denote W := (π ◦ θ)(Rd). Assume that W is open and that the map 
θ′ := π ◦ θ : Rd → W is a Nash diffeomorphism. For each t > 0 there exists a constant 
Lt > 0 such that ‖θ−1(x) − θ−1(y)‖ ≤ Lt‖x − y‖ for each x, y ∈ θ(Bd(0, t)).

Proof. Define f := (θd+1, . . . , θn) ◦θ′ −1 : W → Rn−d and observe that we have θ ◦θ′−1 :
W → θ(Rd), z �→ (z, f(z)). Thus,

‖z − w‖ ≤ ‖(z, f(z)) − (w, f(w))‖ = ‖(θ ◦ θ′ −1)(z) − (θ ◦ θ′ −1)(w)‖

for each z, w ∈ W . Consequently, writing z = (θ′ ◦ θ−1)(x) and w = (θ′ ◦ θ−1)(y), we 
deduce

‖(θ′ ◦ θ−1)(x) − θ′ ◦ θ−1(y)‖ ≤ ‖x− y‖

for each x, y ∈ θ(Rd) = (θ ◦ θ′ −1)(W ).
By the mean value theorem there exists a constant Lt > 0 such that

‖θ′ −1(z) − θ′ −1(w)‖ ≤ Lt‖z − w‖

for each z, w ∈ θ′(Bd(0, t)). Thus,

‖θ−1(x) − θ−1(y)‖ = ‖θ′ −1((θ′ ◦ θ−1)(x)) − θ′ −1((θ′ ◦ θ−1)(y))‖

≤ Lt‖(θ′ ◦ θ−1)(x) − θ′ ◦ θ−1(y)‖ ≤ Lt‖x− y‖

for each x, y ∈ θ(Bd(0, t)), as required. �
Remark 3.7. The previous result works the same if π is any projection π : Rn → Rd, x :=
(x1, . . . , xn) �→ (xi1 , . . . , xid) for some 1 ≤ i1 < . . . < id ≤ n.

As T is compact, we may assume T ⊂
⋃r

i=1 φi(Bd(0, 1)) = M . We may also assume, 
using the compactness of T, that each φi is under the hypothesis of Lemma 3.6 (see 
Remark 3.7). Define K := max{‖x‖ : x ∈

⋃r
i=1(φi ◦ ψi)(Bd(0, 1))} > 0. If w ∈ Bd(0, 1)

and λ1, . . . , λr ∈ R are such that ν((φ1 ◦ ψ1)(w) +
∑r

i=1 λi(φi ◦ ψi)(w)) ∈ φ1(Bd(0, 1)), 
then by (3.15) and Lemma 3.6 there exists L > 0 such that

∥∥∥φ−1
1

(
ν
(
(φ1 ◦ ψ1)(w) +

r∑
λi(φi ◦ ψi)(w)

))
− φ−1

1 (φ1 ◦ ψ1)(w)
∥∥∥
i=1
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≤ L
∥∥∥ν((φ1 ◦ ψ1)(w) +

r∑
i=1

λi(φi ◦ ψi)(w)
)
− (φ1 ◦ ψ1)(w)

∥∥∥
(3.16)

≤ 2L
r∑

i=1
|λi|‖(φi ◦ ψi)(w)‖ ≤ 2LK

r∑
i=1

|λi|.

3.5. Decomposition as a finite union of ‘simplices’

Consider the vectors of the standard basis ei := (0, . . . , 0, 1, 0, . . . , 0) of Rd for i =
1, . . . , d. Fix k = 1, . . . , d and consider the convex polyhedron Kk that is the convex hull 
of the origin 0 and the points

e1, . . . , ek, ek+1,−ek+1, . . . , ed,−ed.

We have that the polyhedron Kk is a compact neighborhood of the origin in Λk = {x1 ≥
0, . . . , xk ≥ 0}, Kk ∩ ∂Λk = ∂Kk ∩ ∂Λk and Int(Kk) = Int(Kk ∩ Int(Λk)). Observe that 
Kk is the union of the simplices Δ(εk+1, . . . , εd) of vertices the origin 0 and the points

e1, . . . , ek, εk+1ek+1, . . . , εded,

where εk+1, . . . , εd = ±1. Let Tk be the collection of the proper faces of all the simplices 
Δ(εk+1, . . . , εd) that are contained in ∂Kk. Observe that Tk provides a triangulation of 
∂Kk. Define

pk :=
k∑

j=1

1
2d− k + 1ej

=
k∑

j=1

1
2d− k + 1ej +

d∑
j=k+1

1
2d− k + 1ej +

d∑
j=k+1

1
2d− k + 1(−ej) + 1

2d− k + 10,

which belongs to Int(Kk). Observe that if k = 0, then p0 is the origin. For each σ ∈ Tk

define σ̂ as the convex hull of σ ∪{pk}, which is a simplex. Observe that T̂k := {σ̂ : σ ∈
Tk} is a triangulation of Kk such that

σ̂ ∩ ∂Λk = σ̂ ∩Kk ∩ ∂Λk = σ̂ ∩ ∂Kk ∩ ∂Λk = σ ∩ ∂Λk,

which is either the empty set or a face of σ (see Fig. 3.3). Let Fk be the collection of the 
simplices σ̂ ∈ T̂k of dimension d.

We retake here the Nash atlas {φi}ri=1 of M = T
zar introduced in §3.3 and we keep 

all the hypothesis concerning {φi}ri=1 already introduced there. We may assume that 
{φi(Kki

)}ri=1 is a covering of the compact checkerboard set T introduced in §3.3. For each 
i consider the finite family Fki

of simplices of dimension d. Note that we are considering 



34 A. Carbone, J.F. Fernando / Advances in Mathematics 438 (2024) 109288
Fig. 3.3. Triangulations T̂k of the polyhedra Kk for d = 2.

the families Fki1
and Fki2

as different families of simplices when i1 �= i2, even if Ki1 = Ki2

as subsets of Rd. We consider all the pairs (φi, τ) where τ ∈ Fki
. Observe that τ is the 

convex hull of σ ∪ {pki
} for some σ ∈ Tki

.
Repeating the diffeomorphisms φi as many times as needed and reordering the dif-

feomorphisms φi, we may assume that {φi(τi)}ri=1 is a covering of T such that τi is a 
d-dimensional simplex of Rd and τi ∩ φ−1

i (∂T) is either the empty set or a proper face 
of τi. Let σi be the (d − 1)-dimensional face of τi that does not contain pi := pki

. Note 
that pi belongs to φ−1

i (Reg(T)) because pi ∈ Int(Λki
) ⊂ φ−1

i (Reg(T)). Consequently, 
τi ∩ φ−1

i (∂T) ⊂ σi.

3.6. Smart set of maps

Let F := {ψ : Rd → Rd linear} ≡ (Rd,∗)d and denote μ := (μ1, . . . , μr) ∈ Rr and 
ψ := (ψ1, . . . , ψr) ∈ Fr. Let

Γ : Rr × Fr → N (Rd,Rn), (μ;ψ) �→
r∑

i=1
μi(φi ◦ ψi),

which is a continuous map if both spaces F and N (Rd, Rn) are endowed with the 
compact-open topology. The compact-open topology of F coincides with the topology of 
F induced by the Euclidean topology of (Rd,∗)d ≡ Rd2 . Recall that

Δd−1 := {λ1 ≥ 0, . . . , λd ≥ 0, λ1 + · · · + λd = 1} ⊂ Rd.

Note that an element of Rd,∗ is determined by the images of the vertices of Δd−1, which 
is a (compact) finite set.

Define Θ0 := {(μ; ψ) ∈ Rr × Fr : Γ(μ, ψ)(Δd−1) ⊂ ν−1(Reg(T))} and let us prove 
that it is an open semialgebraic set. The objects T and ν were already introduced in 
§3.3.

Proposition 3.8. The set Θ0 ⊂ Rr × Fr is open and semialgebraic.

Proof. The fact that Θ0 is semialgebraic follows by the Tarski-Seidenberg principle [7, 
Thm.2.6], because it can be described as Θ0 = {x ∈ Rr × Fr : Ψ(x)}, where Ψ(x) is a 
first order formula in the language of ordered fields.



A. Carbone, J.F. Fernando / Advances in Mathematics 438 (2024) 109288 35
Let us show now that Θ0 is open. Recall that Reg(T) is an open semialgebraic sub-
set of T. As T is pure dimensional, Reg(T) is open in the Nash manifold M := T

zar. 
Thus, ν−1(Reg(T)) is an open subset of Rn. Consider now the set {F ∈ N (Rd, Rn) :
F (Δd−1) ⊂ ν−1(Reg(T))}, which is an open subset of the open-compact topology of 
N (Rd, Rn). Thus, the set

Θ0 = Γ−1({F ∈ N (Rd,Rn) : F (Δn−1) ⊂ ν−1(Reg(T))})

is an open subset of Rr × Fr, because the map Γ is continuous. �
3.7. Properties of Θ0

For each w ∈ Rd, define the linear map

ψw : Rd → Rd, (x1, . . . , xd) �→ (x1 + · · · + xd)w.

The restriction ψw|{x1+···+xd=1} is the constant map w and the simplex Δd−1 ⊂ {x1 +
· · · + xd = 1}. The vectors ei were introduced in §3.5. Let {e1, . . . , er} be the standard 
basis of Rr. Let us analyze some properties of Θ0:

(1) If φi(wi) ∈ Reg(T), then (ei; 0, . . . , 0, 
(i)
ψwi

, 0, . . . , 0) ∈ Θ0.

As Γ(ei; 0, . . . , 0, 
(i)
ψwi

, 0, . . . , 0)(Δd−1) = {φi(wi)} ⊂ Reg(T) ⊂ ν−1(Reg(T)), we have

(ei; 0, . . . , 0,
(i)
ψwi

, 0, . . . , 0) ∈ Θ0.

(2) Given 1 ≤ i, j ≤ r, let wi ∈ Int(Λki
) and zj ∈ Int(Λkj

) be such that φi(wi) = φj(zj). 
Then

(ei; 0, . . . , 0,
(i)
ψwi

, 0, . . . , 0) and (ej ; 0, . . . , 0,
(j)
ψzj , 0, . . . , 0)

belong to the same connected component of Θ0.
Observe that

φi(wi) = (1 − t)φi(wi) + tφj(zj) = φj(zj) ∈ Reg(T) ⊂ ν−1(Reg(T))

for t ∈ [0, 1]. Thus,

Γ(((1 − t)ei + tej ; 0, . . . , 0,
(i)
ψwi

, 0, . . . , 0,
(j)
ψzj , 0, . . . , 0))(Δd−1)

= ((1 − t)(φi ◦ ψwi
) + t(φj ◦ ψzj ))(Δd−1) = {(1 − t)φi(wi) + tφj(zj)} ⊂ ν−1(Reg(T)),

so ((1 − t)ei + tej ; 0, . . . , 0, 
(i)
ψwi

, 0, . . . , 0, 
(j)
ψzj , 0, . . . , 0) ∈ Θ0 for t ∈ [0, 1]. Consequently, 

the connected set
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C1 := {((1 − t)ei + tej ; 0, . . . , 0,
(i)
ψwi

, 0, . . . , 0,
(j)
ψzj , 0, . . . , 0) : t ∈ [0, 1]},

is contained in one of the connected components of Θ0. In addition, for t ∈ [0, 1]

Γ(ei; 0, . . . , 0,
(i)
ψwi

, 0, . . . , 0,
(j)
ψtzj , 0, . . . , 0)(Δd−1) = {φi(wi)} ⊂ ν−1(Reg(T))

Γ(ej ; 0, . . . , 0,
(i)
ψtwi

, 0, . . . , 0,
(j)
ψzj , 0, . . . , 0)(Δd−1) = {φj(zj)} ⊂ ν−1(Reg(T)).

As ψtzj = tψzj and ψtwi
= tψwi

for t ∈ [0, 1], we deduce

(ei; 0, . . . , 0,
(i)
ψwi

, 0, . . . , 0,
(j)
tψzj , 0, . . . , 0) ∈ Θ0 for t ∈ [0, 1],

(ej ; 0, . . . , 0,
(i)

tψwi
, 0, . . . , 0,

(j)
ψzj , 0, . . . , 0) ∈ Θ0 for t ∈ [0, 1].

Thus, the connected sets

C2 := {(ei; 0, . . . , 0,
(i)
ψwi

, 0, . . . , 0,
(j)
tψzj , 0, . . . , 0) : t ∈ [0, 1]},

C3 := {(ej ; 0, . . . , 0,
(i)

tψwi
, 0, . . . , 0,

(j)
ψzj , 0, . . . , 0) : t ∈ [0, 1]}

are contained in a connected component of Θ0. As

C1 ∩ C2 = {(ei; 0, . . . , 0,
(i)
ψwi

, 0, . . . , 0,
(j)
ψzj , 0, . . . , 0)},

C1 ∩ C3 = {(ej ; 0, . . . , 0,
(i)
ψwi

, 0, . . . , 0,
(j)
ψzj , 0, . . . , 0)},

we deduce C1 ∪ C2 ∪ C3 is a connected subset of Θ0 contained in one of its connected 
components.

We conclude that (ei; 0, . . . , 0, 
(i)
ψwi

, 0, . . . , 0) ∈ C2 and (ej ; 0, . . . , 0, 
(j)
ψzj , 0, . . . , 0) ∈ C3

belong to the same connected component of Θ0.
(3) If wi ∈ Int(Λki

) and zj ∈ Int(Λkj
), then

(ei; 0, . . . , 0,
(i)
ψwi

, 0, . . . , 0) and (ej ; 0, . . . , 0,
(j)
ψzj , 0, . . . , 0)

belong to the same connected component of Θ0.
As Reg(T) is connected and {Int(φi(Λki

))}ri=1 is an open semialgebraic covering of 
Reg(T), given 1 ≤ i, j ≤ r, there exists a chain {φi�(Λki�

)}s�=1 such that i = i1, j = is and 
φi�(Int(Λki�

)) ∩ φi�+1(Int(Λki�+1
)) �= ∅ for each �. Thus, we may assume φi(Int(Λki

)) ∩
φj(Int(Λkj

)) �= ∅. Now, by (2) it is enough to prove the statement for i = j. Observe 
that
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tψwi
+ (1 − t)ψzi = ψtwi+(1−t)zi

for each t ∈ [0, 1]. As wi, zi ∈ Int(Λki
) and the latter is convex, we have that twi + (1 −

t)zi ∈ Int(Λki
) for each t ∈ [0, 1], so

Γ((ei; 0, . . . , 0,
(i)

tψwi
+ (1 − t)ψzi , 0, . . . , 0)) = φi(twi+(1−t)zi) ∈ Reg(T) ⊂ ν−1(Reg(T)).

Thus,

{(ei; 0, . . . , 0,
(i)

tψwi
+ (1 − t)ψzi , 0, . . . , 0) : t ∈ [0, 1]} ⊂ Θ0

is connected, so (ei; 0, . . . , 0, 
(i)
ψwi

, 0, . . . , 0) and (ei; 0, . . . , 0, 
(i)
ψzi , 0, . . . , 0) belong to the 

same connected component of Θ0.
(4) There exists a connected component Θ of Θ0 that contains all the connected sets 
Ξi := {ei} × Fi−1 × {ψwi

: wi ∈ Int(Λki
)} × Fr−i for i = 1, . . . , r.

Observe that

Γ((ei;ψ1, . . . , ψi−1, ψwi
, ψi+1, . . . , ψr))(Δd−1)

= φi(ψwi
)(Δd−1) = φi(wi) ∈ Reg(T) ⊂ ν−1(Reg(T)),

so Ξi ⊂ Θ0 and it is a connected set, because it is a finite product of connected sets. 
Thus, there exists a connected component Θi of Θ0 that contains Ξi for i = 1, . . . , r. By 
(3) we deduce Θi = Θj if i �= j, so there exists a connected component Θ of Θ0 that 
contains all the connected sets Ξi for i = 1, . . . , r.
(5) Let Θ be the connected component of Θ0 introduced in (4). If ψi ∈ F satisfies 

ψi(Δd−1) ⊂ Λki
, then (ei; 0, . . . , 0, 

(i)
ψi, 0, . . . , 0) ∈ Cl(Θ). If in addition ψi(Δd−1) ⊂

Int(Λki
), then

(ei; 0, . . . , 0,
(i)
ψi, 0, . . . , 0) ∈ Θ.

Let wi ∈ Int(Λki
). Recall that by (4) (ei; 0, . . . , 0, 

(i)
ψtwi

, 0, . . . , 0) ∈ Θ for each t ∈ (0, 1], 
because Λki

is an open cone (so twi ∈ Int(Λki
) for each t ∈ (0, 1]). Consider the Nash 

path

α : (0, 1] → Rr × Fr, t �→ (ei; 0, . . . , 0,
(i)

(1 − t)ψi + tψwi
, 0, . . . , 0).

We claim: α(t) ∈ Θ0 for t ∈ (0, 1].
This is because wi ∈ Int(Λki

) and ψi(Δd−1) ⊂ Λki
for t ∈ (0, 1], so ((1 − t)ψi +

tψwi
)(Δd−1) ⊂ Int(Λki

) for t ∈ (0, 1] (see [5, Lemma 11.2.4]). Thus,
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Γ(α(t))(Δd−1) ⊂ φi((1 − t)ψi + tψwi
)(Δd−1) ⊂ φi(Int(Λki

)) ⊂ Reg(T)

for each t ∈ (0, 1], so α(t) ∈ Θ0 for each t ∈ (0, 1].

As α(1) = (ei; 0, . . . , 0, 
(i)
ψwi

, 0, . . . , 0) ∈ Θ, we have α(0) = (ei; 0, . . . , 0, 
(i)
ψi, 0, . . . , 0) ∈

Cl(Θ).

If in addition ψi(Δd−1) ⊂ Int(Λki
), then (ei; 0, . . . , 0, 

(i)
ψi, 0, . . . , 0) ∈ Θ0, so

(ei; 0, . . . , 0,
(i)
ψi, 0, . . . , 0) ∈ Θ0 ∩ Cl(Θ) = Θ.

(6)If (μ; ψ) ∈ Cl(Θ0), then Γ(μ; ψ)(Δd−1) ⊂ Cl(ν−1(T)) and ν(Γ(μ; ψ)(Δd−1)) ⊂ T.
By the curve selection lemma [6, Thm.2.5.5] there exists a continuous semialgebraic 

path α : [0, 1] → Cl(Θ0) such that α(0) = (μ; ψ) and α((0, 1]) ⊂ Θ0. This means that 
for each t ∈ (0, 1] one has Γ(α(t))(Δd−1) ⊂ ν−1(Reg(T)). If x ∈ Δd−1, then Γ(α(t))(x) :
[0, 1] → Rn is a continuous semialgebraic path such that Γ(α(t))(x) ⊂ ν−1(Reg(T)) for 
each t ∈ (0, 1], so

Γ(α(0))(x) ∈ Cl(ν−1(Reg(T))) ⊂ Cl(ν−1(T)).

Consequently, Γ(μ; ψ)(Δd−1) ⊂ Cl(ν−1(T)).
As Cl(ν−1(T)) is a compact set and ν admits a Nash extension to Cl(ν−1(T)) (see 

Subsection 3.3), we deduce ν : Cl(ν−1(T)) → M = T
zar is proper and

ν(Γ(μ;ψ)(Δd−1)) ⊂ ν(Cl(ν−1(T))) = Cl(T) = T.

(7) Let j : N (Rd, Rn) → N (Δd−1, Rn), f �→ f |Δd−1 , which is continuous if we endow 
both spaces with the compact-open topology. Then the composition

ν∗ ◦ j ◦ Γ : Cl(Θ) → N (Δd−1,T), (μ;ψ) �→ ν ◦ (Γ((μ;ψ))|Δd−1)

is continuous.
(8) If β : [0, 1] → Cl(Θ0) is a Nash path, then B : [0, 1] × Δd−1 → T, (t, x) �→ ν ◦
(Γ(β(t)))(x) is a Nash map.

3.8. Nash images of the closed ball

We are finally ready to finish the proof of Theorem 1.19. As we have seen in Paragraph 
2.3.1, it is enough to prove Theorem 2.7. Let us prove: Given a compact checkerboard set 
T ⊂ Rn of dimension d ≥ 2, there exists a Nash map F : Δd−1 × [0, 1] → Rn such that 
F (Δd−1 × [0, 1]) = T.

Proof of Theorem 2.7. We keep all the notations introduced in Subsections 3.3, 3.5 and 
3.6. We also keep all the assumptions done along these subsections. Recall that T =
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⋃r
i=1 φi(τi) ⊂

⋃r
i=1 φi(Bd(0, 1)), where τi ⊂ Λki

is a d-dimensional simplex such that 
τi ∩ φ−1

i (∂T) is either empty or a proper face of τi contained in a (d − 1)-dimensional 
face σi of τi that does not contain a vertex pi ∈ φ−1

i (Reg(T)) of τi. If τi ∩ φ−1
i (∂T) = ∅, 

we denote with σi the facet of τi that does not contain the origin of Rd (this situation 
corresponds to the case k = 0 in Subsection 3.5 and the origin is the point p0 introduced 
there). In both cases the remaining vertex pi of τi belongs to φ−1

i (Reg(T)) and τi is the 
convex hull of σi∪{pi}, see Subsection 3.5. In addition, T =

⋃r
i=1 φi(Λki

) (see Subsection 
3.3).

Denote the vertices of σi with vij for j = 1, . . . , d. Let Hij be the hyperplanes 
generated by the facets of τi that contain the vertex pi and assume vij /∈ Hij and 
τi ⊂

⋂d
j=1 H

+
ij .

Let αij : [−δ, 1 + δ] → Rd be Nash paths satisfying the conditions of Lemma 3.3 (see 
also Remark 3.4(ii)) applied to the pair τi ⊂ Λki

. Consider the Nash path

Ai : [−δ, 1 + δ] → {ei} × Fr, t �→
(
ei; 0, . . . , 0,

d∑
j=1

αij(t)xj , 0, . . . , 0
)
,

which satisfies in particular

φi(τi) ⊂
⋃

t∈[0,1]

Γ(Ai(t))(Δd−1) ⊂ φi(Λki
) and

⋃
t∈[−δ,0)∪(1,1+δ]

Γ(Ai(t))(Δd−1) ⊂ φi(Int(τi)).

By Lemma 3.3 (and Remark 3.4(ii)) we have in addition

Γ(Ai(t))(Δd−1)
{

= φi(σi) ⊂ φi(Λki
) ⊂ T if t = 0,

⊂ φi(Int(Λki
)) ⊂ Reg(T) if t ∈ [−δ, 1 + δ] \ {0}.

Thus, Ai(t) ∈ Θ if t ∈ [−δ, 1 + δ] \ {0} and ζi := Ai(0) ∈ Cl(Θ), see Property 3.7(5). 
Define the linear maps ηi :=

∑d
j=1 αij(−δ)xj ∈ F and ξi :=

∑d
j=1 αij(1 + δ)xj ∈ F. By 

Lemma 3.3 (and Remark 3.4(ii)) ηi(Δd−1), ξi(Δd−1) ⊂ Int(τi) ⊂ Int(Λki
) and we deduce 

by Property 3.7(5)

(ei; 0, . . . , 0,
(i)
ηi , 0, . . . , 0), (ei; 0, . . . , 0,

(i)
ξi , 0, . . . , 0) ∈ Θ.

Up to repeating the charts φi as many times as needed, we may assume

φi(Int(Λki
)) ∩ φi+1(Int(Λki+1)) �= ∅

and let φi(wi) = φi+1(zi+1) ∈ φi(Int(Λki
)) ∩ φi+1(Int(Λki+1)). Observe that
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φi((1 − t)ξi + tψwi
)(Δd−1) ⊂ φi(Int(Λki

)) ⊂ Reg(T) ⊂ ν−1(Reg(T)), (3.17)

φi+1((1 − t)ψzi+1 + tηi+1)(Δd−1) ⊂ φi+1(Int(Λki+1)) ⊂ Reg(T) ⊂ ν−1(Reg(T))
(3.18)

for t ∈ [0, 1]. Consider the Nash paths

Bi : [0, 1] → Θ0, t �→ (ei; 0, . . . , 0, (1 − t)ξi + tψwi
, tψzi+1 , 0, . . . , 0),

Ci : [0, 1] → Θ0, t �→ ((1 − t)ei + tei+1; 0, . . . , 0, ψwi
, ψzi+1 , 0, . . . , 0),

Di : [0, 1] → Θ0, t �→ (ei+1; 0, . . . , 0, (1 − t)ψwi
, (1 − t)ψzi+1 + tηi+1, 0, . . . , 0).

We have Bi([0, 1]) ⊂ Θ0 because

Γ(Bi(t))(Δd−1) = φi((1 − t)ξi + tψwi
)(Δd−1) ⊂ ν−1(Reg(T))

for t ∈ [0, 1] (see (3.17)). In addition, Ci([0, 1]) ⊂ Θ0 by the proof of Property 3.7(2) and 
Di([0, 1]) ⊂ Θ0, because

Γ(Di(t))(Δd−1) = φi+1((1 − t)ψzi+1 + tηi+1)(Δd−1) ⊂ ν−1(Reg(T))

for t ∈ [0, 1] (see (3.18)). By Property 3.7(4) , Bi(1) = (ei; 0, . . . , 0, 
(i)
ψwi

, ψzi+1 , 0, . . . , 0) ∈
Θ and, as Bi([0, 1]) ⊂ Θ0 is connected, we deduce Bi([0, 1]) ⊂ Θ. Analogously, Ci(0) =
Bi(1) ∈ Θ and Ci([0, 1]) ⊂ Θ0 is connected, so Ci([0, 1]) ⊂ Θ. In addition,

Di(0) = Ci(1) = (ei+1; 0, . . . , 0, ψwi
,

(i+1)
ψzi+1 , 0, . . . , 0) ∈ Θ

and Di([0, 1]) ⊂ Θ0 is connected, so Di([0, 1]) ⊂ Θ.
Fix times 0 < t1 < s1 < · · · < tr < sr < 1 and denote

χi := Ai(1) = (ei, 0, . . . , 0,
(i)

(x1 + · · · + xd)pi, 0, . . . , 0) ∈ Θ.

Observe that (x1 + · · · + xd)pi is the linear map Rd → Rd that takes the constant 
value pi ∈ Int(Λki

) on the hyperplane {x1 + · · · + xd = 1}. Consider the continuous 
semialgebraic path obtained concatenating the previous paths:

E :=
r∗

i=1
(Ai ∗Bi ∗ Ci ∗Di) : [0, 1] → Θ ∪ {ζ1, . . . , ζr}

and assume (after reparameterizing the paths) E(ti) = ζi, Ej(si) = χi and E|[ti,si] is an 
affine reparameterization of Ai|[0,1]. Let ρ > 0 be such that E is Nash on

I :=
r⋃ (

[ti − ρ, ti + ρ] ∪ [si − ρ, si + ρ]
)
.

i=1
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By Lemma 2.8 we can approximate the continuous semialgebraic path E by a polynomial 
path γ : [0, 1] → Θ ∪ {ζ1, . . . , ζr}, such that:

(i) γ(ti) = E(ti) = ζi, γ′(ti) = E′(ti), γ′′(ti) = E′′(ti) and γ′′′(ti) = E′′′(ti) for each 
i = 1, . . . , r.

(ii) γ(si) = E(si) = χi, γ′(si) = E′(si), γ′′(si) = E′′(si) and γ′′′(si) = E′′′(si) for each 
i = 1, . . . , r.

(iii) ‖γ −E‖, ‖γ′ − E′‖I , ‖γ′′ − E′′‖I and ‖γ′′′ − E′′′‖I are small enough.

Write γ := (μ; ψ1, . . . , ψr) and μ := (μ1, . . . , μr). As

Ai(t) =
(
ei; 0, . . . , 0,

d∑
j=1

αij(t)xj , 0, . . . , 0
)
,

we deduce by (i) and (ii) above that

μi(sj) = μi(tj) =
{

1 if i = j

0 if i �= j,

μ′
i(ti) = μ′

i(si) = 0, μ′′
i (ti) = μ′′

i (si) = 0 and μ′′′
i (ti) = μ′′′

i (si) = 0. Observe that

ψi : [ti, si] × Δd−1 → Λki
, (t, λ) �→

d∑
j=1

αij(t)λj .

By Lemma 3.3 τi ⊂ ψi([ti, si] × Δd−1) ⊂ Λki
. Consider

Γ(γ) =
r∑

i=1
μi(t)(φi ◦ ψi)(t, x) : [0, 1] ×Rd → Rn.

We have Γ(γ)({t} ×Δd−1) ⊂ ν−1(Reg(T)) if t ∈ [0, 1] \ {t1, . . . , tr}, whereas Γ(γ)({ti} ×
Δd−1) = φi(σi) ∈ T for i = 1, . . . , r. This means that

ν(Γ(γ)([0, 1] × Δd−1)) ⊂ T. (3.19)

Fix i = 1, . . . , r and denote

λij :=
{
μi − 1 if j = i,
μj if i �= j.

Observe that λ(�)
ij (ti) = λ

(�)
ij (si) = 0 for 1 ≤ i, j ≤ r, � = 0, 1, 2, 3 and each λij is as close 

to zero as needed. By (3.16) there exist L, K > 0 (depending only on φj , ψj) such that
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∥∥∥φ−1
i

(
ν
(
(φi ◦ ψi)(t, x) +

r∑
j=1

λij(t)(φj ◦ ψj)(t, x)
))

− ψi(t, x)
∥∥∥ ≤ 2LK

r∑
j=1

|λij(t)|.

As λ(�)
ij (ti) = λ

(�)
ij (si) = 0 for 1 ≤ i, j ≤ r, � = 0, 1, 2, 3, we deduce by Lemma 3.5 that 

the �th partial derivatives with respect to t of the Nash maps

φ−1
i (ν(Γ(γ)))(t, x) = φ−1

i

(
ν
( r∑

j=1
μj(t)(φj ◦ ψj)(t, x)

))

= φ−1
i

(
ν
(
(φi ◦ ψi)(t, x) +

r∑
j=1

λij(t)(φj ◦ ψj)(t, x)
))

and ψi(t, x) coincide for � = 0, 1, 2, 3 at the points (ti, x) (resp. at the points (si, x)) for 
x ∈ Δd−1 and 1 ≤ i ≤ r. By Lemma 3.3 we deduce τi ⊂ φ−1

i (ν(Γ(γ)([ti, si] × Δd−1))) ⊂
Λki

because τi ⊂ ψi([ti, si] × Δd−1) ⊂ Λki
. Thus,

φi(τi) ⊂ ν(Γ(γ))([ti, si] × Δd−1) ⊂ φi(Λki
) ⊂ T

for i = 1, . . . , r, so by (3.19)

T =
r⋃

i=1
φi(τi) ⊂ ν(Γ(γ))

(( r⋃
i=1

[ti, si]
)
× Δd−1

)
⊂ ν(Γ(γ)([0, 1] × Δd−1)) ⊂ T.

Consequently, ν(Γ(γ)([0, 1] × Δd−1)) = T, as required. �
4. Proofs of Theorems 1.15 and 1.16

In this section we prove Theorems 1.15 and 1.16. To prove Theorem 1.15, by Theo-
rem 1.19 it is enough to show the following.

Lemma 4.1. Let S ⊂ Rm be any semialgebraic set of dimension d. Then there exists a 
regular map f : Rm → Rd such that f(S) = Bd.

Proof. Let p ∈ S be a regular point of S such that dim(Sp) = d, let p + TpS be the affine 
tangent space to Reg(S) at p and π : Rm → p + TpS the orthogonal projection of Rm

onto p + TpS. There exist ε > 0 and a compact neighborhood W p ⊂ Reg(S) of p such 
that π|Wp : W p → Bm(p, ε) ∩ (p + TpS) is a Nash diffeomorphism. For simplicity we 
assume that p is the origin and ε = 1, so there exists an isometry h : p + TpS → Rd

that maps Bm(p, ε) ∩ (p + TpS) onto the closed unit ball Bd. Consider the inverse of the 
stereographic projection

ϕ : Rd → Sd \ {(0, . . . , 1)},
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x := (x1, . . . , xd) �→
( 2x1

1 + ‖x‖2 , . . . ,
2xd

1 + ‖x‖2 ,
−1 + ‖x‖2

1 + ‖x‖2

)
.

Let π′ : Rd+1 → Rd, (x1, . . . , xd+1) �→ (x1, . . . , xd) be the projection onto the first d
coordinates and observe that π′ ◦ϕ : Rd → Rd satisfies (π′ ◦ϕ)(Rd) = (π′ ◦ϕ)(Bd) = Bd. 
The surjective regular map g := π′ ◦ ϕ ◦ h : p + TpS → Bd fulfills

g(Bm(p, ε) ∩ (p + TpT)) = g(p + TpT) = Bd ⊂ Rd.

In particular, g(A) = Bd for each A such that Bm(p, ε) ∩ (p +TpT) ⊂ A ⊂ p +TpT. Thus, 
the composition g ◦ π : Rm → Rd is a regular map satisfying

(g ◦ π)(T) = g(π(T)) = g(π(W p)) = g(Bm(p, ε) ∩ (p + TpT)) = Bd,

as required. �
We prove next Theorem 1.16. By Theorem 1.9 it is enough to consider the case T = Rd

for d ≥ 2.

Lemma 4.2. Let S ⊂ Rm be a semialgebraic set and let d ≥ 2. Assume that Cl(S(d)) ∩ S

is not compact. Then there exists a Nash map f : Rm → Rd such that f(S) = Rd.

Proof. If m = d and S = Rd, there is nothing to prove. Thus, let us assume Rm \S �= ∅. 
We may assume that S(d) is unbounded. Otherwise, S(d) is bounded and not closed 
(because Cl(S(d)) ∩S is not compact), so there exists p ∈ Cl(S(d)) \S. Consider the Nash 
map

h : Rm \ {p} → Rm+1, x �→
(
x,

1
‖x− p‖

)
,

which is a Nash diffeomorphism onto its image. Observe that h(S(d)) ⊂ h(S) ⊂ Rm+1 is 
unbounded. We identify h(S) with S and h(S(d)) with S(d).

Consider the immersion ψ1 : Rm → RPm, x �→ [1 : x]. As S(d) is unbounded, we may 
assume

[0 : · · · : 0 :
(d+1)

1 : 0 : · · · : 0] ∈ ClRPm(S(d)).

Consider the projection

π̂ : RPm → RPd, [x0 : x1 : · · · : xm] �→ [x0 : x1 : · · · : xd]

whose restriction to Rm is the projection π : Rm → Rd, (x1, . . . , xm) �→ (x1, . . . , xd). As

π̂([0 : · · · : 0 : 1 : 0 : · · · : 0]) = [0 : · · · : 0 : 1] ∈ ClRPd(π(S(d))),
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we deduce π(S) is not bounded. Thus, taking π(S) instead of S, we may assume m = d, 
dim(S) = d and S(d) unbounded.

If S = Rd, we are done, otherwise, we may assume after a translation that 0 /∈ S. 
Consider the inversion i : Rd \ {0} → Rd \ {0}, x �→ x

‖x‖ , which is a Nash involution 

of Rd \ {0}. Thus, at this point S ⊂ Rd is a semialgebraic set of dimension d such that 
0 ∈ Cl(S(d)) \ S. Observe that Reg(S(d)) is an open subset of Rd adherent to the origin.

By the Nash curve selection lemma [6, Prop.8.1.13] there exists a Nash arc

α := (α1, . . . , αd) : [0, 1] → Reg(S(d)) ∪ {0}

such that α((0, 1]) ⊂ Reg(S(d)) and α(0) = 0. After a linear change of coordinates we 
may assume that α((0, 1]) ∩ {x1 = 0} = ∅. Consider now the Nash map

g : Rd \ {0} → {x1 > 0}, (x1, . . . , xd) �→ (‖x‖, x2, . . . , xd).

As g|Rd\{x1=0} is a local diffeomorphism and in particular is open, g(Reg(S(d))) contains 
an open semialgebraic set U ⊂ {x1 > 0} adherent to the origin such that g(α((0, 1])) ⊂ U . 
After substituting α by g ◦ α and reparameterizing, we may assume α1 = tp, each αi is 
an algebraic series in the variable t and the order of α1 is smaller than or equal to the 
order of αi for i = 2, . . . , d. The previous conditions hold because the αi are algebraic 
Puiseux series at the origin and the first component of g ◦ α is 

√
α2

1 + · · · + α2
d. By 

Lemma 2.8 we may assume that αi ∈ R[t] for i = 2, . . . , d. We substitute S ⊂ Rd \ {0}
by g(S) ⊂ {x1 > 0}, which is a semialgebraic subset of Rd of dimension d such that 
0 ∈ Cl(g(S)(d)) \ g(S).

Consider the Nash diffeomorphism

h : {x1 > 0} → {x1 > 0},
(x1, x2, . . . , xd) �→ ( p

√
x1, x2 − α2( p

√
x1), . . . , xd − αd( p

√
x1))

and observe that h ◦ α = (t, 0, . . . , 0).
Let us fix an ε > 0 such that (0, ε] ×{(0, . . . , 0)} ⊂ h(U). Observe that h(S) ⊂ {x1 > 0}

because S ⊂ {x1 > 0}. Let

δ : (0, ε] → (0,+∞), t �→ dist((t, 0, . . . , 0),Rd \ h(U))

and let ξ : (0, ε] → (0, +∞) be a Nash function such that | δ2 − ξ| < δ
4 , so δ4 < ξ < 3δ

4 . 
Write x′ := (x2, . . . , xd) and consider the open semialgebraic set

U := {(x1, x
′) ∈ (0, ε) ×Rd−1 : ‖x′‖2 < ξ2(x1)} ⊂ h(S).

Observe that ξ is a Puiseux series at the origin. The map

f� : {x1 > 0} → {x1 > 0}, (x1, x
′) �→

( 1
,
x′

�

)

x1 x1
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is a Nash involution for each � ≥ 1. Fix two positive numbers N1, N2 > 0 and consider 
the semialgebraic set F := {N1 + N2‖x′‖2 ≤ x1}. Observe that (y1, y′) ∈ f�(F) if and 
only if f�(y1, y′) ∈ F, so

f�(F) =
{
‖x′‖2 ≤ 1

N2
x2�−1
1 (1 −N1x1)

}
⊂

{
(x1, x

′) ∈
[
0, 1

N1

)
×Rd−1 : ‖x′‖2 ≤ 1

N2
x2�−1

1

}
.

If N1, N2, � are large enough, f�(F) \ {0} ⊂ U ⊂ h(S), so F ⊂ (f� ◦ h)(S) (recall that f�
is an involution). Consider the polynomial map

P1 : Rd → Rd, (x1, x
′) �→ (x1 − (N1 + N2‖x′‖2), x′),

which maps F onto {x1 ≥ 0}. Let P2 : Rd → {x1 ≥ 0}, (x1, x′) �→ (x2
1, x

′). Observe that

{x1 ≥ 0} = P2({x1 ≥ 0}) = (P2 ◦ P1)(F) ⊂ (P2 ◦ P1 ◦ f� ◦ h)(S) ⊂ P2(Rd) = {x1 ≥ 0},

so (P2◦P1◦f�◦h)(S) = {x1 ≥ 0}. Denote x′′ := (x3, . . . , xd) and consider the polynomial 
map

P3 : Rd → Rd, (x1, x2, x
′′) �→ (x2

1 − x2
2, 2x1x2, x

′′)

that maps {x1 ≥ 0} to Rd (here is the exact point where we use d ≥ 2). Consequently, 
(P3 ◦ P2 ◦ P1 ◦ f� ◦ h)(S) = Rd, as required. �

The following example shows that Theorem 1.16 is no longer true if d = 1.

Example 4.3. Let f : [0, +∞) → R be a non-constant Nash function and consider its 
derivative f ′ : [0, +∞) → R. Observe that {f ′ = 0} is a finite set. Define a := max{f ′ =
0} and assume that f ′ is strictly positive on (a, +∞), so f is strictly increasing on 
(a, +∞). This means that f([a, +∞)) = [f(a), b) for some b ∈ R ∪ {+∞}. As f([0, a]) is 
a connected compact set, f([0, a]) = [c, d], so f([0, +∞)) = [c, d] ∪ [f(a), b), which is not 
an open interval. Thus, f([0, +∞)) is a proper subset of R.

5. Proof of Theorem 1.14

As commented in the introduction, some obstructions to construct a surjective Nash 
map f : S → T between a semialgebraic set S ⊂ Rm and T ⊂ Rn concentrate on the 
configuration of the intersections of pairwise different analytic path-connected compo-
nents {Si}ri=1 (resp. irreducible components {S∗j}�j=1) of S and the configuration of their 
images, which are semialgebraic subsets Ti := f(Si) of T connected by analytic paths 
(resp. irreducible semialgebraic subsets T∗

j := f(S∗j ) of T). Namely, if the intersection 
Si1 ∩ · · · ∩ Sik (for 1 ≤ i1 < · · · < ik ≤ r) is non-empty, then
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Fig. 5.1. Semialgebraic sets S and T.

f(Si1 ∩ · · · ∩ Sik) ⊂ f(Si1) ∩ · · · ∩ f(Sik) ⊂ Ti1 ∩ · · · ∩ Tik

and the analytic path-connected components of Si1 ∩ · · · ∩ Sik are mapped into analytic 
path-connected components of Ti1∩· · ·∩Tik . Analogously, if the intersection S∗j1∩· · ·∩S∗jp
(for 1 ≤ j1 < · · · < jp ≤ �) is non-empty, then

f(S∗j1 ∩ · · · ∩ S∗jp) ⊂ f(S∗j1) ∩ · · · ∩ f(S∗jp) ⊂ T∗
j1 ∩ · · · ∩ T∗

jp

and the irreducible components of S∗j1 ∩· · ·∩S∗jp are mapped into irreducible components 
of T∗

j1
∩ · · · ∩ T∗

jp
.

Let us see with some examples how the previous obstructions influence.

Examples 5.1. (i) Let S := {z = 0} ∪ {x = 0, y = 0} ∪ {x − z = 0, y = 0} ⊂ R3 and 
T := {z = 0} ∪ {x = 0, y = 0} ∪ {x = 1, y = 0} ⊂ R3 (Fig. 5.1). We claim: There exists 
no surjective Nash map f : S → T.

The analytic path-connected components of S are

S1 := {z = 0}, S2 := {x = 0, y = 0} and S3 := {x− z = 0, y = 0},

whereas the analytic path-connected components of T are T1 := {z = 0}, T2 := {x =
0, y = 0} and T3 := {x = 1, y = 0}. Suppose there exists a surjective Nash map f :
S → T. Using straightforward dimensional arguments f(S1) ⊂ T1 and either f(S2) ⊂ T2
and f(S3) ⊂ T3 or f(S2) ⊂ T3 and f(S3) ⊂ T2. However, this is not possible because 
S1 ∩ S2 ∩ S3 = {(0, 0, 0)}, whereas T1 ∩ T2 ∩ T3 = ∅ and f(S1 ∩ S2 ∩ S3) ⊂ T1 ∩ T2 ∩ T3.

(ii) Let S := {y ≥ 0} ∪ {x = 0} ⊂ R2 and T := {x2 − zy2 = 0} ⊂ R3, which are both 
irreducible. We claim: There exists no surjective Nash map f : S → T.

The analytic path-connected components of S are S1 := {y ≥ 0} and S2 := {x = 0}, 
whereas the analytic path-connected components of T are

T1 := {x2 − zy2 = 0, z ≥ 0} and T2 := {x = 0, y = 0}.

Suppose there exists a surjective Nash map f : S → T. Using straightforward arguments, 
T1 \T2 ⊂ f(S1) ⊂ T1 and {x = 0, y = 0, z < 0} ⊂ f(S2) ⊂ T2. As f is Nash, there exist a 
connected open semialgebraic neighborhood U ⊂ R2 and a Nash extension F : U → R3. 
As U is an open connected semialgebraic subset of R2, it is an irreducible semialgebraic 
set of dimension 2. Thus, F (U) is an irreducible semialgebraic subset of R3 of dimension 
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≤ 2. In particular, its Zariski closure is an irreducible algebraic set of dimension ≤ 2. As 
f(S1) ⊂ T1 has dimension 2 and the Zariski closure of T1 is T (which is irreducible), we 
conclude that the Zariski closure of F (U) is T. As connected open semialgebraic sets are 
connected by analytic paths (because they are connected Nash manifolds), we deduce 
that F (U) ⊂ T1, so

{x = 0, y = 0, z < 0} ⊂ f(S2) ⊂ F (U) = T1,

which is a contradiction.
(iii) However, there exists a surjective Nash map f : T → S where T := {x2 − zy2 =

0} ⊂ R3 and S := {y ≥ 0} ∪ {x = 0} ⊂ R2. It is enough to take f(x, y, z) = (y, z).

Before proving Theorem 1.14, we need the following preliminary result.

Lemma 5.2. Let S ⊂ Rm be a semialgebraic set and {S∗i }si=1 the family of the irreducible 
components of S that are non-compact. Denote di := dim(S∗i ) and with S∗,(di)

i the set of 
points of S∗i of dimension di, which we assume to be non-compact for each i = 1, . . . , s. 
Let U be an open semialgebraic subset of Rm that contains S and let X1, . . . , Xs be Nash 
subsets of U such that S∗i \Xi �= ∅ for each i. Up to shrinking U if necessary, there exist:

• a Nash manifold M ⊂ Rp,
• a Nash diffeomorphism ϕ : M → U and
• a Nash function gi : M → R whose zero set contains ϕ−1(Xi)

such that the corresponding Nash map Gi : M → Rp+1, x �→ (x ·gi(x), gi(x)) satisfies 0 ∈
Gi(ϕ−1(S∗i )) = Gi(ϕ−1(S∗,(di)

i )) and Gi(ϕ−1(S∗,(di)
i )) is pure dimensional of dimension 

di and non-compact for i = 1, . . . , s.

Proof. We may apply the Nash diffeomorphism

ψ0 : Rm → Bm(0, 1), x �→ x√
1 + ‖x‖2

to S and assume that S is bounded. As S∗i \Xi �= ∅, S∗i is irreducible and Xi is the zero-
set of a Nash function on U , we deduce by [15, Lem.3.6] that dim(S∗i ∩Xi) < dim(S∗i ) =
dim(S∗,(di)

i ) for each i = 1, . . . , r. Pick a point qi ∈ S
∗,(di)
i . Let Zi be the Zariski closure 

of (Cl(S∗i ) ∩Cl(Xi)) ∪Cl(S∗i \ S
∗,(di)
i ) ∪{qi}. We claim: Zi has dimension strictly smaller 

than dim(S∗i ).
As S∗i is closed in S, Xi is closed in U and S ⊂ U , we deduce

Cl(S∗i ) ∩ Cl(Xi) ∩ S = S∗i ∩Xi,

Cl(S∗i ) ∩ Cl(Xi) ∩ (Cl(S) \ S) = Cl(S∗i ) ∩ Cl(Xi) \ S∗i ⊂ Cl(S∗i ) \ S∗i .
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Both semialgebraic sets have dimensions strictly smaller than dim(S∗i ), so Cl(S∗i ) ∩Cl(X∗
i )

has dimension strictly smaller than dim(S∗i ). In addition, Cl(S∗i \ S
∗,(di)
i ) has dimension 

strictly smaller than dim(S∗i ), because dim(S∗i \ S
∗,(di)
i ) < di = dim(S∗i ). Thus, Zi is a 

real algebraic set of dimension strictly smaller than dim(S∗i ).
As S∗,(di)

i is bounded and non-compact and S∗,(di)
i is closed in S (because it is a closed 

subset of S∗i , which is a closed subset of S), there exists pi ∈ Cl(S∗,(di)
i ) \ S (because 

otherwise Cl(S∗,(di)
i ) ⊂ S and S∗,(di)

i = Cl(S∗,(di)
i ) ∩ S = Cl(S∗,(di)

i ) would be compact). 
As pi /∈ S, up to replace U by U ′ := U \ {p1, . . . , pr} and Xi by U ′ ∩Xi if necessary, we 
may assume pi /∈ Xi. As S∗,(di)

i \Zi is dense in S∗,(di)
i (because S∗,(di)

i is pure dimensional 
and Zi has strictly smaller dimension), there exists by the Nash curve selection lemma [6, 
8.1.13] a Nash curve αi : (−1, 1) → Rm such that αi((0, 1)) ⊂ S

∗,(di)
i \Zi and αi(0) = pi. 

Let Qi ∈ R[x1, . . . , xn] be a polynomial whose zero set is Zi.
Case 1. If Qi(pi) �= 0, we take a bounded Nash function gi on U whose zero set is the 
union of Xi and the smallest Nash subset of U that contains Cl(S∗i \S

∗,(di)
i ). Observe that 

the limit limt→0+ gi ◦ αi(t) exists and it is non-zero, because otherwise either pi belongs 
to the Zariski closure of Cl(S∗i \ S

∗,(di)
i ) ⊂ Zi = {Qi = 0} or pi ∈ Cl(S∗,(di)

i ) ∩ Cl(Xi) ⊂
Zi = {Qi = 0}, which is a contradiction.

Consider the Nash map Gi : U → Rm+1, x �→ (x · gi(x), gi(x)), whose restriction to 
U \ {gi = 0} is a Nash diffeomorphism between U \ {gi = 0} and Gi(U) \ {0}, whose 
inverse is Hi : Gi(U) \ {0} → U \ {gi = 0}, (y, t) �→ y

t . If Gi(S∗,(di)
i ) is compact, then 

limt→0+(αi(t) · (gi ◦ αi)(t), gi ◦ αi(t)) ∈ Gi(S∗,(di)
i ). As

Gi|S∗,(di)
i \{gi=0} : S∗,(di)

i \ {gi = 0} → Gi(S∗,(di)
i ) \ {0}

is a Nash diffeomorphism, we conclude that limt→0+ αi(t) · (gi ◦ αi)(t) = 0 (because 
pi /∈ S

∗,(di)
i ), which is a contradiction because limt→0+(gi ◦ αi)(t) exists and it is non-

zero. Consequently, Gi(S∗,(di)
i ) is non-compact. Again, as the restriction Gi|S∗,(di)

i \{gi=0}
is a Nash diffeomorphism,

Gi(S∗,(di)
i ) \ {0} = Gi(S∗,(di)

i \ {gi = 0})

is pure dimensional of dimension di. As S∗,(di)
i is pure dimensional of dimension di and 

dim({gi = 0}) ≤ di − 1, we deduce qi ∈ Cl(S∗,(di)
i \ {gi = 0}). As qi ∈ S

∗,(di)
i ∩ {gi = 0}, 

we conclude 0 ∈ Gi(Cl(S∗,(di)
i \ {gi = 0})) ⊂ Cl(Gi(S∗,(di)

i \ {gi = 0})), so Gi(S∗,(di)
i ) is 

pure dimensional of dimension di. In addition,

0 ∈ Gi(S∗,(di)
i ) = Gi(S∗,(di)

i ) ∪ {0} = Gi(S∗,(di)
i ∪ (S∗i ∩ {gi = 0})) = Gi(S∗i ).

Case 2. If Qi(pi) = 0, we have Qi ◦ αi ∈ R[[t]]alg is a non-zero series. Let (Yi, φi) be 
the blow-up of Rm at pi. The restriction φi : Yi \ {φ−1

i (pi)} → Rm \ {pi} is a Nash 
diffeomorphism and pi /∈ S ∪ Xi, so φ−1

i (S) is Nash diffeomorphic to S and φ−1
i (Xi) is 

Nash diffeomorphic to Xi. The series Qi ◦αi = (Qi ◦φi) ◦ (φ−1
i ◦αi) and let (Qi ◦φi)∗ be 
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the strict transform of (Qi ◦ φi). The order of the series (Qi ◦ φi)∗ ◦ (φ−1
i ◦ αi) is strictly 

smaller than the order of Qi◦αi, because we have eliminated from (Qi◦φi) a power of an 
equation of the exceptional divisor. Let p′i := limt→0+(φ−1

i ◦αi)(t). If (Qi ◦ φi)∗(p′i) �= 0, 
we have finished with this index i. Otherwise, we repeat the previous process with the 
point p′i. In each step the order of the strict transform of the corresponding polynomial 
substituted in the corresponding curve has strictly smaller order, so in finitely many 
steps we achieve order 0 and the corresponding polynomial does not vanish at the limit 
point. This allows, after finitely many steps, to reduce Case 2 to Case 1.

After composing all the involved blow-ups (corresponding to all the indices i = 1, . . . , s
that are under the assumptions of Case 2) and taking the corresponding strict trans-
forms, we find a Nash manifold M ⊂ Rp, a Nash diffeomorphism ϕ : M → U and Nash 
functions gi : M → R such that ϕ−1(Xi) ⊂ {gi = 0} and the corresponding Nash map

Gi : M → Rp+1, x �→ (x · gi(x), gi(x))

satisfies 0 ∈ Gi(ϕ−1(S∗i )) = Gi(ϕ−1(S∗,(di)
i )) and Gi(ϕ−1(S∗,(di)

i )) is pure dimensional of 
dimension di and non-compact for i = 1, . . . , s, as required. �

We are ready to prove Theorem 1.14.

Proof of Theorem 1.14. The only if conditions are obtained straightforwardly. The proof 
of the converse is conducted in several steps:
Step 1. Suppose S∗i is non-compact for i = 1, . . . , s and S∗i is compact for i = s +1, . . . , r. 
For each i = 1, . . . , r let fi : S → R be a Nash function on S such that S∗i = {fi = 0}
(see [15, Lem.2.4, Thm. 4.3]). Let U be an open semialgebraic neighborhood of S in 
Rm to which all the Nash functions fi extend as Nash functions Fi : U → R. Define 
Xi :=

⋃
j �=i{Fj = 0} and observe that S∗i ∩Xi = S∗i ∩

⋃
j �=i S

∗
j is a semialgebraic subset 

of S∗i of dimension strictly smaller than di. We distinguish two cases:
Case 1. Non-compact irreducible components. By Lemma 5.2 we may assume (up 
to a suitable Nash diffeomorphism) that for each i = 1, . . . , s there exists a Nash function 
gi : U → R whose respective zero set {gi = 0} contains Xi and the corresponding Nash 
map

Gi : U → Rm+1, x �→ (x · gi(x), gi(x))

satisfies 0 ∈ Gi(S∗i ) = Gi(S∗,(di)
i ) and Gi(S∗,(di)

i ) is non-compact and pure dimensional 
of dimension di for i = 1, . . . , s. In addition,

Gi(S) = Gi(S∗i ∪
⋃
j �=i

S∗j ) = Gi(S∗i ) ∪
⋃
j �=i

Gi(S∗j ) = Gi(S∗i ) ∪ {0} = Gi(S∗,(di)
i ).

Case 2. Compact irreducible components. For each i = s +1, . . . , r let qi ∈ S
∗,(di)
i

and hi be a polynomial whose zero set is the union of {qi} and the Zariski closure Yi
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of Cl(S∗i \ S
∗,(di)
i ). Define gi := hi

∏
j �=i Fj : U → R and observe that {gi = 0} =

{qi} ∪ (Yi ∩ S∗i ) ∪
⋃

j �=i S
∗
j . As S∗i is irreducible and gi does not vanish identically on S∗i , 

the intersection {gi = 0} ∩ S∗i has dimension < di := dim(S∗i ). Consider the Nash map

Gi : U → Rm+1, x �→ (x · gi(x), gi(x)),

whose restriction to U \ {gi = 0} is a Nash diffeomorphism between U \ {gi = 0} and 
Gi(U) \{0}. Observe that Gi(S∗j ) = {0} if i �= j and let us check: S′i := Gi(S) = Gi(S∗,(di)

i )
is pure dimensional of dimension di.

As Gi|S∗,(di)
i \{gi=0} : S∗,(di)

i \ {gi = 0} → Gi(S∗,(di)
i ) \ {0} is a Nash diffeomorphism, 

Gi(S∗,(di)
i ) \{0} = Gi(S∗,(di)

i \{gi = 0}) is pure dimensional of dimension di. As S∗,(di)
i is 

pure dimensional of dimension di and dim({gi = 0}) ≤ di−1, we deduce qi ∈ Cl(S∗,(di)
i \

{gi = 0}). As qi ∈ S
∗,(di)
i ∩ {gi = 0}, we conclude 0 ∈ Gi(Cl(S∗,(di)

i \ {gi = 0})) ⊂
Cl(Gi(S∗,(di)

i \ {gi = 0})), so Gi(S∗,(di)
i ) is pure dimensional of dimension di.

In addition,

0 ∈ G(S∗,(di)
i ) = G(S∗,(di)

i ) ∪ {0} = G(S∗,(di)
i ∪ (S∗i ∩ {gi = 0})) = G(S∗i ).

Moreover,

Gi(S) = Gi(S∗i ∪
⋃
j �=i

S∗j ) = Gi(S∗i ) ∪
⋃
j �=i

Gi(S∗j ) = Gi(S∗i ) ∪ {0} = Gi(S∗,(di)
i )

for i = s + 1, . . . , r.
Step 2. Define S′i := Gi(S) for i = 1, . . . , r and

G : S → R(m+1)r, x �→ (G1(x), . . . , Gr(x)).

Observe that

G(S∗i ) = {0} × · · · × {0} ×
(i)
S′i × {0} × · · · × {0}

and G(S) =
⋃s

i=1 G(S∗i ). In addition, G(S∗i ) ∩G(S∗j ) = {(0, . . . , 0)} if i �= j.
We distinguish two cases:

Case 1. If S∗i is non-compact, S′i is non-compact. By Theorem 1.16 there exists a Nash 
map Hi : Rm+1 → Rdi such that Hi(S′i) = Rdi . We may assume in addition Hi(0) = 0.
Case 2. If Si is compact, also S′i is compact and there exists by Theorem 1.15 a Nash 
map Hi : Rm+1 → Rdi such that Hi(S′i) = Bdi

. Following the proof of Theorem 1.15, 
the reader can check that we may assume Hi(0) = 0.
Step 3. Let q ∈

⋂r
i=1 Ti and assume q is the origin of Rn. Let Fi : Rdi → Rn be a 

Nash map such that Fi(Rdi) = Ti for i = 1, . . . , s and Fi(Bdi
) = Ti for i = s + 1, . . . , r. 
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Define Ei = Rdi if S′i is non-compact (i = 1, . . . , s) and Ei = Bdi
if S′i is compact 

(i = s + 1, . . . , r).
We may assume in addition Fi(0) = 0 for i = 1, . . . , r. We have

(Fi ◦Hi ◦Gi)(S∗j ) =
{
Fi(Ei) = Ti if j = i,

Fi({0}) = {0} if j �= i,

so (Fi ◦Hi ◦Gi)(S) = Ti. Observe that

((F1 ◦H1, . . . , Fr ◦Hr) ◦G)(S∗i )

= (F1 ◦H1 ◦G1, . . . , Fr ◦Hr ◦Gr)(S∗i )

= (F1 ◦H1)({0}) × · · · × (Fi−1 ◦Hi−1)({0}) × (Fi ◦Hi)(S′i)

× (Fi+1 ◦Hi+1)({0}) × · · · × (Fr ◦Hr)({0})
= F1({0}) × · · · × Fi−1({0}) × Fi(Ei) × Fi+1({0}) × · · · × Fr({0})

= {0} × · · · × {0} ×
(i)
Ti × {0} × · · · × {0}.

Thus, if

F :=
r∑

i=1
(Fi ◦Hi ◦Gi) : S → T,

we have F (S∗i ) = Ti for i = 1, . . . , r, so

F (S) = F
( r⋃

i=1
S∗i

)
=

r⋃
i=1

F (S∗i ) =
r⋃

i=1
Ti = T,

as required. �
Recall that the analytic path-connected components of S are irreducible semialgebraic 

sets. Thus, each of them is contained in an irreducible component of S. If S∗i is the 
irreducible component of S that contains Si for i = 1, . . . , r, it may happen that S∗i = S∗j
for some i �= j or S∗i �= S∗j , whereas Si � S∗i and Sj � S∗j .

Examples 5.3. (i) Define S := S1 ∪ S2 ∪ S3 ⊂ R2 where S1 := {x ≥ 1}, S2 := {y = 0} and 
S3 := {x ≤ −1}. Observe that S1, S2 and S3 are the analytic path-connected components 
of S, whereas S is irreducible. Thus, S∗1 = S∗2 = S∗3.

(ii) Define S := S1 ∪ S2 ⊂ R3 where S1 := {x = 0, y ≥ 0} and S2 := {y ≤ 0, z = 0}. 
Observe that S1 and S2 are the analytic path-connected components of S, whereas S∗1 =
S1 ∪ {x = 0, z = 0} and S∗2 = S2 ∪ {x = 0, z = 0} are the irreducible components of S.
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Remarks 5.4. (i) Let S ⊂ Rm be a semialgebraic set and {Si}ri=1 the analytic path-
connected components of S. Let S∗i be the irreducible component of S that contains Si
for i = 1, . . . , r and assume S∗i �= S∗j for 1 ≤ i < j ≤ r. Denote di := dim(S∗i ). We claim:

(1) {S∗i }ri=1 is the collection of the irreducible components of S.
(2) S

∗,(di)
i = Si for i = 1, . . . , r.

As S =
⋃r

i=1 Si ⊂
⋃r

i=1 S
∗
i ⊂ S, we deduce that {S∗i }ri=1 is the collection of the 

irreducible components of S, because S∗i �= S∗j if i �= j. Thus, (1) holds.
Let us check (2). To that end, we prove first: dim(Sj ∩ S∗i ) < dim(S∗i ) if j �= i.
Otherwise, there exists Sj with j �= i such that dim(Sj ∩ S∗i ) = dim(S∗i ), so dim(S∗j ∩

S∗i ) = dim(S∗i ) and each Nash function that vanishes identically on S∗j vanishes also 
identically on S∗i . Thus, S∗i ⊂ S∗j and i = j, which is a contradiction.

Consequently,

Si \
⋃
j �=i

Sj ⊂ S∗i \
⋃
j �=i

Sj ⊂ S \
⋃
j �=i

Sj = Si \
⋃
j �=i

Sj ,

so Si\
⋃

j �=i Sj = S∗i \
⋃

j �=i Sj is non-empty and has dimension di. As Si is pure dimensional 
of dimension di and 

⋃
j �=i S

∗
i ∩Sj has dimension < di, we deduce that Si\

⋃
j �=i Sj is dense 

in Si. In addition, Si ⊂ S
∗,(di)
i ⊂ S∗i (because Si is pure dimensional of dimension di), so 

Si \
⋃

j �=i Sj = S
∗,(di)
i \

⋃
j �=i Sj , which is dense in S∗,(di)

i . As

S
∗,(di)
i \

⋃
j �=i

Sj ⊂ S∗i \
⋃
j �=i

Sj = Si \
⋃
j �=i

Sj ,

we conclude taking closures in S that S∗,(di)
i = Si (because both S∗,(di)

i and Si are closed 
in S).

(ii) Observe that Theorems 1.15 and 1.16 are particular cases of Theorem 1.14 when 
T is connected by analytic paths.

As a straightforward consequence of Theorem 1.14 and Remark 5.4(i), we have the 
following:

Corollary 5.5. Let S ⊂ Rm and T ⊂ Rn be semialgebraic sets, let {Si}ri=1 be the family of 
analytic path-connected components of S and let S∗i be the irreducible component of S that 
contains Si for i = 1, . . . , r. Assume S∗i �= S∗j for 1 ≤ i < j ≤ r. Let {Ti}ri=1 be a family 
of (non-necessarily distinct) semialgebraic subsets of T connected by analytic paths and 
assume 

⋂r
i=1 Ti �= ∅ and 

⋃r
i=1 Ti = T. Then there exists a surjective Nash map f : S → T

such that f(Si) = Ti for i = 1, . . . , r if and only if ei := dim(Ti) ≤ dim(Si) =: di and Ti

is compact in case Si is compact for i = 1, . . . , r.
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6. Two applications of the main results

In this section we present two remarkable consequences of Theorem 1.19. The first 
one about representation of pure dimensional compact irreducible arc-symmetric semi-
algebraic sets as Nash images of closed balls. As a second consequence we show that a 
compact semialgebraic set is the projection of a non-singular compact algebraic set with 
the simplest possible topology (a disjoint union of spheres).

6.1. Representation of arc-symmetric compact semialgebraic sets

It follows from Theorem 1.19 and [33, Cor.2.8] that a pure dimensional compact 
irreducible arc-symmetric semialgebraic set is a Nash image of Bd where d := dim(S).

Proof of Corollary 1.21. Let X be the Zariski closure of S and π : X̃ → X a resolution 
of the singularities of X (see [31]). Assume X̃ ⊂ Rp and π is the restriction to X̃ of a 
polynomial map Π : Rp → Rn. By [33, Thm.2.6] applied to the irreducible arc-symmetric 
set S there exists a connected component E of X̃ such that π(E) = Cl(Reg(S)) = S (recall 
that S is pure dimensional and compact). As π is proper and S is compact, also E is 
compact (because it is a closed subset of the compact set π−1(S)). Thus, E is a connected 
compact Nash manifold. By Theorem 1.19 there exists a Nash map f0 : Rd → Rp

such that f0(Bd) = E. Consequently, the Nash map f := π ◦ f0 : Rd → Rn satisfies 
f(Bd) = π(f0(Bd)) = π(E) = S, as required. �
6.2. Elimination of inequalities

To prove Corollary 1.22 we recall first the following well known separation result, that 
we include here for the sake of completeness.

Lemma 6.1 (Separation). Let S1, S2 ⊂ Rn be semialgebraic sets such that S1 is compact, 
S2 is closed and S1 ∩ S2 = ∅. Then there exists f ∈ R[x] such that S1 ⊂ {f < 0} and 
S2 ⊂ {f > 0}.

Proof. We may assume S1 ⊂ Bn(0, 12 ). Let g : Rn → R be a continuous function such 
that S1 ⊂ {g < 0} and S2 ⊂ {g > 0}. Let

ε := dist(S1, S2) := min{dist(x1, x2) : x1 ∈ S1, x2 ∈ S2} > 0.

By Weierstrass’ approximation theorem there exists a polynomial f0 ∈ R[x] such that

max{|g(x) − f0(x)| : x ∈ Bn(0, 1)} <
ε

3 .

By [6, Prop.2.6.2] there exists a constant c > 0 and m ≥ 1 such that |f0(x)| < c(1 +
‖x‖2)m on Rn. Thus, |f0(x)| < 2mc‖x‖2m on Rn \ Bn(0, 1). Denote c′ := 2mc and let 
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k ≥ m be such that c′

22k < ε
3 . Define f := f0 + c′‖x‖2k ∈ R[x]. The reader can check that 

S1 ⊂ {f < 0} and S2 ⊂ {f > 0}, as required. �
Proof of Corollary 1.22. (i) By Theorem 1.19 and using the fact that the closed unit ball 
Bd is the projection of the sphere Sd, there exists a Nash map f : Rd+1 → Rn such that 
f(Sd) = S. By Artin-Mazur’s description of Nash maps [6, Thm.8.4.4] there exist s ≥ 1
and a non-singular irreducible algebraic set Z ⊂ Rd+1+n+s of dimension d, a connected 
component M of Z and a Nash diffeomorphism g : Sd → M such that the following 
diagram is commutative.

Mε

π|Mε

Y = M+ �M−

π|Y

Z ×R

π|Z×R

Rm+1

π

Z Rd+1 ×Rn ×Rs ≡ Rm

π2
π1

M

ϕε

Sd

∼=g

f

f

Rn

S

We denote the projection of Rd+1 ×Rn ×Rs onto the first space Rd+1 with π1 and the 
projection of Rd+1×Rn×Rs onto the second space Rn with π2. Write m := d +1 +n +s. 
As M is compact, there exists by Lemma 6.1 a polynomial f : Rm → R such that 
M = Z ∩ {f > 0}. Observe that M is the image of the algebraic set

Y := {(z, t) ∈ Z ×R : f(z)t2 − 1 = 0}

under the projection π : Rm×R → Rm, (z, t) �→ z. Fix ε = ±1 and let Mε := Y ∩{εt > 0}. 
Consider the Nash diffeomorphism

ϕε : M → Mε, x �→
(
x, ε

1√
f(x)

)
whose inverse map is the restriction of the projection π to Mε.

Observe that {Mε}ε∈{−1,1} is the collection of the connected components of Y . As 
π(Mε) = M and using the diagram above, we deduce

(π2 ◦ π)(Mε) = π2(M) = (f ◦ π1)(M) = f(Sd) = S.

In addition, each Mε is Nash diffeomorphic to Sd and for ε �= ε′ the polynomial map
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φ : Rm ×R → Rm ×R, (x, t) �→ (x,−t)

induces an involution of Y such that φ(Mε) = Mε′ . As Z is non-singular, also Y is 
non-singular. Let X be the irreducible component of Y that contains M+1. Observe that 
either X = M+1 or X = Y .

Then k := d + s + 2 and the non-singular algebraic set X satisfies the requirements 
in the statement.

In addition, X has at most two connected components and each of them is Nash 
diffeomorphic to Sd. Thus, X is Nash diffeomorphic to Sd × {1, s}, where s = 1, 2 is the 
number of connected components of X.

(ii) Let S1, . . . , Sr be the (compact) analytic path-connected components of S, which 
satisfy S =

⋃r
i=1 Si. By (i) there exist m ≥ 1 and for each i = 1, . . . , r a non-singular 

algebraic set Xi ⊂ Rm that is Nash diffeomorphic to a disjoint union of at most two 
spheres of Rd+1 (each of them isometric to Sdi where di := dim(Si) ≤ d = dim(S)) and 
satisfies π(Xi) = Si, where

π : Rn ×Rm−n → Rn, (x, y) �→ x

is the projection onto the first n coordinates. Consider the pairwise disjoint union X :=
�r

i=1 Xi × {i} ⊂ Rm+1 and the projection

π′ : Rn ×Rm+1−n ×R → Rn, (x, y, t) �→ x.

Then X is a non-singular algebraic set, which is Nash diffeomorphic to a finite pairwise 
disjoint union of spheres of dimension ≤ d and satisfies π(X) = S, as required. �

Example 6.3 (together with the following result from [1,4]) shows that Corollary 1.22
is sharp.

Lemma 6.2 ([1, Cor.2.3.3]). Let Y ⊂ Rp be an irreducible algebraic set of dimension d
and ϕ : Rp ��� Rm a rational map such that ϕ|Y : Y → Rm is well defined. Suppose there 
exists a dense subset U ⊂ ϕ(Y ) such that the fiber ϕ−1(x) ∩Y has odd (finite) cardinality 
for each x ∈ U . If Z is the Zariski closure of ϕ(Y ), then dim(Z \ ϕ(Y )) < dim(ϕ(Y )).

Example 6.3. Let X := {y2 = −(x− 1)(x− 2)(x+1)} ⊂ R2, which is an irreducible non-
singular cubic with two connected components of dimension 1, one is bounded (that we 
denote with C1) and the other one is unbounded (that we denote with C2), see Fig. 6.1. 
Consider the polynomial x, which satisfies X ∩ {x > 0} = C1 and X ∩ {x < 0} = C2. 
Let Y := {(x, y, z) ∈ X × R : xz2 − 1 = 0} ⊂ R3, which has exactly two connected 
components M1 := Y ∩ {z > 0} and M2 := Y ∩ {z < 0} and both have dimension 1.

Suppose there exists an algebraic set Z ⊂ Rp of dimension 1 and a rational map 
ϕ : Rp ��� R3 such that ϕ|Z : Z → M1 is well defined and bijective. Consider the 
projection π : R3 → R2, (x, y, z) �→ (x, y), which satisfies π|M1 : M1 → C1 is bijective. 
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Fig. 6.1. The cubic curve y2 = −(x − 1)(x − 2)(x + 1).

Thus, the composition π ◦ f : Rp ��� R2 is a rational map that satisfies π|Z : Z → C1
is well defined and bijective, but this contradicts Lemma 6.2. Consequently, there does 
not exist the couple (ϕ, Z).

The previous example suggests that in the statement of Corollary 1.22(i) two con-
nected components Nash diffeomorphic to Sd are needed.

References

[1] S. Akbulut, H. King, Topology of Real Algebraic Sets, Math. Sci. Res. Inst. Publ., vol. 25, Springer-
Verlag, New York, 1992.

[2] C. Andradas, J.M. Gamboa, A note on projections of real algebraic varieties, Pac. J. Math. 115 (1) 
(1984) 1–11.

[3] C. Andradas, J.M. Gamboa, On projections of real algebraic varieties, Pac. J. Math. 121 (2) (1986) 
281–291.

[4] R. Benedetti, A. Tognoli, On real algebraic vector bundles, Bull. Sci. Math. (2) 104 (1) (1980) 
89–112.

[5] M. Berger, Geometry. I & II, Universitext., Springer-Verlag, Berlin, 1987.
[6] J. Bochnak, M. Coste, M.-F. Roy, Real Algebraic Geometry, Ergeb. Math., vol. 36, Springer-Verlag, 

Berlin, 1998.
[7] M. Coste, An Introduction to Semialgebraic Geometry, Dip. Mat. Univ. Pisa, Dottorato di Ricerca 

in Matematica, Istituti Editoriali e Poligrafici Internazionali, Pisa, 2000.
[8] D. Eisenbud, Open problems in computational algebraic geometry and commutative algebra, in: 

D. Eisenbud, L. Robbiano (Eds.), Computational Algebraic Geometry and Commutative Algebra, 
Cortona, 1991, Cambridge University Press, Cambridge, England, 1993, pp. 49–71.

[9] J.F. Fernando, On the one dimensional polynomial and regular images of Rn, J. Pure Appl. Algebra 
218 (9) (2014) 1745–1753.

[10] J.F. Fernando, On Nash images of Euclidean spaces, Adv. Math. 331 (2018) 627–719.
[11] J.F. Fernando, On a Nash curve selection lemma through finitely many points, Preprint RAAG, 

2023.
[12] J.F. Fernando, G. Fichou, R. Quarez, C. Ueno, On regulous and regular images of Euclidean spaces, 

Q. J. Math. 69 (4) (2018) 1327–1351.
[13] J.F. Fernando, J.M. Gamboa, Polynomial images of Rn, J. Pure Appl. Algebra 179 (3) (2003) 

241–254.
[14] J.F. Fernando, J.M. Gamboa, Polynomial and regular images of Rn, Isr. J. Math. 153 (2006) 61–92.
[15] J.F. Fernando, J.M. Gamboa, On the irreducible components of a semialgebraic set, Int. J. Math. 

23 (4) (2012) 1250031.
[16] J.F. Fernando, J.M. Gamboa, J.M. Ruiz, Finiteness problems on Nash manifolds and Nash sets, J. 

Eur. Math. Soc. 16 (3) (2014) 537–570.
[17] J.F. Fernando, J.M. Gamboa, C. Ueno, On convex polyhedra as regular images of Rn, Proc. Lond. 

Math. Soc. (3) 103 (2011) 847–878.

http://refhub.elsevier.com/S0001-8708(23)00431-0/bib17540AEF7B8470CC3EA8B2B9046AF3B6s1
http://refhub.elsevier.com/S0001-8708(23)00431-0/bib17540AEF7B8470CC3EA8B2B9046AF3B6s1
http://refhub.elsevier.com/S0001-8708(23)00431-0/bib9BF1BBA35E4F65D58DB9D0DF470E82E8s1
http://refhub.elsevier.com/S0001-8708(23)00431-0/bib9BF1BBA35E4F65D58DB9D0DF470E82E8s1
http://refhub.elsevier.com/S0001-8708(23)00431-0/bib941774E15BB4943B65B84CDDCE83D367s1
http://refhub.elsevier.com/S0001-8708(23)00431-0/bib941774E15BB4943B65B84CDDCE83D367s1
http://refhub.elsevier.com/S0001-8708(23)00431-0/bib6920626369B1F05844F5E3D6F93B5F6Es1
http://refhub.elsevier.com/S0001-8708(23)00431-0/bib6920626369B1F05844F5E3D6F93B5F6Es1
http://refhub.elsevier.com/S0001-8708(23)00431-0/bibB71BAD0B42C68FE6A099CE1E6C90376Es1
http://refhub.elsevier.com/S0001-8708(23)00431-0/bib19C5284143464E91FDEC74A078005500s1
http://refhub.elsevier.com/S0001-8708(23)00431-0/bib19C5284143464E91FDEC74A078005500s1
http://refhub.elsevier.com/S0001-8708(23)00431-0/bib0D61F8370CAD1D412F80B84D143E1257s1
http://refhub.elsevier.com/S0001-8708(23)00431-0/bib0D61F8370CAD1D412F80B84D143E1257s1
http://refhub.elsevier.com/S0001-8708(23)00431-0/bib1EE2225A0118C6A8FF464CF2926CF352s1
http://refhub.elsevier.com/S0001-8708(23)00431-0/bib1EE2225A0118C6A8FF464CF2926CF352s1
http://refhub.elsevier.com/S0001-8708(23)00431-0/bib1EE2225A0118C6A8FF464CF2926CF352s1
http://refhub.elsevier.com/S0001-8708(23)00431-0/bib85BBF826EE4BC0B1631537BEDAF4C258s1
http://refhub.elsevier.com/S0001-8708(23)00431-0/bib85BBF826EE4BC0B1631537BEDAF4C258s1
http://refhub.elsevier.com/S0001-8708(23)00431-0/bibC097602A8F4F511482B8200F59CD7497s1
http://refhub.elsevier.com/S0001-8708(23)00431-0/bibF26EDA63829C92290DE5FC6E1C31C721s1
http://refhub.elsevier.com/S0001-8708(23)00431-0/bibF26EDA63829C92290DE5FC6E1C31C721s1
http://refhub.elsevier.com/S0001-8708(23)00431-0/bibDD9BB38688A6EF38E71EB163F9F23D73s1
http://refhub.elsevier.com/S0001-8708(23)00431-0/bibDD9BB38688A6EF38E71EB163F9F23D73s1
http://refhub.elsevier.com/S0001-8708(23)00431-0/bib9FB9313A91ED613BECAB11AD8AE496A3s1
http://refhub.elsevier.com/S0001-8708(23)00431-0/bib0F0E9BE28DBC14ED10D9573EE3607B20s1
http://refhub.elsevier.com/S0001-8708(23)00431-0/bib0F0E9BE28DBC14ED10D9573EE3607B20s1
http://refhub.elsevier.com/S0001-8708(23)00431-0/bibC6C3722A19E41C75FEDFE8223BF4BD0Es1
http://refhub.elsevier.com/S0001-8708(23)00431-0/bibC6C3722A19E41C75FEDFE8223BF4BD0Es1
http://refhub.elsevier.com/S0001-8708(23)00431-0/bib19B099D330721054F24EAFB40010CF37s1
http://refhub.elsevier.com/S0001-8708(23)00431-0/bib19B099D330721054F24EAFB40010CF37s1


A. Carbone, J.F. Fernando / Advances in Mathematics 438 (2024) 109288 57
[18] J.F. Fernando, J.M. Gamboa, C. Ueno, Sobre las propiedades de la frontera exterior de las imágenes 
polinómicas y regulares de Rn, in: M. Castrillón (Ed.), Contribuciones Matemáticas en Homenaje 
a Juan Tarrés, UCM, 2012, pp. 159–178.

[19] J.F. Fernando, J.M. Gamboa, C. Ueno, The open quadrant problem: a topological proof, in: A 
Mathematical Tribute to Professor José María Montesinos Amilibia, Dep. Geom. Topol. Fac. Cien. 
Mat. UCM, Madrid, 2016, pp. 337–350.

[20] J.F. Fernando, J.M. Gamboa, C. Ueno, Polynomial, regular and Nash images of Euclidean spaces, 
in: Ordered Algebraic Structures and Related Topics, in: Contemp. Math., vol. 697, Amer. Math. 
Soc., Providence, RI, 2017, pp. 145–167.

[21] J.F. Fernando, J.M. Gamboa, C. Ueno, Unbounded convex polyhedra as polynomial images of 
Euclidean spaces, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 19 (2) (2019) 509–565.

[22] J.F. Fernando, C. Ueno, On the set of points at infinity of a polynomial image of Rn, Discrete 
Comput. Geom. 52 (4) (2014) 583–611.

[23] J.F. Fernando, C. Ueno, On complements of convex polyhedra as polynomial and regular images of 
Rn, Int. Math. Res. Not. (18) (2014) 5084–5123.

[24] J.F. Fernando, C. Ueno, On the complements of 3-dimensional convex polyhedra as polynomial 
images of R3, Int. J. Math. 25 (7) (2014) 1450071.

[25] J.F. Fernando, C. Ueno, A short proof for the open quadrant problem, J. Symb. Comput. 79 (1) 
(2017) 57–64.

[26] J.F. Fernando, C. Ueno, On complements of convex polyhedra as polynomial images of Rn, Discrete 
Comput. Geom. 62 (2) (2019) 292–347.

[27] J.F. Fernando, C. Ueno, On polynomial images of a closed ball, J. Math. Soc. Jpn. 75 (2) (2023) 
679–733.

[28] J.M. Gamboa, Algebraic images of the real plane, in: Reelle algebraische Geometrie, June, 10th −
16th, Oberwolfach, 1990.

[29] A. Harnack, Über die Vielheiligkeit der ebenen algebraischen Kurven, Math. Ann. 10 (1876) 189–198.
[30] M.W. Hirsch, Differential Topology, Graduate Texts in Mathematics, vol. 33, Springer-Verlag, New 

York–Heidelberg–Berlin, 1976.
[31] H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero. I, 

Ann. Math. (2) 79 (1964) 109–203;
H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero. II, 
Ann. Math. (2) 79 (1964) 205–326.

[32] K. Kubjas, P.A. Parrilo, B. Sturmfels, How to flatten a soccer ball, in: Homological and Computa-
tional Methods in Commutative Algebra, in: Springer INdAM Ser., vol. 20, Springer, Cham, 2017, 
pp. 141–162.

[33] K. Kurdyka, Ensembles semi-algébriques symétriques par arcs, Math. Ann. 282 (3) (1988) 445–462.
[34] T.S. Motzkin, The real solution set of a system of algebraic inequalities is the projection of a 

hypersurface in one more dimension, in: Inequalities, II, Proc. Second Sympos., U.S. Air Force 
Acad., Colo., 1967, Academic Press, New York, 1970, pp. 251–254.

[35] D. Pecker, On the elimination of algebraic inequalities, Pac. J. Math. 146 (2) (1990) 305–314.
[36] M. Shiota, Nash Manifolds, Lecture Notes in Mathematics, vol. 1269, Springer-Verlag, Berlin, 1987.
[37] A. Tarski, A decisión method for elementary algebra and geometry, for publication by J.C.C. Mac 

Kinsey, Berkeley, 1951.
[38] C. Ueno, A note on boundaries of open polynomial images of R2, Rev. Mat. Iberoam. 24 (3) (2008) 

981–988.
[39] C. Ueno, On convex polygons and their complements as images of regular and polynomial maps of 

R2, J. Pure Appl. Algebra 216 (11) (2012) 2436–2448.

http://refhub.elsevier.com/S0001-8708(23)00431-0/bibECC653B325A9BC97175E0A12F696359Fs1
http://refhub.elsevier.com/S0001-8708(23)00431-0/bibECC653B325A9BC97175E0A12F696359Fs1
http://refhub.elsevier.com/S0001-8708(23)00431-0/bibECC653B325A9BC97175E0A12F696359Fs1
http://refhub.elsevier.com/S0001-8708(23)00431-0/bib44F3FFF4761B81587902CF85DB601F33s1
http://refhub.elsevier.com/S0001-8708(23)00431-0/bib44F3FFF4761B81587902CF85DB601F33s1
http://refhub.elsevier.com/S0001-8708(23)00431-0/bib44F3FFF4761B81587902CF85DB601F33s1
http://refhub.elsevier.com/S0001-8708(23)00431-0/bib881EC682FD1B59737B3A407A783584CBs1
http://refhub.elsevier.com/S0001-8708(23)00431-0/bib881EC682FD1B59737B3A407A783584CBs1
http://refhub.elsevier.com/S0001-8708(23)00431-0/bib881EC682FD1B59737B3A407A783584CBs1
http://refhub.elsevier.com/S0001-8708(23)00431-0/bib28C6287F861CC766E88F53B1B406E024s1
http://refhub.elsevier.com/S0001-8708(23)00431-0/bib28C6287F861CC766E88F53B1B406E024s1
http://refhub.elsevier.com/S0001-8708(23)00431-0/bib2274757399E637181968292570D84D2Ds1
http://refhub.elsevier.com/S0001-8708(23)00431-0/bib2274757399E637181968292570D84D2Ds1
http://refhub.elsevier.com/S0001-8708(23)00431-0/bib10925F67D07EF1505E948604658BDB29s1
http://refhub.elsevier.com/S0001-8708(23)00431-0/bib10925F67D07EF1505E948604658BDB29s1
http://refhub.elsevier.com/S0001-8708(23)00431-0/bib018F68A80FA1CBDBD840AAFC42B859F5s1
http://refhub.elsevier.com/S0001-8708(23)00431-0/bib018F68A80FA1CBDBD840AAFC42B859F5s1
http://refhub.elsevier.com/S0001-8708(23)00431-0/bib572E2F47D221CAC26C7041EB401AD9C7s1
http://refhub.elsevier.com/S0001-8708(23)00431-0/bib572E2F47D221CAC26C7041EB401AD9C7s1
http://refhub.elsevier.com/S0001-8708(23)00431-0/bib99088B8BC369BE99FC0D721ABFD933ECs1
http://refhub.elsevier.com/S0001-8708(23)00431-0/bib99088B8BC369BE99FC0D721ABFD933ECs1
http://refhub.elsevier.com/S0001-8708(23)00431-0/bibF0743EE899BB1F54B6E28655504DDD9Fs1
http://refhub.elsevier.com/S0001-8708(23)00431-0/bibF0743EE899BB1F54B6E28655504DDD9Fs1
http://refhub.elsevier.com/S0001-8708(23)00431-0/bibADAB7B701F23BB82014C8506D3DC784Es1
http://refhub.elsevier.com/S0001-8708(23)00431-0/bibACF8E5B460483ADD50D67A2EA29C68DCs1
http://refhub.elsevier.com/S0001-8708(23)00431-0/bibACF8E5B460483ADD50D67A2EA29C68DCs1
http://refhub.elsevier.com/S0001-8708(23)00431-0/bib49F68A5C8493EC2C0BF489821C21FC3Bs1
http://refhub.elsevier.com/S0001-8708(23)00431-0/bib49F68A5C8493EC2C0BF489821C21FC3Bs1
http://refhub.elsevier.com/S0001-8708(23)00431-0/bib49F68A5C8493EC2C0BF489821C21FC3Bs2
http://refhub.elsevier.com/S0001-8708(23)00431-0/bib49F68A5C8493EC2C0BF489821C21FC3Bs2
http://refhub.elsevier.com/S0001-8708(23)00431-0/bib75E6CF979E7C200B899474E7F9B2077Es1
http://refhub.elsevier.com/S0001-8708(23)00431-0/bib75E6CF979E7C200B899474E7F9B2077Es1
http://refhub.elsevier.com/S0001-8708(23)00431-0/bib75E6CF979E7C200B899474E7F9B2077Es1
http://refhub.elsevier.com/S0001-8708(23)00431-0/bib8CE4B16B22B58894AA86C421E8759DF3s1
http://refhub.elsevier.com/S0001-8708(23)00431-0/bibAAF2F89992379705DAC844C0A2A1D45Fs1
http://refhub.elsevier.com/S0001-8708(23)00431-0/bibAAF2F89992379705DAC844C0A2A1D45Fs1
http://refhub.elsevier.com/S0001-8708(23)00431-0/bibAAF2F89992379705DAC844C0A2A1D45Fs1
http://refhub.elsevier.com/S0001-8708(23)00431-0/bibDD07DE8561395A7C37F8FCC1752D45E1s1
http://refhub.elsevier.com/S0001-8708(23)00431-0/bib77CBC257E66302866CF6191754C0C8E3s1
http://refhub.elsevier.com/S0001-8708(23)00431-0/bibE4774CDDA0793F86414E8B9140BB6DB4s1
http://refhub.elsevier.com/S0001-8708(23)00431-0/bibE4774CDDA0793F86414E8B9140BB6DB4s1
http://refhub.elsevier.com/S0001-8708(23)00431-0/bib270C1B084F3F146EB5787075158D9C53s1
http://refhub.elsevier.com/S0001-8708(23)00431-0/bib270C1B084F3F146EB5787075158D9C53s1

	Surjective Nash maps between semialgebraic sets
	1 Introduction
	1.1 State of the art
	1.1.1 First alternative approach
	1.1.2 Second alternative approach
	1.1.3 Analytic path-connected components of a semialgebraic set
	1.1.4 Irreducibility and irreducible components of a semialgebraic set

	1.2 Main results
	1.2.1 General surjective Nash maps
	1.2.2 Key results
	1.2.3 Nash images of the closed unit ball

	1.3 Two consequences
	1.3.1 Representation of arc-symmetric compact semialgebraic sets
	1.3.2 Elimination of inequalities

	1.4 Structure of the article
	Acknowledgments

	2 Compact models and preliminary results
	2.1 Compact models
	2.2 Necessary conditions
	2.3 Checkerboard sets
	2.3.1 Reduction to the case of checkerboard sets

	2.4 Polynomial paths inside semialgebraic sets

	3 Building Nash images of the simplicial prism
	3.1 The 1-dimensional case
	3.2 Covering simplices with Nash maps
	3.2.1 Covering of the exterior of a simplex
	3.2.2 CkI′-topology

	3.3 Local charts and tubular neighborhoods
	3.4 Some preliminary estimations
	3.5 Decomposition as a finite union of ‘simplices’
	3.6 Smart set of maps
	3.7 Properties of Θ0
	3.8 Nash images of the closed ball

	4 Proofs of Theorems 1.15 and 1.16
	5 Proof of Theorem 1.14
	6 Two applications of the main results
	6.1 Representation of arc-symmetric compact semialgebraic sets
	6.2 Elimination of inequalities

	References


