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Unbounded convex polyhedra as polynomial images
of Euclidean spaces

JOSÉ F. FERNANDO, JOSE MANUEL GAMBOA AND CARLOS UENO

Abstract. In a previous work we proved that each n-dimensional convex polyhe-
dron K ⇢ Rn and its relative interior are regular images of Rn . As the image of
a non-constant polynomial map is an unbounded semialgebraic set, it is not pos-
sible to substitute regular maps by polynomial maps in the previous statement.
In this work we determine constructively all unbounded n-dimensional convex
polyhedraK ⇢ Rn that are polynomial images of Rn . We also analyze for which
of them the interior Int(K) is a polynomial image of Rn . A discriminating object
is the recession cone EC(K) of K. Namely, K is a polynomial image of Rn if and
only if EC(K) has dimension n. In addition, Int(K) is a polynomial image of Rn if
and only if EC(K) has dimension n andK has no bounded faces of dimension n�1.
A key result is an improvement of Pecker’s elimination of inequalities to represent
semialgebraic sets as projections of algebraic sets. Empirical approaches suggest
us that there are “few” polynomial maps that have a concrete convex polyhedron
as a polynomial image and that there are even fewer for which it is affordable to
show that their images actually correspond to our given convex polyhedron. This
search of a “needle in the haystack” justifies somehow the technicalities involved
in our constructive proofs.

Mathematics Subject Classification (2010): 14P10 (primary); 14P05, 52B99
(secondary).

1. Introduction

A map f := ( f1, . . . , fm) : Rn ! Rm is polynomial if its components fk 2
R[x] := R[x1, . . . ,xn] are polynomials. Analogously, f is regular if its compo-
nents can be represented as quotients fk = gk

hk of two polynomials gk, hk 2 R[x]
such that hk never vanishes on Rn . By Tarski-Seidenberg’s principle [5, 1.4] the
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510 JOSÉ F. FERNANDO, JOSE MANUEL GAMBOA AND CARLOS UENO

image of an either polynomial or regular map is a semialgebraic set. A subset
S ⇢ Rn is semialgebraic when it has a description by a finite boolean combination
of polynomial equalities and inequalities.

It is quite natural to wonder about for properties that a set in Rm must satisfy
in order to be the image of a polynomial map f : Rn ! Rm . To our knowledge,
this question was first posed by Gamboa in an Oberwolfach week [16]. A related
problem concerns the parameterization of semialgebraic sets of dimension d using
continuous semialgebraic maps whose domains are semialgebraic subsets ofRd sat-
isfying certain nice properties [17]. The approach proposed by Gamboa in [16] sac-
rifices injectivity but chooses the simplest possible domains (Euclidean spaces) and
the simplest possible maps (polynomial and regular) to represent semialgebraic sets.
The class of semialgebraic sets that can be represented as polynomial and regular
images of Euclidean spaces (even sacrificing injectivity) is surely much smaller than
the one consisting of the images under injective continuous semialgebraic maps
of nice semialgebraic sets. Of course, more general domains than the Euclidean
spaces can be considered and compact semialgebraic sets deserve special attention:
balls, spheres, compact convex polyhedra, . . . For instance, in [19] the authors de-
velop a computational study of images under polynomial maps � : R3 ! R2
(and the corresponding convex hulls) of compact (principal) semialgebraic subsets
{ f � 0} ⇢ R3, where f 2 R[x1,x2,x3] (this includes for example the case of a
3-dimensional ball).

The effective representation of a subset S ⇢ Rm as a polynomial or regular
image of Rn reduces the study of certain classical problems in Real Geometry to its
study in Rn . Examples of such problems appear in Optimization, with the advan-
tage of avoiding contour conditions and reducing optimization problems to the case
of Euclidean spaces (see for instance [22, 23, 26, 29] for relevant tools concerning
optimization of polynomial functions on Rn) or in the search for Positivstellensätze
certificates [27]. These representations provide Positivstellensatz certificates for
general semialgebraic sets, whenever we are able to represent them as regular or
polynomial images of Rn . Recall that classical Positivstellensatz certificates are
stated only for closed basic semialgebraic sets. Further details are described care-
fully in [9, 12].

If S is a non-compact locally compact semialgebraic set in Rn , it admits a
(semialgebraic) Alexandrov compactification by one point. In addition, there is a
doubly exponential (in the number n of variables describing S) algorithm triangulat-
ing each compact semialgebraic set (see [5, Chapter 9, Section 2] and [18]). Thus,
locally compact semialgebraic sets can be considered as finite simplicial complexes
(up to losing one vertex), but we remark that the known algorithm can produce a
doubly exponential number of simplexes. The algorithms developed to show that
certain semialgebraic sets with piecewise linear boundary are polynomial or regu-
lar images of Rn are constructive (including those provided in this article), but the
degrees of the involved maps are very high; however, it would be interesting to es-
timate the smallest degree for which there is a suitable polynomial or regular map,
and to compare its complexity with the doubly exponential one for the triangula-
tions of semialgebraic sets.
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So far we have found partial answers to the representation problem of semial-
gebraic sets as polynomial and regular images of Euclidean spaces [6–8, 11], but a
full geometric characterization of these sets seems difficult to be obtained at present.
On the other hand, we have also focused on finding large families of semialgebraic
sets that can be expressed as either polynomial or regular images of Rn , giving con-
structive methods to obtain explicit maps producing them [6, 7, 9, 10, 15, 28]. In
particular, we have focused our interest in determining whether convex polyhedra,
their interiors and the corresponding complements can be expressed as polynomial
or regular images. We understand that these types of semialgebraic sets are the sim-
plest among those with piecewise linear boundary, and their full study is the first
natural step to understand which semialgebraic sets whose boundaries have “nice
properties” are either polynomial or regular images of Rn .

In [9] we proved that every n-dimensional convex polyhedron K ⇢ Rn and
its interior are regular images of Rn . This result cannot be extended directly to
the polynomial case because the image of a non-constant polynomial map is an
unbounded semialgebraic set. Our purpose in this work is to determine all n-
dimensional convex polyhedra K ⇢ Rn such that K and/or Int(K) are polynomial
images of Rn . Here, Int(K) refers to the relative interior of K with respect to the
affine subspace of Rn spanned by K, which coincides with the interior of K as a
topological manifold with boundary. For these unbounded convex polyhedra, their
representations as polynomial images of Euclidean spaces provide a priori simpler
Positivstellensätze certificates and optimization approaches that if we use regular
maps because polynomial representations do not involve denominators.

In [7, 8, 11] we found obstructions for a semialgebraic set of Rn to be a poly-
nomial image of some Rn . Two distinguished ones that are relevant to us here are
the following:

Condition 1. The projections of a polynomial image of a Euclidean space are either
singletons or unbounded semialgebraic sets.

Condition 2. If a semialgebraic set S ⇢ Rn is a polynomial image of Rn and Z is
an irreducible component of dimension n � 1 of the Zariski closure of Cl(S) \ S,
then Z \ Cl(S) is unbounded [8, Corollary 3.4].

Let us translate the first condition for convex polyhedra in terms of the recession
cone. Given a point p in a convex polyhedron K ⇢ Rn , the set of vectors Ev 2
Rn such that the ray with origin p and direction Ev is contained in K is called the
recession cone of K (see [30, Chapter 1] and [25, II Section 8]). This set does
not depend on the chosen point p. We will see later in Proposition 2.1 that if the
dimension of the recession cone EC(K) of a convex polyhedronK is strictly smaller
than its dimension, then K has bounded, non-singleton projections and neither K
nor Int(K) are polynomial images of an Euclidean space.

On the other hand, translating the second condition to our polyhedral setting
turns into the fact that if K ⇢ Rn is an n-dimensional convex polyhedron with a
bounded face of dimension n � 1, then Int(K) is not a polynomial image of Rn .
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Taking the previous obstructions in mind, our main results in this work, which
are the best possible ones, are the following:

Theorem 1.1. Let K ⇢ Rn be an n-dimensional convex polyhedron whose reces-
sion cone is n-dimensional. Then K is a polynomial image of Rn and Int(K) is a
polynomial image of Rn+1.

Theorem 1.2. LetK⇢Rn be ann-dimensional convex polyhedron without bounded
facets and whose recession cone is n-dimensional. Then Int(K) is a polynomial
image of Rn .

This means that for convex polyhedra, their interiors and the corresponding com-
plements the known obstructions for the representability of general semialgebraic
sets as polynomial images of Euclidean spaces are enough.

The proofs of Theorems 1.1 and 1.2 are rather technical and partly rely on ad
hoc constructive arguments. With respect to the constructions we use to prove both
results, it is difficult to determine how far from being “optimal” they are. Even in
the simplest non-trivial case of the open quadrant Q := {x > 0,y > 0} of R2, we
have made several trials [7,10,15] to find the “best” possible representation ofQ as a
polynomial image ofR2. The criteria to measure the “goodness” of a representation
are debatable, and we ourselves have been oscillating between the simplicity of
the involved polynomial maps and the clearness of the proofs provided (an ideal
situation would be to find examples where these two properties come together). A
main difficulty, which permeates this work, is that our proofs are of constructive
nature because we lack general principles that could provide a simpler and more
direct existential approach to tackle the problems related to the representation of
semialgebraic sets as polynomial images of Euclidean spaces. We point out here
some obstacles that quickly arise when confronting them:

• The rigidity of polynomial maps hinders their manipulation in order to obtain
the desired image sets;

• It is difficult to compute the image of an arbitrary polynomial map and, as far as
we know, there are not feasible algorithms to achieve this;

• The family of polynomial images do not behave nicely with respect to the usual
set-theoretic operations or geometric constructions.

We enlighten the latter fact with some examples.

Example 1.3 (Convex hull of a polynomial image of Rn). The convex hull of a
polynomial image of Rn needs not be a polynomial image of Rn . The semialge-
braic set

S :=
�
y > (x+ 1)2(x� 1)2

 
⇢ R2

is a polynomial image of R2. Indeed, the upper half-planeH := {y > 0} ⇢ R2 is a
polynomial image of R2 by [7, Example 1.4, (iv)] whereas S is the image ofH via
the polynomial mapH ! S, (x, y) 7! (x, y + (x+ 1)2(x� 1)2).
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The convex hull of S is the semialgebraic set

C :=
�
y > (x+ 1)2(x� 1)2

 
[ {y > 0,�1 < x < 1},

which is not a polynomial image of R2 by [8, Theorem 3.8].
Example 1.4 (Minkowski sum of polynomial images ofRn). TheMinkowski sum
S + T of two polynomial images S and T of Rn needs not to be a polynomial image
of Rn . We take the semialgebraic subsets

S := {x � 0,y � 0,x+ y � 1} and T := {x > 0,y > 0}

of R2, both of which are polynomial images of R2 by [8, Theorem 5.1] and [7,
Theorem 1.7]. Their Minkowski sum is

S + T := {x > 0,y > 0,x+ y > 1},

which is not a polynomial image of R2 by [8, Corollary 3.4].
Example 1.5 (Connected intersection of polynomial images of Rn). If the inter-
section S \ T of two polynomial images S and T of Rn is connected, then S \ T is
not in general a polynomial image of Rn . The semialgebraic subsets S := {x  1}
and T := {x � �1} of R2 are polynomial images of R2 whereas their intersection
S \ T, which is connected, is not a polynomial image of R2 because it does not
satisfy Condition 1 above. Observe that S, T and S \ T are convex semialgebraic
sets.

Example 1.6 (Connected union of polynomial images of Rn). If the union S [ T
of two polynomial images S and T of Rn is connected, then S [ T is not in general
a polynomial image of Rn . The semialgebraic subsets S := {x � 0,y � x2} and
T := {y � 0,x � y2} of R2 are polynomial images of R2 whereas their union
S [ T, which is connected, is not a polynomial image of R2 by [11, Theorem 1.1].
In fact, S and T are convex sets, but their union S [ T is not.
We suspect that with the current knowledge it is difficult (or even plausibly impos-
sible) to find two convex semialgebraic sets which are polynomial images of Rn

whose union is convex but not a polynomial image of Rn . The reason is the fol-
lowing: if two convex semialgebraic sets S and T satisfy all known obstructions to
be polynomial images of Rn and their union S [ T is convex, then such union also
satisfies all those known obstructions. So we have no known “a priori” tools to find
such an example. In this regard, it would be relevant to determine whether the union
of two convex polynomial images of Rn is also a polynomial image of Rn whenever
such union is a convex set. A result of this nature will definitely help to determine all
convex semialgebraic sets that are polynomial images of Rn . However, at present
we feel far from achieving this goal.

If we restrict our attention to the family F of n-dimensional closed convex
semialgebraic subsets of Rn with piecewise linear boundary that are polynomial
images of Rn , then S and T are by Theorem 1.1 n-dimensional convex polyhedra
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whose recession cone has dimension n. If the union S [ T is convex, then S [ T is
again an n-dimensional convex polyhedron with recession cone of dimension n, so
it is a polynomial image of Rn by Theorem 1.1. Analogously, if we are interested
in the family G of n-dimensional open convex semialgebraic subsets of Rn with
piecewise linear boundary that are polynomial images of Rn , then S and T are, by
Theorem 1.2, n-dimensional convex polyhedra without bounded facets and whose
recession cone has dimension n. If the union S [ T is convex, then S [ T is again
an n-dimensional convex polyhedron without bounded facets and whose recession
cone has dimension n. By Theorem 1.2 this union is a polynomial image of Rn .

In both cases above the result arises “a posteriori” because the union, if convex,
of sets of either the family F orG is again a set of the family F orG. We guess it is
really difficult to develop a general strategy to prove “a priori” (without knowing the
characterizations provided by Theorems 1.1 and 1.2) that the union, if convex, of
two convex semialgebraic sets with piecewise linear boundary that are polynomial
images of Rn is again a polynomial image of Rn .

In order to circumvent these difficulties we have developed alternative strate-
gies that rely on some constructions introduced in Pecker’s work [24]. The Tarski-
Seidenberg principle on elimination of quantifiers can be also restated geometrically
by saying that the projection of a semialgebraic set is again semialgebraic. An al-
ternative converse problem, to find an algebraic set in Rn+k whose projection is a
given semialgebraic subset of Rn , is known as the problem of eliminating inequal-
ities. Motzkin proved in [21] that this problem always has a solution for k = 1.
However, his solution is rather complicated and is generally a reducible algebraic
set. In another direction Andradas-Gamboa proved in [1, 2] that if S ⇢ Rn is a
closed semialgebraic set whose Zariski closure is irreducible, then S is the pro-
jection of an irreducible algebraic set in some Rn+k . In [24] Pecker gives some
improvements on both results: for the first one by finding a construction of an al-
gebraic set in Rn+1 that projects onto the given semialgebraic subset of Rn , far
simpler than the original construction of Motzkin; for the second one by character-
izing the semialgebraic sets in Rn which are projections of a real variety in Rn+1.
In Section 3 we modify Pecker’s polynomials introduced in [24, Section 2] to take
advantage of them in order to prove both Theorems 1.1 and 1.2.

To ease the presentation of the full picture of what is known [9, 11–14, 28]
about the representation of semialgebraic sets with piecewise linear boundary as
either polynomial or regular images of some euclidean space Rm we introduce the
following two invariants. Given a semialgebraic set S ⇢ Rm , we define

p(S) : = inf
�
n � 1 : 9 f : Rn ! Rm polynomial such that f (Rn) = S

 
,

r(S) : = inf
�
n � 1 : 9 f : Rn ! Rm regular such that f (Rn) = S

 
.

The condition p(S) := +1 expresses the non-representability of S as a polynomial
image of some Rn whereas r(S) := +1 has the analogous meaning for regular
maps. The values of these invariants for the families of convex polyhedra and their
complements are shown in Table 1.1. Here, K ⇢ Rn represents an n-dimensional
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convex polyhedron and its complement S := Rn \ K is assumed to be connected.
In addition, we write S := Rn \ Int(K).

Table 1.1. Full picture.

K bounded K unbounded
n = 1 n � 2 n = 1 n � 2

r(K) 1
n

1 n
r(Int(K)) 2 2
p(K)

+1
1 n,+1 (⇤)

p(Int(K)) 2 n, n + 1,+1 (?)

r(S)

+1 n

2

nr(S) 1
p(S) 2
p(S) 1

Let us explain the (marked) cases in Table 1.1 which follow from this work:

(⇤) (n, +1): An n-dimensional convex polyhedronK ⇢ Rn has p(K) = n if and
only if its recession cone EC(K) has dimension n. Otherwise, p(K) = +1;

(?) (n, n + 1, +1): If the recession cone EC(K) of an n-dimensional convex
polyhedron K has dimension < n, then p(Int(K)) = +1. Otherwise, if
K has bounded facets, p(Int(K)) = n + 1 and if K has no bounded facets,
p(Int(K)) = n.

Structure of the article. The article is organized as follows. In Section 2 we in-
troduce some basic notions, notations and tools that will be employed along the
article. In Section 3 we analyze further properties of Pecker’s polynomials and we
introduce some variations that fit the situation we need. In Section 4 we prove The-
orem 1.1 whereas Theorem 1.2 is proved in Section 5. We end this article with an
appendix that collects some useful inequalities for positive real numbers.

2. Preliminaries and basic tools

We proceed first to establish some basic concepts, notations and results. This sec-
tion can be considered as a sort of toolkit, where diverse techniques and auxiliary
tools that will be needed later are introduced.

2.1. Basic notation

Points in the Euclidean space Rn are denoted with the letters x , y, z, p, q, . . . and
vectors by Ev, Ew, . . . Given two points p, q 2 Rn , �!pq represents the vector from
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p to q and pq the segment joining them. Given an affine subspace W ⇢ Rn ,
we use an overlying arrow EW to refer to the corresponding linear subspace. This
notation is extended in the following way: Given a finite union of affine subspaces
X := X1 [ · · · [ Xr , we will denote EX the union of the linear subspaces EXi , so that

EX := EX1 [ · · · [ EXr .

The vectors of the standard basis of Rn are denoted Eei = (0, . . . , 0,
(i)
1 , 0, . . . , 0)

for i = 1, . . . , n.
An affine hyperplane of Rn will usually be written as H := {h = 0} using a

non-zero linear equation h. It determines two closed half-spaces

H+ := {h � 0} and H� := {h  0}.

In fact, these half-spaces depend on the linear equation h chosen to define H .
Whenever needed, we will clearly state the orientation that is being considered.

An affine subspace W of Rn is called vertical if EW contains the vector Een .
Otherwise, we say that W is non-vertical. In general, whenever an affine object or
map is denoted with a symbol, we will use an overlying arrow on it to refer to its
linear counterpart.

Given a set X ⇢ Rn and a set of vectors EV ⇢ Rn , we define

X + EV :=
�
x + Ev : x 2 X, Ev 2 EV

 
⇢ Rn.

Whenever X and EV are convex sets, the set X + EV is also convex. Given a set
X ⇢ Rn and a vector Ev 2 Rn , the cylinder of base X in the direction Ev is defined as

X Ev := {x + �Ev : x 2 X, � 2 R},

and the positive cylinder of base X in the direction Ev as

X Ev + := {x + �Ev : x 2 X, � � 0}.

We will use analogous notations EX Ev and EX Ev + when EX is a set of vectors instead
of a subset of Rn . As special cases, the line through the point p with direction Ev is
written as pEv, whereas the ray with origin at p and direction Ev is written as pEv +.
Given X1, . . . , Xm ⇢ Rn , we denote Span(X1, . . . , Xm) the affine span of their
union

Sm
i=1 Xi .

2.2. Convex polyhedra and recession cone

A subset K ⇢ Rn is a convex polyhedron if it can be described as a finite in-
tersection of closed half-spaces. The dimension dim(K) of K is the dimension
of the smallest affine subspace of Rn that contains K and Int(K) represents the
relative interior of K with respect to this subspace. If K has non-empty interior
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there exists a unique minimal family {H1, . . . , Hm} of affine hyperplanes such that
K =

Tm
i=1 H

+
i . The facets or (n�1)-faces ofK are the intersections Fi := Hi \K

for 1  i  m. Each facet Fi := Hi \
Tm

j=1 H
+
j is a convex polyhedron contained

in Hi . For 0  j  n�2 we define inductively the j-faces ofK as the facets of the
( j + 1)-faces ofK, which are again convex polyhedra. The 0-faces are the vertices
of K and the 1-faces are the edges of K. A face E of K is vertical if the affine
subspace of Rn spanned by E is vertical. Otherwise, we say that E is non-vertical.
A convex polyhedron is non-degenerate if it has at least one vertex. Otherwise, it
is called degenerate. For a detailed study of the main properties of convex sets we
refer the reader to [3, 25, 30].

We associate to each convex polyhedron K ⇢ Rn its recession cone, see [30,
Chapter 1] and [25, II. Section 8]. Fix a point p 2 K and denote EC(K) := {Ev 2
Rn : pEv+ ⇢ K}. Then EC(K) is a convex cone and it does not depend on the choice
of p. The set EC(K) is called the recession cone of K. It holds EC(K) = {E0} if and
only ifK is bounded. The recession cone ofK :=

Tr
i=1 H

+
i is

EC(K) =
r\

i=1

EC
�
H+
i
�

=
r\

i=1

EHi
+

=

(
sX

i=1
�i Evi : �i � 0

)

,

where the non-zero vectors Ev1, . . . , Evs span the lines containing the unbounded
edges of K. If a non-zero vector Ev 2 Int(EC(K)), then K does not have facets
parallel to Ev.

IfK is non-degenerate we may writeK = K0+ EC(K) whereK0 is the convex
hull of the set of vertices of K. If P ⇢ Rn is a non-degenerate convex polyhedron
and k � 1, then EC(Rk ⇥ P) = Rk ⇥ EC(P).

Recall that each degenerate convex polyhedron can be written as the product of
a non-degenerate convex polyhedron times an Euclidean space. Besides, a convex
polyhedron is degenerate if and only if it contains a line or, equivalently, if its reces-
sion cone contains a line. Consequently a convex polyhedron K is non-degenerate
if and only if all its faces are non-degenerate polyhedra.

The next result justifies the fact that the recession cone of a polyhedron plays
an important role when we are trying to express it as a polynomial image of Rn:

Proposition 2.1. If the dimension of the recession cone EC(K) of an n-dimensional
convex polyhedronK ⇢ Rn is strictly smaller than n, then bothK and Int(K) have
bounded non-singleton projections. Consequently, under the previous hypotheses
both K and Int(K) are not polynomial images of Rm for each m � 1.

Proof. We may assume EC(K) is contained in the hyperplane {xn = 0}. Consider
the projection ⌘ : Rn ! R, x := (x1, . . . , xn) 7! xn . Suppose first thatK is non-
degenerate. As dim(K) = n, we can choose a set of points W := {p1, . . . , pk} ⇢
K that contains all the vertices of K and spans the whole space Rn . Then K =
K0
0+ EC(K) whereK0

0 is the convex hull ofW. AsK0
0 is a compact polyhedron and
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has dimension n, the projection ⌘(K0
0) is a non-trivial bounded interval. We have

⌘(K) = ⌘(K0
0) + E⌘(EC(K)) = ⌘(K0

0) because E⌘(EC(K)) = {E0}. Consequently, both
⌘(K) and ⌘(Int(K)) are bounded non-singleton intervals.

Assume next that K is degenerate and suppose K = Rk ⇥ K0 where 1  k <
n and K0 ⇢ Rn�k is a non-degenerate convex polyhedron of Rn�k . Choose the
notation (xk+1, . . . ,xn) for the coordinates of Rn�k . As EC(K) = Rk ⇥ EC(K0), we
may assume EC(K0) ⇢ {xn = 0}. Let ⌧ : Rn ! Rn�k denote the projection onto
the last n � k coordinates and let ⌘̄ : Rn�k ! R denote the projection onto the last
coordinate, so that ⌘ = ⌘̄ � ⌧ . We have

⌘(K) = ⌘
⇣
Rk ⇥ K0

⌘
= (⌘̄ � ⌧ )

⇣
Rk ⇥ K0

⌘
= ⌘̄(K0).

By the non-degenerate case ⌘̄(K0) and ⌘̄(Int(K0)) are bounded non-singleton inter-
vals, as required.

Other results that follow from the use of the recession cone are the following.

Lemma 2.2. Let K ⇢ Rn be a convex polyhedron and let H := {h = 0} be a
hyperplane of Rn such thatK ⇢ {h > 0}. Then dist(K, H) = dist(p0, H) for each
point p0 contained in one of the faces of K of minimal dimension and in addition
K ⇢ {h > h(p0)

2 }.

Proof. Assume first that K is a non-degenerate convex polyhedron and write K =
K0+ EC(K)whereK0 is the convex hull of the set V of vertices ofK. AsK ⇢ {h >

0}, then µ := min{h(p) : p 2 V} > 0 and Eh(Ev) � 0 for all Ev 2 EC(K). Observe that
h(q) � µ for all q 2 K and dist(K, H) = dist(p0, H) where p0 2 V is a vertex
such that h(p0) = µ. In addition,K ⇢ {h � h(p0)} ⇢ {h > h(p0)

2 }. As the convex
polyhedronK is non-degenerate, {p0} is a face ofK of minimal dimension.

If K is degenerate, we assume K = K0 ⇥ Rk where K0 ⇢ Rn�k is a non-
degenerate polyhedron. AsK\ H = ?, we have H = H 0 ⇥Rk where H 0 := {h =
0} is a hyperplane of Rn�k and n� k � 1. We abuse notation using the fact that the
linear form h only depends on the first n�k variables. Applying the non-degenerate
case toK0, H 0 and h we find a vertex q0 ofK0 such that dist(K0, H 0) = dist(q0, H 0).
Observe that E := {q0} ⇥ Rk is a face of K of minimal dimension and h(p) =
h(q0, 0) = h(q0) for each p 2 E. The statement now follows straightforwardly.

Corollary 2.3. Let K ⇢ Rn be a convex polyhedron and let H1 := {h1 = 0} and
H2 := {h2 = 0} be hyperplanes of Rn . Suppose that K \ H1 ⇢ {h2 > 0}. Then
there exists " > 0 such that K \ {�"  h1  "} ⇢ {h2 > 0}.

Proof. Define P := K \ {h2  0}. As K \ H1 \ {h2  0} = ?, we may assume
P ⇢ {h1 > 0}. By Lemma 2.2 there exists " > 0 such that P ⇢ {h1 > "}. Thus,
K \ {�"  h1  "} ⇢ {h2 > 0}, as required.
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2.3. Vertical cones and convex polyhedra

Along the article we will make frequent use of one particular direction in Rn , the
one given by the vector Een = (0, . . . , 0, 1). Set x 0 := (x1, . . . , xn�1) 2 Rn�1 so
that a point in Rn ⌘ Rn�1 ⇥ R is written as x := (x 0, xn). The vertical cone of
radius � > 0 is defined as

ECv� :=
�
(v0, vn) 2 Rn : kv0k  �vn

 
.

Given a set A ⇢ Rn we define the vertical cone of radius � > 0 over A as

Cv�(A) := A + ECv� =
�
x + Ev : x 2 A, Ev 2 ECv�

 
.

If A is a convex set, then Cv�(A) is also a convex set.
We establish now some results relating vertical cones and unbounded polyhe-

dra.

Lemma 2.4. Let K ⇢ Rn be a convex polyhedron such that Een 2 Int(EC(K)).
Then there exists � > 0 such that for each p 2 Rn the inclusion Cv�({p}) \ {p} ⇢

{p} + Int(EC(K)) holds.

Proof. As Een := (0, . . . , 0, 1) 2 Int(EC(K)), there exists � > 0 such that the ball
B(Een, �) of center Een and radius � > 0 is contained in Int(EC(K)). As EC(K) is a
cone with vertex 0,

ECv� \ {0} ⇢ {�Ev : Ev 2 B(Een, �), � > 0} ⇢ Int
⇣
EC
�
K
�⌘

.

From this inclusion readily follows that Cv�({p}) \ {p} ⇢ {p} + Int(EC(K)) for each
p 2 K.

Proposition 2.5. Let K ⇢ Rn be a non-degenerate unbounded convex polyhedron.
Assume K ⇢ {xn � 0}, the intersection E := {xn = 0} \ K is a face of K and
the vector Een 2 Int(EC(K)). Then there exist positive numbers � < 1 such that
Cv�(E) ⇢ K ⇢ Cv1(E).

Proof. By Lemma 2.4 we can choose � > 0 such that Cv�({p}) ⇢ {p} + EC(K) for
each p 2 E, so that the inclusions Cv�(E) ⇢ E + EC(K) ⇢ K hold.

We prove next K ⇢ Cv1(E) for 1 large enough. We may assume that 0 2
Int(E). Observe first that for each p 2 E we have {p}[ {xn > 0} =

S
k2N Cvk({p}),

so
E [ {xn > 0} =

[

k2N
Cvk(E).
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Write EC(K) = {
Ps

i=1 �i Evi : �i � 0} where the non-zero vectors Ev1, . . . , Evs span
the lines spanned by the unbounded edges of K. We may assume that the last
coordinate of Evi is positive for i = 1, . . . , r and identically zero for Evi with i =
r + 1, . . . , s. Consequently, EC(E) = {

Ps
i=r+1 �i Evi : �i � 0}. Pick k0 � � such

that:

(1) All the vertices ofK are contained in Cvk0(E);
(2) The rays 0Ev+

i ⇢ Cvk0(E) for i = 1, . . . , s.

As Cvk0(E) is convex (because E is convex) and {0}+ EC(K) is the convex hull of the
rays 0Ev +

i for i = 1, . . . , s, we deduce that both sets {0}+ EC(K) and the convex hull
K0 of the vertices ofK are contained in Cvk0(E). Consequently,

K = K0 + EC(K) ⇢ Cvk0(E)

and taking 1 := k0 we haveK ⇢ Cv1(E), as required.

2.4. Projections of affine subspaces and convex polyhedra

Given a hyperplane H ⇢ Rn and a vector Ev 2 Rn \ EH , we denote by ⇡Ev : Rn ! H
the projection onto H with direction Ev. For each X ⇢ Rn , the set ⇡�1

Ev (⇡Ev(X))
coincides with X Ev, so it does not depend on the chosen projection hyperplane H but
only on the vector Ev. Write x 0 := (x1, . . . , xn�1) and x := (x 0, xn). We use often
the vertical projection ⇡Een : Rn ! Rn, (x 0, xn) 7! (x 0, 0) onto the coordinate
hyperplane {xn = 0} and we reserve the notation ⇡n for this particular projection.

Proposition 2.6. Let K ⇢ {xn � 0} ⇢ Rn be an unbounded convex polyhedron
whose recession cone EC(K) has dimension n and assume Een 2 Int(EC(K)). Then
the restriction ⇢ := ⇡n|@K : @K ! Rn�1 ⇥ {0} defines a semialgebraic homeo-
morphism.

Proof. We prove first: ⇢ is surjective.
Pick a point x := (x 0, 0) 2 Rn�1⇥ {0} and consider the ray x Ee+

n . Choose now
y 2 K. As Een 2 Int(EC(K)) and EC(K) has dimension n, there exists " > 0 such that
Ew := Een + "�!yx 2 EC(K). The ray y Ew+ ⇢ K and

z := y +
1
"

Ew = x +
1
"

Een 2 y Ew+ \ x Ee+
n ⇢ K \ x Ee+

n .

Consequently, zEe+
n ⇢ K\x Ee+

n ⇢ {xn � 0}, so there exists a point p 2 @K\x Ee+
n ,

which satisfies ⇡n(p) = x . In addition, x Ee+
n \ K = pEe+

n .
We show next: ⇢ is injective. It is enough to show: for each x := (x 0, 0) 2 Rn

the intersection x Een \ @K is a singleton.
We have already proved that x Een \ K = pEe+

n for some p 2 @K. If the ray
pEe+

n meets @K in a point y 6= p, then either K \ pEe+
n is a bounded interval or
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K \ pEe+
n ⇢ @K. As both situations are impossible because Een 2 Int(EC(K)), we

conclude Int(pEe+
n ) ⇢ Int(K), so ⇢�1(⇢(p)) = {p}.

To prove that ⇢ is a homeomorphism, it is enough to check that it is a closed
map and in fact it is sufficient that the restriction ⇢|F is a closed map for each
facet F of K. Let H be the hyperplane spanned by F and let us check that ⇡n|H
is a closed map. As Een 2 Int(EC(K)) ⇢ Rn \ EH , the restriction ⇡n|H is an affine
bijection and in particular a closed map, as required.

Let us consider now a set X ⇢ Rn and a projection ⇡Ev : Rn ! H . The
set ⇡�1

Ev (⇡Ev(X)) = X Ev contains X . If we consider now finitely many vectors
Ev1, . . . , Evs , the set X 0 :=

Ts
i=1 X Evi also contains X . It seems natural to wonder

under which conditions can we assert that X 0 = X . When X is a finite union of
affine subspaces of dimension  n � 2 we have the following result.

Proposition 2.7. Let X :=
Sm

i=1 Xi ⇢ Rn be a finite union of affine subspaces Xi
such that d := dim(X)  n � 2 and Xi * X j if i 6= j . Let � be a non-empty open
subset of Rn \ {0}. Then there exist finitely many vectors Ev1, . . . , Evs 2 � such thatTs

i=1 X Evi = X . Besides, we can choose these vectors so that Evi /2
Si�1

j=1
EX Ev j for

i = 1, . . . , s.

Proof. As X =
Sm

i=1 Xi and each Xi is an affine subspace of Rn with Xi * X j if
i 6= j , the affine subspaces X1, . . . , Xm are the irreducible components of X as an
algebraic subset ofRn . Given Ev 2 Rn \{E0}, the set X Ev is also a finite union of affine
subspaces of Rn . For each irreducible component Xi of X the set Xi Ev is an affine
subspace that either coincides with Xi or has dimension dim(Xi ) + 1 and contains
Xi . If p 2 Xi Ev \ Xi , then Xi Ev = Span(p, Xi ). Set EX :=

Sm
i=1 EXi .

For p 2 Rn \ X define [p, X] :=
Sm

i=1 Span(p, Xi ). The set
���!
[p, X] denotes

the union of the linear subspaces
�������!
Span(p, Xi ) associated to the affine subspaces

Span(p, Xi ). We have dim([p, X]) = dim(
���!
[p, X])  d + 1 and p /2 X Ev for each

vector Ev 2 Rn \
���!
[p, X].

Pick Ev1 2 � and let Y 11 , . . . ,Y s1 be the irreducible components of Y1 := X Ev1.
If each Y i1 ⇢ X , we are done. Otherwise, assume Y 11 , . . . ,Yr1 are the irreducible
components of Y1 not contained in X and pick pi 2 Y i1 \ X for i = 1, . . . , r . As
T1 :=

Sr
i=1[pi , X] is a finite union of affine subspaces of Rn whose dimensions

are strictly smaller than n, there exists Ev2 2 �\ ( ET1[ EY1). We have pi /2 Y2 := X Ev2
for i = 1, . . . , r . Let Z be an irreducible component of Y1\Y2 that is not contained
in X . As Z ⇢ Y1, there exists an irreducible component Y i1 of Y1 not contained in
X such that Z ⇢ Y i1. In addition, Z ( Y i1 because pi 2 Y i1 \ Z . Consequently,
dim(Z) < dim(Y i1) because Z and Y

i
1 are affine subspaces. Thus, the dimension of

every irreducible component of Y1 \ Y2 not contained in X is strictly smaller than
the dimension of some irreducible component of Y1 that is not contained in X . We
conclude dim((Y1 \ Y2) \ X) < dim(Y1 \ X).
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Next, for each irreducible component Y j
12 of Y1 \ Y2 not contained in X (and

indexed with j = 1, . . . , `) we choose a point q j 2 Y j
12 \ X and consider the set

T2 :=
S`

j=1[q j , X]. There exists Ev3 2 � \ ( ET2 [ EY1 [ EY2) and we have q j /2
Y3 := X Ev3 for j = 1, . . . , `. The dimension of each irreducible component of
Y1 \ Y2 \ Y3 not contained in X is strictly smaller than the dimension of some
irreducible component of Y1 \ Y2 that is not contained in X . Again, this implies
dim((Y1 \ Y2 \ Y3) \ X) < dim((Y1 \ Y2) \ X).

We repeat the process s  d + 3  n + 1 times to find Ev1, . . . , Evs 2 � such
that

Evi /2 EY1 [ · · · [ EYi�1 =
i�1[

j=1

EX Ev j

for i=1, . . . ,s and all irreducible components of
Ts

i=1 Yi:=
Ts

i=1 X Evi are contained
in X . This holds because in each step dim((

Tk
i=1 Yi ) \ X)<dim((

Tk�1
i=1 Yi )\X) for

k � 2. Consequently,
Ts

i=1 X Evi = X , as required.

2.5. Separating hyperplanes in convex polyhedra

Given two semialgebraic sets S1,S2 ⇢ Rn , we say that a hyperplane B := {b =
0} ⇢ Rn separates S1 and S2 if the semialgebraic sets Si lie in the different half-
spaces {b � 0} and {b  0} determined by B and B \ Si ⇢ S1 \ S2 for i = 1, 2.
Consequently, S1 \ S2 ⇢ B and B \ Si = S1 \ S2 for i = 1, 2.

We are concerned here about hyperplanes that separate two adjacent facets of
a convex polyhedron.
Lemma 2.8. Let F1 and F2 be two non-parallel facets of a convex polyhedronK ⇢
Rn . Let Hi := {hi = 0} be the hyperplane spanned by Fi and assume K ⇢ {h1 �
0, h2 � 0}. For each � > 0 denote B� := {b� := h1��h2 = 0}. Then B� separates
F1 and F2 and meets Int(K).
Proof. Observe that F1 ⇢ {b�  0}, F2 ⇢ {b� � 0} and B� \ Fi = {h1 =
0, h2 = 0} \ K = F1 \ F2 for i = 1, 2, so B� separates F1 and F2. Let us check:
B� \ Int(K) 6= ?.

Pick xi 2 Int(Fi ). As Int(x1x2) ⇢ Int(K), it is enough to check: B� \
Int(x1x2) 6= ?.

Set Ev = ��!x1x2 and write each point z 2 Int(x1x2) as
z = zµ := x1 + µEv = x2 � (1� µ)Ev 2 Int(x1x2),

for some 0 < µ < 1. Observe that h1(x1) = 0, h2(x2) = 0, Eh1(Ev) > 0 and
Eh2(Ev) < 0. All reduces to find a value 0 < µ < 1 such that zµ 2 B�. To that end,

0=b�(zµ)=h1(x1+µEv)��h2(x2 � (1� µ)Ev) = µEh1(Ev) + �(1� µ)Eh2(Ev)

 µ :=
��Eh2(Ev)

Eh1(Ev) � �Eh2(Ev)
.

As 0 < µ < 1, we have zµ 2 B� \ Int(x1x2), as required.
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We have denoted ⇡n : Rn ! Rn, x := (x1, . . . , xn) ! (x1, . . . , xn�1, 0) the
orthogonal projection onto the hyperplane {xn = 0}. Let us assume that a convex
polyhedron K is placed so that one of its facets F is vertical and Een 2 EC(K).
The following result relates the projection of Int(K) under ⇡n with the union of
the projections under ⇡n of the intersections of Int(K) with a family of separating
hyperplanes between F and its adjacent facets.

Lemma 2.9. Let K ⇢ Rn be an unbounded convex polyhedron and F one of its
facets. Assume that F lies in the hyperplane {xn�1 = 0} and the vector Een 2
EC(K). Let F1, . . . ,Fr be the non-vertical facets of K and assume that all of them
meet F. Let Bi be a hyperplane of Rn that separates F and Fi and meets Int(K).
Then ⇡n(Int(K)) =

Sr
i=1 ⇡n(Bi \ Int(K)). Consequently, Int(K)Een =

Sr
i=1(Bi \

Int(K))Een .

Proof. We prove first:

⇡n(Fi ) \ @⇡n(K) ⇢ ⇡n(Bi \ Int(K)) (2.1)

for i = 1, . . . , r .
Take x 2 ⇡n(Fi ) \ @⇡n(K). As Fi is non-vertical, x Een \ K = pEe+

n for some
p 2 Fi . We claim: x Een \ @K = {p}.

Otherwise, pEe+
n ⇢ @K and {x} = ⇡n(x Een) ⇢ @⇡n(K). The latter inclusion

follows because all the facets that contain pEe+
n are vertical, so their projections are

contained in @⇡n(K), which is a contradiction.
Let us check: Bi is non-vertical.
Otherwise, pick q 2 F\Fi ⇢ Bi . As F ⇢ {xn�1 = 0}, the ray q Ee+

n ⇢ Bi \F.
As Bi separatesF andFi , we have q Ee+

n ⇢ Bi\F ⇢ F\Fi , soFi should be vertical,
which is a contradiction.

The line x Een meets Bi in a point z. We claim: z 2 Int(pEe+
n ) ⇢ Int(K), so

x = ⇡n(z) 2 ⇡n(Bi \ Int(K)).
As ⇡n(F) ⇢ @⇡n(K) because F is vertical, x 62 ⇡n(F). Consequently, p 62 Bi

because otherwise p 2 Bi \ Fi ⇢ F \ Fi and x = ⇡n(p) 2 ⇡n(F), which is a
contradiction.

Let q 2 F \ Fi ⇢ Bi and let bi = 0 be a linear equation of Bi . As Bi is non-
vertical, we may assume Ebi (Een) > 0, so Int(q Ee+

n ) ⇢ {bi > 0} because bi (q) = 0.
As q Ee+

n ⇢ F, we deduce F ⇢ {bi � 0}, so Fi ⇢ {bi  0}. As p 2 Fi \ Bi , we
have bi (p) < 0. Write z = p + �Een , so

0 = bi (z) = bi (p) + �Ebi (Een)  0 < �bi (p) = �Ebi (Een)

and � > 0. Thus, z 2 Int(pEe+
n ), as claimed.
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Notice that ⇡n(K) =
Sr

i=1 ⇡n(Fi ). By (2.1)

⇡n(Int(K)) = ⇡n(K) \ @⇡n(K) =

 
r[

i=1
⇡n(Fi )

!

\ @⇡n(K)

=
r[

i=1
(⇡n(Fi ) \ @⇡n(K)) ⇢

r[

i=1
⇡n(Bi \ Int(K)) ⇢ ⇡n(Int(K)),

so ⇡n(Int(K)) =
Sr

i=1 ⇡n(Bi \ Int(K)), as required.

To illustrate the meaning of Lemma 2.9, Figure 2.1 shows how the projection
⇡3 : R3 ! R3 acts on a polyhedron K with two non-vertical facets F1, F2. These
facets are separated from F by the hyperplanes B1, B2.

πn(B2∩Int(K
))

πn(B1∩Int(K
))

π3

K

F1

F

F2

B1 B2

Figure 2.1. ⇡n(Int(K)) = ⇡n(B1 \ Int(K)) [ ⇡n(B2 \ Int(K))

2.6. Nonvertical hyperplanes and polynomial functions

In many of our arguments non-vertical affine subspaces play a special role because
of the way we place our polyhedra in space. If we consider a finite collection of non-
vertical hyperplanes, it is intuitively clear that we can find a polynomial function
G 2 R[x0] := R[x1, . . . ,xn�1] whose graph {xn = G} lies “above” all these
hyperplanes. In fact, we can say more.

Proposition 2.10. Let {Hi }ki=1 be a finite family of (non-vertical) hyperplanes with
linear equations Hi := {hi = 0} oriented so that Ehi (Een) > 0. Then there exists
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G 2 R[x0] such that G > 1 on Rn�1 and its graph 3 := {xn = G} ⇢ Rn satisfies

3Ee+
n = {xn � G} ⇢

k\

i=1
{hi > 1}. (2.2)

In particular, Hi \3Ee+
n = ? for i = 1, . . . , k and 3Ee+

n ⇢ {
Qk

i=1 hi > 1}.

Proof. Write hi (x0,xn) = ha0
i ,x

0i + ainxn + bi where a0
i 2 Rn�1, ain, bi 2 R and

ain = Ehi (Een) > 0. Denote

⇢i
�
x0� := �

1
ain

�
ha0
i ,x

0i + bi
�

and observe that Hi = {xn � ⇢i (x0) = 0}. For each i = 1, . . . , k consider the
polynomial

Gi := 1+
1
ain

+
⇢2i + 1
2

2 R[x0].

We have Gi (x 0) � 1 + 1
ain + |⇢i (x 0)| > 1 for each x 0 2 Rn�1. Define G :=

Qk
i=1 Gi 2 R[x0]. It holds G(x 0) � Gi (x 0) > 1 for each i = 1, . . . , k and x 0 2

Rn�1. Let us check (2.2).
Pick (x 0, xn) 2 Rn such that xn � G(x). Then

hi (x 0, xn)=ha0
i , x

0i+ainxn + bi �ainxn � |ha0
i , x

0i+bi |�ainG(x)�|ha0
i , x

0i+bi |

�ainGi (x)�|ha0
i , x

0i+bi |�ain
✓
1+

1
ain

+|⇢i (x 0)|

◆
�|ha0

i , x
0i+bi |>1.

Consequently, 3Ee+
n ⇢

Tk
i=1{hi > 1} ⇢ {

Qk
i=1 hi > 1} and Hi \ 3Ee+

n = ? for
i = 1, . . . , k, as required.

Remark 2.11. By including an extra hyperplane H0 of equation xn � b = 0 where
b 2 R we can find a corresponding polynomial G(x0) satisfying the previous state-
ment and such that {xn � G} lies in {xn > b + 1}.
In order to construct polynomial maps f : Rn ! Rn with polyhedral images we
will resort to maps fixing pointwise finite collections of hyperplanes in Rn . These
maps will often leave vertical lines invariant. Under these hypotheses the following
immediate but useful application of Bolzano’s Theorem applies. Given a function
 : R ! R we write  (±1) := limt!±1 (t) whenever the previous limit
either exists or is equal to ±1.

Lemma 2.12. Let  : R ! R be a continuous function and let �1 < a < b 
+1 be such that  (a) = a and  (b) = b. Then ]a, b[ ⇢  (]a, b[).
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Corollary 2.13. Let f := ( f 0, fn) : Rn ! Rn be a continuous map and let x :=
(x 0, xn) 2 Rn be such that f (x Een) ⇢ x Een . Then

(i) For each pair of points p1, p2 2 x Een with f (pi ) = pi , it holds Int(p1 p2) ⇢
f (Int(p1 p2));

(ii) Assume that  x 0(t) := fn(x 0, t) satisfies  x 0(+1) = +1. For each p 2 x Een
such that f (p) = p we have Int(pEe+

n ) ⇢ f (Int(pEe+
n )).

3. Variations on Pecker’s polynomials

One main result in this section and the key to prove the main results of this article
is Lemma 3.2. In 3.4 we present some of its consequences that will help us to
establish a link between Pecker’s results and Theorems 1.1 and 1.2. Denote x 0 :=
(x1, . . . , xn�1) so that each point x := (x1, . . . , xn) 2 Rn ⌘ Rn�1 ⇥ R will be
written in this section as x := (x 0, xn). As before, R[x0] := R[x1, . . . ,xn�1],
R[x] := R[x1, . . . ,xn] and ⇡n : Rn ! Rn, x := (x 0, xn) 7! (x 0, 0).
Definition 3.1. A tuple g := (g1, . . . , gm, gm+1) 2 R[x0]m+1 such that gm+1 > 1
on Rn�1 is called an admissible tuple of polynomials of length m+ 1. We associate
to g the semialgebraic set A(g) := {g1 > 0, . . . , gm > 0,xn = 0} ⇢ Rn , which
does not depend on gm+1.

Lemma 3.2. Let g := (g1, . . . , gm, gm+1) 2 R[x0]m+1 be an admissible tuple of
length m + 1. Then there exists a polynomial Qg 2 R[x] such that:

(i) {Qg  0} ⇢ A(g)Een \ {|xn| > max{gm+1,
gm+1pg1···gm

}};
(ii) For each (x 0, 0) 2 A(g) there exist a positive root r � gm+1(x 0) of the uni-

variate polynomial Qg(x 0,t) and a value t � r such that Qg(x 0, t) = �1;
(iii) The set S(g) := {Qg  0,xn > 0}Een satisfies ⇡n(S(g)) = A(g). In addition,

for each (x 0, xn) 2 S(g) there exist rn > 0 and tn � 0 such that xn = rn + tn
and Qg(x 0, rn) = 0.

Figure 3.1 sketches the graphical meaning of Lemma 3.2. Its proof relies on
Pecker’s construction [24, Section 2] that we recall next.

3.1. Pecker’s construction

Define:

ak(y1, . . . ,yk+1) := yk+1(y1 + · · · + yk) 2 Z[y1, . . . ,yk+1]. (3.1)

If yi � 0 for i = 1, . . . , k + 1, it holds ak(y1, . . . , yk+1) � 0. Consider Pecker’s
polynomials defined as follows:

P1(y1,t) := t� y1,

Pm+1(y1, . . . ,ym+1,t) := Pm
�
a1(y1,y2), . . . , am(y1, . . . ,ym+1),

(t� (y1 + · · · + ym+1))
2�.
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A(g)

xn = 1

xn = gm +1

xn = gm+1√
g
1
···g

m

Qg ≤ 0

Qg=−1

Qg= 0

(x′, r)

(x′, t)

(x′,0)

Figure 3.1. {Qg  0} ⇢ A(g)Een \ {xn > max{gm+1,
gm+1pg1···gm

}}.

3.1.1. Basic properties of polynomials Pm

The previous polynomials satisfy the following properties [24, Theorem 1]:

(i) Pm 2 Z[y1, . . . ,ym,t] is a homogeneous polynomial of degree 2m�1;
(ii) If each yi � 0 and Pm(y1, . . . , ym, t) = 0, then 0  t  2

Pm
i=1 yi ;

(iii) If all the yi are non-negative, the polynomial Pm(y1, . . . , ym,t2) in the vari-
able t has only real roots;

(iv) If Pm(y1, . . . , ym,t2) has a real root, then all the yi are non-negative;
(v) Pm(y1, . . . ,y j�1, 0,y j+1, . . . ,ym,t) = (Pm�1(y1, . . . ,y j�1,y j+1, . . . ,

ym,t))2;
(vi) Pm(y1, . . . ,ym,t2) is irreducible in R[y1, . . . ,ym,t] and monic in each

variable.

3.1.2. Further properties of polynomials Pm

The polynomials Pm satisfy in addition the following properties:

(i) If each yi � 0 and Pm(y1, . . . , ym, t) = 0, then
✓
1�

q
m�1
m

◆ mX

i=1
yi  t 

✓
1+

q
m�1
m

◆ mX

i=1
yi ;

(ii) If m � 2 and each yi > 0, then Pm(y1, . . . , ym, 0) > 0;
(iii) Define A1(y1) := y1 and

Ak+1(y1, . . . ,yk+1) := Ak(a1(y1,y2), . . . , ak(y1, . . . ,yk+1))
2 Z[y1, . . . ,yk+1].
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Then Am is a homogeneous polynomial of degree 2m�1 and there exists a
homogeneous polynomial Bm�1 2 Z[y1, . . . ,ym�1] of degree 2m�1�m with
non-negative coefficients such that Am = Bm�1

Qm
i=1 yi ;

(iv) Given values yi � 0 for i = 1, . . . ,m, there exists

tm

8
><

>:

= 0 if m = 1,

�
mX

i=1
yi if m � 2,

such that Pm(y1, . . . , ym, tm) = �Am(y1, . . . , ym) < 0.

Proof. (i) It m = 1 the result is clearly true, so let us assume m � 2. Denote
sm :=

Pm
i=1 yi , rm :=

P
1 j<km y j yk and qm :=

Pm
i=1 y

2
i . As s

2
m = qm + 2rm ,

notice that

qm =
mX

i=1
y2i =

2
m � 1

X

1 j<km

y2j + y2k
2

�
2

m � 1
X

1 j<km
y j yk =

2rm
m � 1

.

Consequently,

s2m = qm + 2rm �
2m
m � 1

rm  2rm 
m � 1
m

s2m . (3.2)

Let t0 2 R be such that Pm(y1, . . . , ym, t0) = 0. By definition

Pm(y1, . . . , ym,t)

= Pm�1
�
a1(y1, y2), . . . , am�1(y1, · · · , ym), (t� (y1 + · · · + ym))2

�
,

so u0 := (t0� sm)2 is a root of the polynomial Pm�1(a1(y1, y2), . . . , am�1(y1, . . . ,
ym),u). As each ai (y1, . . . , yi+1) � 0 (see (3.1)), we deduce from 3.1.1(ii)

u0 = (t0 � sm)2  2
m�1X

i=1
ai (y1, . . . , yi+1) = 2

m�1X

i=1
yi+1(y1 + · · · + yi )

= 2
X

1 j<km
y j yk = 2rm,

or equivalently,
t20 � 2smt0 + qm  0.

The previous condition is equivalent to

sm �
p
2rm = sm �

q
s2m � qm  t0  sm +

q
s2m � qm = sm +

p
2rm . (3.3)
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By (3.2) we have
p
2rm 

q
m�1
m sm and by (3.3)

 

1�

r
m � 1
m

!

sm  sm �
p
2rm  t0  sm +

p
2rm 

 

1+

r
m � 1
m

!

sm,

so the statement follows.
(ii) By (i) the polynomial Pm(y1, . . . , ym,t) 2 R[t] has no real roots in the

interval ] � 1, 0]. By 3.1.1(i) & (vi) Pm(y1, . . . , ym,t) is a monic polynomial of
even degree, so

lim
t!�1

Pm(y1, . . . , ym, t) = +1.

Consequently, Pm(y1, . . . , ym, 0) > 0.
(iii) We proceed by induction on m. For A1(y1) = y1 and A2(y1,y2) = y1y2

the statement is true by setting B0 = B1 = 1. Assume the statement true for m.
Then

Am+1(y1, . . . ,ym+1)

= Am(a1(y1,y2), . . . , am�1(y1, . . . ,ym), am(y1, . . . ,ym+1))

=

 
mY

k=1
ak(y1, . . . ,yk+1)

!

Bm�1(a1(y1,y2), . . . , am�1(y1, . . . ,ym))

=

 
m+1Y

k=1
yk

! 
mY

k=2
(y1 + · · · + yk)

!

Bm�1(a1(y1,y2), . . . , am�1(y1, . . . ,ym))

=

 
m+1Y

k=1
yk

!

Bm(y1, . . . ,ym),

where

Bm(y1, . . . ,ym)

:=

 
mY

k=2
(y1 + · · · + yk)

!

Bm�1(a1(y1,y2), . . . , am�1(y1, . . . ,ym)).

In addition, Am+1 is by induction a homogeneous polynomial of degree 2m (because
Am is a homogeneous polynomial of degree 2m�1 and each ai is a homogeneous
polynomial of degree 2) and the equality

Am+1(y1, . . . ,ym+1) = y1 · · ·ym+1Bm(y1, . . . ,ym)

shows that Bm(y1, . . . ,ym) is a homogeneous polynomial of degree 2m � (m+ 1).
Besides Bm 2 Z[y1, . . . ,ym] has non-negative coefficients by induction hypothesis
because each ai 2 Z[y1, . . . ,yi+1] has non-negative coefficients.
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(iv) We work by induction onm. Form = 1 the polynomial P1(y1,t) = t�y1
achieves the value �A1(y1) = �y1 for t1 := 0. For m = 2

P2(y1, y2,t) = (t� y1 � y2)2 � y1y2,

and this polynomial attains the value �A2(y1, y2) = �A1(a1(y1, y2)) = �y1y2
for t2 := y1 + y2.

Given yi � 0 for i = 1, . . . ,m, consider the non-negative values

a1(y1, y2), . . . , am(y1, . . . , ym+1).

Suppose by induction that there exists a real number

t 0m �
mX

i=1
ai (y1, . . . , yi+1)

such that

Pm
�
a1(y1, y2), . . . , am(y1, . . . , ym+1), t 0m

�

= �Am(a1(y1, y2), . . . , am(y1, . . . , ym+1)).
(3.4)

In particular, t 0m � 0 and

tm+1 :=
p
t 0m +

m+1X

i=1
yi �

m+1X

i=1
yi .

Using the definition of Pm+1 and (3.4) we have

Pm+1(y1, . . . , ym, ym+1, tm+1)

= Pm

0

@a1(y1, y2), . . . , am(y1, . . . , ym+1),

 

tm+1 �
m+1X

i=1
yi

!21

A

= Pm
�
a1(y1, y2), . . . , am(y1, . . . , ym+1), t 0m

�

= �Am(a1(y1, y2), . . . , am(y1, . . . , ym+1))

= �Am+1(y1, . . . , ym),

as required.

3.2. Modified Pecker’s polynomials

Fix m � 2 and denote

Cm :=

 

1�

r
m � 1
m

!

and `(m) := (m + 1)2m�1 � m2 + m.
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Consider the polynomial

Qm(y1, . . . ,ym,t)

:=

✓
t
Cm

+ ym

◆`(m)

(y1 · · ·ym)2
m�1

Pm
✓
y1, . . . ,ym�1,

1
y1 · · ·ym

,t
◆

.
(3.5)

Then:

(i) Qm(y1, . . . , ym, t2) � 0 if some yi  0. In addition,
�
Qm

�
y,t2

�
 0,ym = 1

 
⇢ {y1 > 0, . . . ,ym�1 > 0,ym = 1};

(ii) If each yi > 0, the polynomial Qm(y1, . . . , ym,t) achieves the value �1 at
some

t � y1 + · · · + ym�1 +
1

y1 · · · ym
.

Proof. (i) As `(m) is an even positive integer, the first factor of Qm is non-negative.
By 3.1.1 (i) and (vi)

Fm(y1, . . . ,ym,t) = (y1 · · ·ym)2
m�1

Pm
✓
y1, . . . ,ym�1,

1
y1 · · ·ym

,t
◆

is a polynomial of degree (m + 1)2m�1. Consider the projection ⇡m+1 : Rm+1 !
Rm, (y, t) ! y. By [24, Corollary 1, page 308] the hypersurface {Fm(y,t2) =
0} ⇢ Rm+1 projects under ⇡m+1 onto the open orthantQ := {y1 > 0, . . . ,ym > 0}.
Thus, for each t 2 R the polynomial Fm(y, t2) has empty zero-set on Rm \ Q. As
Rm \Q is connected and the origin 0 2 Rm \Q, we deduce Fm(y, t2) ·Fm(0, t2) > 0
for every y 2 Rm \ Q. By 3.1.1(i) & (vi) the polynomial Pm is homogeneous and
monic in each variable, so Fm(0, t2) = 1 > 0. Thus, Fm(y, t2) > 0 on Rm \ Q and
the first part of the statement follows.

If ym = 1, the first factor of Qm(y,t2) is strictly positive. We have proved
above that the factor Fm is strictly positive on (Rm \ Q) ⇥ R. Consequently,

�
Qm

�
y,t2

�
 0,ym = 1

 
⇢
�
Fm
�
y,t2

�
 0,ym = 1

 

⇢ {y1 > 0, . . . ,ym�1 > 0,ym = 1}.

(ii) Fix y := (y1, . . . , ym) 2 Q := {y1 > 0, . . . ,ym > 0}. By 3.1.2(iv) there exists

tm � y1 + · · · + ym�1 +
1

y1 · · · ym
(3.6)

such that

Pm
✓
y1, . . . , ym�1,

1
y1 · · · ym

, tm
◆

=�Am
✓
y1, . . . , ym�1,

1
y1 · · · ym

◆
. (3.7)
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By 3.1.2(iii) we can write

Am
✓
y1, . . . ,ym�1,

1
y1 · · ·ym

◆
=

Bm�1(y1, . . . ,ym�1)

ym
(3.8)

where Bm�1 2 Z[y1, . . . ,ym�1] is a homogeneous polynomial of degree 2m�1�m
with non-negative coefficients. Consider the rational functions

Qm,1(y1, . . . ,ym) :=

✓
y1 + · · · + ym +

1
y1 · · ·ym

◆2m�1

(y1 · · ·ym)2
m�1

Qm,2(y1, . . . ,ym) :=

✓
y1 + · · · + ym +

1
y1 · · ·ym

◆m(2m�1�m)

· Bm�1(y1, . . . ,ym�1)

Qm,3(y1, . . . ,ym) :=

✓
y1 + · · · + ym +

1
y1 · · ·ym

◆m 1
ym

.

We claim: Qm,1(y) > 1, Qm,2(y) � 1 and Qm,3(y) > 1.
The inequalities Qm,1(y) > 1 and Qm,3(y) > 1 are straightforward. We

proceed with Qm,2(y) � 1. As Bm�1 is a homogeneous polynomial of degree
2m�1 � m whose coefficients are non-negative integers, we write

Bm�1(y1, . . . ,ym�1) =
X

|⌫|=2m�1�m

a⌫y⌫11 · · ·y⌫m�1
m�1

where ⌫ := (⌫1, . . . , ⌫m�1) 2 (N[{0})m�1, |⌫| = ⌫1+· · ·+⌫m�1 and a⌫ 2 N[{0}.
Fix a⌫ 6= 0. By Lemma A.1(iii) and since ⌫1 + · · · + ⌫m�1 = 2m�1 � m, we

have
✓
y1 + · · · + ym +

1
y1 · · · ym

◆m(2m�1�m)

a⌫ y⌫11 · · · y⌫m�1
m�1

= a⌫
m�1Y

i=1

✓✓
y1 + · · · + ym +

1
y1 · · · ym

◆m
yi
◆⌫i

� a⌫ � 1.

Consequently, Qm,2(y) � 1, as claimed.
By (3.6) we have

tm
Cm

+ ym � tm + ym � y1 + · · · + ym +
1

y1 · · · ym
.

Therefore, by (3.7) and (3.8)

Qm(y, tm) =

✓
tm
Cm

+ ym
◆`(m)

(y1 · · · ym)2
m�1

Pm
✓
y1, . . . , ym�1,

1
y1 · · · ym

, tm
◆

 �Qm,1(y)Qm,2(y)Qm,3(y)  �1.
By 3.1.1(vi) limt!+1 Qm(y, t) ! +1. Thus, there exists t � tm for which
Qm(y, t) = �1, as required.
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3.3. Proof of Lemma 3.2

Consider the polynomial

Qg
�
x0,xn

�
:= g`0

m+1
�
x0�Qm+1

 

g1
�
x0�, . . . , gm

�
x0�, 1,

x2nCm+1

g2m+1(x
0)

!

, (3.9)

where Qm+1 is the polynomial constructed in 3.2, Cm+1 := 1 �
q

m
m+1 and `0 :=

2`(m + 1) + 2m+1 is large enough to guarantee that Qg is a polynomial.
(i) We have to show

{Qg  0} ⇢ A(g)Een \

⇢
|xn| > max

⇢
gm+1,

gm+1
pg1 · · · gm

��
.

By 3.2(i)

{Qg  0} =

(

Qm+1

 

g1, . . . , gm, 1,
x2nCm+1

g2m+1

!

 0

)

⇢ {g1 > 0, . . . , gm > 0} = A(g)Een.

We check now

{Qg  0} ⇢

⇢
|xn| > max

⇢
gm+1,

gm+1
pg1 · · · gm

��
. (3.10)

Fix (x 0, 0) 2 A(g). As Qg(x 0,xn) = Qg(x 0,�xn) and the leading coefficient of
Qg(x 0,xn) with respect to xn is positive, limxn!±1 Qg(x 0, xn) = +1.

By 3.1.1(iii) the univariate polynomial Qg(x 0,xn) has 2m real roots. As it
defines an even polynomial function and by 3.1.2(i) none of its roots is zero, 2m�1

of them are positive and 2m�1 are negative. Let r > 0 be the smallest of the positive
roots of Qg(x 0,xn). We have

Pm+1

 

g1
�
x 0�, . . . , gm

�
x 0�,

1
g1(x 0) · · · gm(x 0)

,
r2Cm+1

g2m+1(x 0)

!

= 0

and each gi (x 0) > 0. By 3.1.2(i) and Lemma A.1(i)

r2Cm+1

g2m+1
�
x 0
� � Cm+1

 
mX

i=1
gi
�
x 0�+

1
g1
�
x 0
�
· · · gm

�
x 0
�

!

� Cm+1 > 0.

Thus, r2 � g2m+1(x
0), so r � gm+1(x 0). In addition,

r2Cm+1

g2m+1
�
x 0
� �

Cm+1

g1
�
x 0
�
· · · gm

�
x 0
�  r �

gm+1
�
x 0
�

q
g1
�
x 0
�
· · · gm

�
x 0
� .
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Consequently,

r � max

8
<

:
gm+1

�
x 0�,

gm+1
�
x 0
�

q
g1
�
x 0
�
· · · gm

�
x 0
�

9
=

;
. (3.11)

3.3.1. We claim: if Qg(x 0, xn)  0 and xn � 0, then xn � r . As r is the smallest
positive real root of the univariate polynomial Qg(x 0,xn), it is enough to show:
Qg(x 0, 0) > 0.

This follows from 3.1.2(ii) because gi (x 0) > 0 for i = 1, . . . ,m and

Qg
�
x 0, 0

�
= g`0m+1

�
x 0�Qm+1

�
g1
�
x 0�, . . . , gm

�
x 0�, 1, 0

�

= g`0m+1
�
x 0��g1

�
x 0� · · · gm

�
x 0��2m

· Pm+1

 

g1
�
x 0�, . . . , gm

�
x 0�,

1
g1
�
x 0
�
· · · gm

�
x 0
� , 0

!

> 0.

By (3.11) and 3.3.1 the inclussion (3.10) holds.
(ii) If (x 0, 0) 2 A(g), we have g1(x 0) > 0, . . . , gm(x 0) > 0. By 3.2(ii) there

exists
t0 � g1

�
x 0�+ · · · + gm

�
x 0�+

1
g1
�
x 0
�
· · · gm

�
x 0
� > 0

such that Qm+1(g1(x 0), . . . , gm(x 0), 1, t0) = �1. Define t1 :=
q

t0
Cm+1

gm+1(x 0)

and observe

Qg
�
x 0, t1

�
= g`0m+1

�
x 0�Qm+1

�
g1
�
x 0�, . . . , gm

�
x 0�, 1, t0

�
= �g`0m+1

�
x 0� < �1.

As Qg(x 0, t1) < �1, we know by 3.3.1 that t1 > r . We have Qg(x 0, t1) < �1 <
Qg(x 0, r) = 0, so there exists r  t  t1 such that Qg(x 0, t) = �1.

(iii) Statements (i) and (ii) provide the first part of (iii) whereas 3.3.1 issues the
second part of (iii), as required

3.4. Consequences of Lemma 3.2

Let g := (g1, . . . , gm+1) 2 R[x0]m+1 be an admissible tuple of polynomials and
let us consider the corresponding polynomial Qg 2 R[x] introduced in Lemma 3.2
and the associated semialgebraic sets A(g) and S(g). The latter semialgebraic set
was introduced in Lemma 3.2, where we also proved some key properties of S(g).

Theorem 3.3. Let h 2 R[x0] be positive semidefinite onA(g) and let P 2 R[x] be
strictly greater than 1 on S(g). Assume in addition gm+1 > h on A(g). Define

f := ( f1, . . . , fn) : Rn ! Rn,

x :=
�
x 0, xn

�
7!

⇣
x 0, xn

�
1+ P(x)Qg(x)

�2
+ h

�
x 0� �P(x)Qg(x)

�2⌘
.
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We have:

(i) A(g)Een \ {xn � h(x0)} ⇢ f (S(g)) ⇢ A(g)Een \ {2xn � h(x0)}. In particular,
if h = 0, we have f (S(g)) = A(g)Ee+

n ;
(ii) Whenever xn � 0, P(x)Qg(x) � 0 and h(x 0) � 0, the inequality fn(x) � xn

holds. In particular, this happens if x 2 (A(g)Ee+
n \ S(g)) \ {P � 0};

(iii) If h(x 0)�0 and P(x 0,xn)�0 for xn large enough, then limxn!+1 fn(x 0, xn)=
+1.

Proof. (i) The polynomial map f preserves vertical lines.

3.4.1. We prove first: A(g)Een \ {xn � h(x0)} ⇢ f (S(g)).

3.4.2. Pick a point (x 0, 0) 2 A(g). We claim: the polynomial Qg(x 0,xn) has
degree `0 := 2`(m + 1) + 2m+1 and its leading coefficient is strictly positive.

By 3.1.1(i) and (vi), (3.5) and (3.9) the degree of Qg(x 0,xn) is `0 and its
leading coefficient is (Cm+1g1 · · · gm)2

m
> 0.

3.4.3. By Lemma 3.2(ii) there exist points p := (x 0, t) and q := (x 0, r) such
that t > r � gm+1(x 0) > 1, Qg(x 0, t) = �1 and Qg(x 0, r) = 0. In particular,
pEe+

n ⇢ S(g), so P is strictly greater than 1 on pEe+
n . Consider the polynomial

�x 0(xn) := 1+ P(x 0,xn)Qg(x 0,xn). We have

�x 0(r) = 1, �x 0(t) = 1+ P
�
x 0, t

�
Qg
�
x 0, t

�
< 0 and lim

xn!+1
�x 0(xn) = +1.

Consequently, there exists s2 ]r, t[ such that �x 0(s)=0, so [0,+1[⇢ �x 0([s,+1[).
Consider also the polynomial

'x 0(xn) := fn
�
x 0,xn

�
= xn�2x 0(xn) + h

�
x 0�(�x 0(xn) � 1)2

and observe that

'x 0(s) = h
�
x 0� and lim

xn!+1
'x 0(xn) = +1.

Thus, [h(x 0),+1[ ⇢ 'x 0([s,+1[) and
�
x 0 ⇥

�
xn � h

�
x 0� ⇢ f

�
pEe+

n
�

⇢ f (S(g)).

We conclude A(g)Een \ {xn � h(x0)} ⇢ f (S(g)).

3.4.4. Let us check next: f (S(g)) ⇢ A(g)Een \ {2xn � h(x0)}.
Pick a point (x 0, xn) 2 S(g). By Lemma 3.2(iii) (x 0, 0) 2 A(g) and xn >

gm+1(x 0) > h(x 0). Consider the polynomial  x 0(xn) := P(x 0,xn)Qg(x 0,xn), so
the last component of f can be rewritten as fn(x 0, xn) = xn(1 +  x 0(xn))2 +
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h(x 0) 2x 0(xn). As xn > h(x 0) � 0,

fn
�
x 0, xn

�
= xn +  2x 0(xn)

�
xn + h

�
x 0��+ 2 x 0(xn)xn

=

✓p
xn + h(x 0) x 0(xn) +

xn
p
xn + h(x 0)

◆2
+ xn �

✓
xn

p
xn + h(x 0)

◆2

� xn �

✓
xn

p
xn + h(x 0)

◆2
=

xnh(x 0)

xn + h(x 0)
=

h(x 0)

1+ h(x 0)
xn

�
h(x 0)

2
.

Consequently, f (S(g)) ⇢ A(g)Een \ {2xn � h(x0)}.
(ii) The statement follows from the required inequalities and the definition of

the coordinate function fn(x).
(iii) Pick x 0 2 Rn�1 such that h(x 0) � 0 and P(x 0, xn) � 0 for xn large enough.

If (x 0, 0) /2 A(g), then Qg(x 0,xn) is positive on {xn > 0}. By (ii) fn(x 0, xn) � xn
if xn is large enough, hence

lim
xn!+1

fn
�
x 0, xn

�
= +1.

If (x 0, 0) 2 A(g), the polynomial Qg(x 0,xn) has degree `0 := 2`(m + 1) + 2m+1

and its leading coefficient is strictly positive (see 3.4.2). Consequently,

lim
xn!+1

fn(x 0, xn) = +1,

as required.

Figure 3.2 illustrates the action of the polynomial map f in Theorem 3.3 on
the semialgebraic set S(g).

S(g)

f

A(g)

(a) (b)

A(g) A(g)

f(S(g)) f(S(g))

xn=h

2xn =h

Figure 3.2. Theorem 3.3: (a) Case h 6= 0. (b) Case h = 0.
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3.5. Lower dimensional semialgebraic sets

Fix 1  d  n � 2 and write y := (x1, . . . ,xd), z := (xd+1, . . . ,xn�1) and
x0 := (y,z), so that x := (x1, . . . ,xn) = (x0,xn) = (y,z,xn) and we identify
Rn ⌘ Rd⇥Rn�1�d⇥R. Let g1, . . . , gr 2 R[y] and let " > 0. Denote I" := ]�", "[
and set m := r + 2(n � 1� d). Given gm+1 2 R[x0] such that gm+1 > 1 on Rn�1,
consider the admissible tuple

ĝ" :=
�
g1, . . . , gr ,xd+1 + ", . . . ,xn�1 + ", " � xd+1, . . . , " � xn�1, gm+1

�

and the polynomial Qĝ" constructed in Lemma 3.2. Consider also the associated
semialgebraic sets A(ĝ"), S(ĝ") and

Ad(ĝ") := A(ĝ") \ {xd+1 = 0, . . . ,xn = 0}
= {g1 > 0, . . . , gr > 0,xd+1 = 0, . . . ,xn = 0} ⇢ Rn.

Recall that ECv� := {(v0, vn) 2 Rn : kv0k  �vn} is the vertical cone of radius � > 0
and given a set T ⇢ Rn the set Cv�(T ) := T + ECv� is the vertical cone of radius � > 0
over T .

Theorem 3.4. Let ", � > 0 and assume gm+1 � 1 + "
p
n�d�1
� . Let P 2 R[x] be

> 1 on S(ĝ"). For each k � 1 consider the polynomial map

fk : Rn ! Rn, x :=
�
x 0, xn

�
= (y, z, xn) 7! (y, A(x)z, Bk(x)xn),

where A := (1+ P2Qĝ")
2 and Bk := A+Ak

2 . We have:

(i) limxn!+1 Bk(x 0, xn)xn = +1 for each x 0 2 Rn�1;
(ii) S(ĝ") ⇢ Cv�(A

d(ĝ"));
(iii) Ad(ĝ")Ee+

n ⇢ fk(S(ĝ")) ⇢ Cv2�(A
d(ĝ"));

(iv) For each1 > 2� there exists k0 � 1 such that if k � k0 and x 2 Cv1(Ad(ĝ"))\
S(ĝ"), then fk(x) 2 Cv2�({x}).

Proof. (i) Pick x 0 2 Rn�1. If (x 0, 0) /2 A(ĝ"), then by Lemma 3.2(i) Qĝ"(x
0,xn)

is positive on {xn > 0} and limxn!+1 Bk(x 0, xn)xn = +1. If (x 0, 0) 2 A(ĝ"),
the polynomial Qg(x 0,xn) has positive degree and its leading coefficient is
strictly positive (see 3.4.2). In addition, by Lemma 3.2(iii) ⇡n(S(ĝ")) = A(ĝ"),
so limxn!+1 Bk(x 0, xn)xn = +1.

(ii) Pick a point x := (x 0, xn) := (y, z, xn) 2 S(ĝ"). By Lemma 3.2(iii) we
may write x = (y, z, rn + tn) where rn > 0, tn � 0 and Qĝ"(y, z, rn) = 0. By
Lemma 3.2(i) (y, z, rn) 2 A(ĝ")Een \ {xn � gm+1}, so (y, 0, 0) 2 Ad(ĝ") and
z 2 I n�d�1

" . Thus, kzk  "
p
n � d � 1. We claim: (0, z, xn) 2 ECv� .
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As (y, z, rn) 2 {xn � gm+1}, we deduce

�xn � �rn � �gm+1(y, z) � �
"
p
n � d � 1
�

= "
p
n � d � 1 � kzk = k(0, z)k,

so (0, z, xn) 2 ECv� and

(y, z, xn) = (y, 0, 0) + (0, z, xn) 2 Cv�(A
d(ĝ")).

(iii) We show first: Ad(ĝ")Ee+
n ⇢ fk(S(ĝ")).

Pick a point p := (y, 0, 0) 2 Ad(ĝ"). By Lemma 3.2(ii) there exist values
0 < gm+1(x 0)  r < t such that Qĝ"(y, 0, r) = 0 and Qĝ"(y, 0, t) = �1. As
(y, 0, r) 2 {Qĝ" = 0,xn > 0}, we deduce (y, 0, r), (y, 0, t) 2 S(ĝ"). Define
�y(xn) := A(y, 0,xn) = 1+ P2(y, 0,xn)Qĝ"(y, 0,xn) and observe

�y(r) = 1 and �y(t) < 0. (3.12)

Thus, there exists s 2 ]r, t[ such that �y(s) = 0. If we set q := (y, 0, s) 2
S(ĝ"), then A(q) = 0 and Bk(q) = 0, so fk(q) = p. In addition, q Ee+

n ⇢
S(ĝ"). As fk(q) = p, the polynomial map fk preserve vertical lines and by (i)
limxn!+1 Bk(y, 0, xn)xn = +1, we deduce

pEe+
n ⇢ fk

�
q Ee+

n
�

⇢ fk
�
S(ĝ")

�
,

hence Ad(ĝ")Ee+
n ⇢ fk(S(ĝ")).

3.5.1. We prove next: fk(S(ĝ")) ⇢ Cv2�(A
d(ĝ")). Pick a point x := (y, z, xn) 2

S(ĝ") and let us check: (0, z, xn) 2 ECv� .
By (ii) (y, z, xn) 2 S(ĝ") ⇢ Cv�(A

d(ĝ")), so we write (y, z, xn) = (y0, 0, 0) +

(y1, z, xn) where (y0, 0, 0) 2 Ad(ĝ") and (y1, z, xn) 2 ECv� . Consequently,

�xn � k(y1, z)k � kzk = k(0, z)k

and (0, z, xn) 2 ECv� .

3.5.2. We show next: (0, A(x)z, Bk(x)xn) 2 ECv2� .
Observe that

A(x)
2Bk(x)

=
A(x)

A(x) + Ak(x)
=

1
1+ Ak�1(x)

 1.

As (0, z, xn) 2 ECv� ,

2�Bk(x)xn � 2Bk(x)k(0, z)k � A(x)k(0, z)k = k(0, A(x)z)k,

hence (0, A(x)z, Bk(x)xn) 2 ECv2� .
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As (y, 0, 0) 2 Ad(ĝ"), we conclude

fk(x) = fk(y, z, xn) = (y, 0, 0) + (0, A(x)z, Bk(x)xn) 2 Cv2�(A
d(ĝ")).

(iv) Take a point x := (x 0, xn) := (y, z, xn) 2 Cv1(Ad(ĝ")) \ S(ĝ"). We claim:
(0, z, xn) 2 ECv1.

Write x = (y1 + y2, z, xn) where (y1, 0, 0) 2 Ad(ĝ") and (y2, z, xn) 2 ECv1.
This implies that 1xn � k(y2, z)k � kzk = k(0, z)k, hence (0, z, xn) 2 ECv1.

As xn � 0 and x /2 S(ĝ"), we deduce Qĝ"(x) > 0. We have

fk(x) � x = (0, (A(x) � 1)z, (Bk(x) � 1)xn).

Let us write

A � 1 = 2P2Qĝ" + P4Q2ĝ" ,

Bk � 1 =
1
2

 

2P2Qĝ" + P4Q2ĝ" +
2kX

`=1

✓
2k
`

◆
�
P2Qĝ"

�`
!

.

Consequently, on {Qĝ" > 0}

Bk � 1
A � 1

=

2+ 2k +
⇣
1+

�2k
2
�⌘
P2Qĝ" +

2kP

`=3

�2k
`

��
P2Qĝ"

�`�1

4+ 2P2Qĝ"

�
2+ 2k + (1+ k(2k � 1))P2Qĝ"

4+ 2P2Qĝ"

�
k + 1
2

.

Let k0 � 1 be such that k0 + 1 � 1
� . For k � k0

Bk � 1
A � 1

�
k + 1
2

�
1

2�
.

By 3.5.1 (0, z, xn) 2 ECv� ⇢ ECv1. Thus, 1xn � k(0, z)k, so for k � k0

2�(Bk(x)�1)xn�(Bk(x)�1)
2�
1

k(0,z)k�(A(x)�1)k(0,z)k=k(0,(A(x)�1)z)k,

because A(x)�1 � 0 (recall that Qĝ"(x) > 0). Therefore, (0, (A(x)�1)z, (Bk(x)�
1)xn) 2 ECv2� , so fk(x) � x 2 ECv2� , as required.

Figure 3.3 illustrates the behavior of the polynomial map fk for k large enough.



540 JOSÉ F. FERNANDO, JOSE MANUEL GAMBOA AND CARLOS UENO

εε εε

A(ĝε)

C vδ (A
d(ĝ

ε ))C v∆ (A d(̂g
ε ))

S(ĝε)

Q
ĝε

=
0

x

A(ĝε)

fk(S(ĝε))

A
d (

ĝ ε
)⃗e

+ n

x

fk(x)

Cv
2δ({x})C v2δ (A

d(̂g
ε ))C v∆ (A d(̂g

ε ))fk

Figure 3.3. Behavior of the polynomial map fk (Theorem 3.4).

4. Convex polyhedra as polynomial images of Rn

The purpose of this section is to prove Theorem 1.1. We prove first this result for
pointed cones, that is, unbounded convex polyhedra K ⇢ Rn with only one vertex
p. In such caseK = {p} + EC(K).

Proof of Theorem 1.1 for pointed cones. Assume K is a pointed cone with vertex
p and denote Cp := K for the sake of clearness. Let H be a hyperplane such that
Cp \ H = {p}. Let H 0 be a hyperplane parallel to H such that P := H 0 \ Cp is a
bounded convex polyhedron of dimension n�1 (see [13, Lemma 3.2]). Assume p is
the origin, H := {xn = 0} and H 0 := {xn = 1}. By [9, Theorem 1.2] there exists a
regular map g := (g1, . . . , gn�1, 1) : Rn�1 ! Rn�1⇥ {1} such that g(Rn�1) = P.
Write gi := hi

h0 where h0, hi 2 R[x0] and h0 is strictly positive on Rn�1. Consider
the polynomial map

f : Rn ! Rn,
�
x 0, xn

�
7! x2nh

�
x 0�,

where h := (h1, . . . , hn�1, h0). We claim: f (Rn) = Cp.
Pick a point y 2 Cp and consider the vector Ev :=

�!
0y and the ray 0Ev +. Observe

that 0Ev + ⇢ Cp and the intersetion H 0 \ 0Ev+ =: {z} ⇢ P is a singleton. Thus,
there exist x 0 2 Rn�1 such that g(x 0) = z and � � 0 such that y = �z. Denote
xn :=

q
�

h0(x 0) and observe that

f
�
x 0, xn

�
=

�

h0
�
x 0
�h
�
x 0� = �g

�
x 0� = �z = y.
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Consequently, Cp ⇢ f (Rn). Conversely, if x 2 Rn , then

f (x) = x2nh
�
x 0� = x2nh0

�
x 0� h

�
x 0
�

h0
�
x 0
� = x2nh0

�
x 0�g

�
x 0�.

As x2nh0(x 0) � 0 and g(x 0) 2 Cp, we conclude f (x) 2 Cp because Cp is a cone
with vertex the origin. Thus, f (Rn) = Cp, as required.

We divide the proof of Theorem 1.1 for the general case into three parts. The
rest of the section is devoted to prove them. As a degenerate convex polyhedron
K ⇢ Rn can be written in suitable coordinates as K = P ⇥ Rk where P is a non-
degenerate convex polyhedron, it is enough to approach the non-degenerate case. If
k � n � 1, thenK is either Rn or a half-space, so it is trivially a polynomial image
of Rn . Thus, we assume in addition n � 2. Let K ⇢ Rn be an n-dimensional
non-degenerate convex polyhedron whose recession cone has dimension n. Let X
be the union of the affine subspaces of Rn spanned by the faces ofK of dimension
n � 2. We will prove the following statements.

Proposition 4.1. There exists a polynomial map h : Rn ! Rn such that h(Rn) =
K \ X .

Proposition 4.2. There exists a polynomial map g : Rn ! Rn such that g(K \
X) = K.

Corollary 4.3. There exists a polynomial map f : Rn+1!Rn such that f (Rn+1)=
Int(K).

4.1. Proof of Proposition 4.1

Take a point p 2 Int(K). Consider the pointed cone Cp := {p} + EC(K) ⇢ Int(K).
We have already proved that Cp is a polynomial image of Rn , so it is enough to
show that K \ X is a polynomial image of Cp. The idea here is to use Cp as a
seed to fill the polyhedron K by means of a sequence of polynomial maps whose
images make Cp grow until we obtain K \ X . We start by placing the polyhedron
K in a convenient position (using affine changes of coordinates) in order to make
our arguments clearer.

Denote the facets ofKwith F1,. . . , Fr . By Lemma 2.7 there exist Ev1, . . . , Evs 2
Rn such that

s\

k=1
X Evk = X and Evl 2 Int(EC(K)) \

l�1[

k=1

EX Evk . (4.1)
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4.1.1. AssumeK is placed in Rn so thatK ⇢ {xn � 0} and Ev1 = Een 2 Int(EC(K)).
Thus, K has no vertical facets. Let Z ⇢ Rn denote a finite union of non-vertical
hyperplanes W` := {w` = 0}, where w` denotes a linear equation of W` such that
w`(Een) > 0 for each `. This type of sets will be useful for the inductive process.
Choose a facet Fi of K and let hi (x0,xn) = hi (x0, 0) + xn = 0 be a non-zero
linear equation for the (non-vertical) hyperplane spanned by Fi . The affine change
of coordinates

�i : Rn ! Rn,
�
x 0, x

�
7!

�
x 0, hi

�
x 0, 0

�
+ xn

�

maps Fi onto ⇡n(Fi ) ⇢ {xn = 0} and keeps the vector Een invariant. To lighten the
presentation we preserve the notations for all our geometric objects after applying
the affine change of coordinates �i . Write

Fi := {gi,1 � 0, . . . , gi,m � 0,xn = 0},

where each gi, j is a non-zero linear polynomial. Let Pi := Pi,Z be the square of
the product of non-zero linear equations of the hyperplanes containing the facets
of K, the hyperplanes containing the facets of Cp and the hyperplanes W`. By
Proposition 2.10 there exists gi,m+1 2 R[x0] strictly greater than 1 on Rn�1 such
that

{xn � gi,m+1} ⇢ Cp \ {Pi > 1}.
Let gi := (gi,1, . . . , gi,m, gi,m+1). By Lemma 3.2 there exist a polynomial Qgi
such that the semialgebraic setsA(gi ) = Int(Fi ) and S(gi ) = {Qg  0,xn > 0}Een
satisfy

S(gi ) ⇢ A(gi )Een \ {xn � gi,m+1} ⇢ A(gi )Een \ Cp \ {Pi > 1}. (4.2)

Consider now the polynomial map

fi := fi,Z :=( fi1, . . . , fin) :Rn!Rn, x :=
�
x 0, xn

�
7!
⇣
x 0, xn

�
1+ Pi (x)Qgi (x)

�2⌘
.

4.1.2. We claim:

(i) fi (F j Ee+
n \X) = F j Ee+

n \X and fi (Int(F j )Ee+
n ) = Int(F j )Ee+

n for j = 1, . . . , r .
In addition, fi (K \ X) = K \ X ;

(ii) fi (Cp) = Int(Fi )Ee+
n [ Cp;

(iii) fi |Z = idZ .

Let us prove the previous statements:
(i) By Proposition 2.6 ⇡n|@K : @K ! Rn�1 ⇥ {0} is a semialgebraic home-

omorphism, so K =
Sr

j=1 F j Ee+
n and K \ X =

Sr
j=1 F j Ee+

n \ X . Thus, once we
prove the first part of the statement we will have in addition the second.

Pick a point x := (x 0, xn) 2 F j ⇢ @K for some j = 1, . . . , r . If j 6= i , then
⇡n(x) /2 Int(Fi ) = A(gi ), so Qgi is by Lemma 3.2 strictly positive on x Ee+

n . Thus,
for each (x 0, t) 2 x Ee+

n we have

fin
�
x 0, t

�
= t

�
1+ Pi

�
x 0, t

�
Qgi

�
x 0, t

��2
� t � xn.
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As fi (x) = x , we have fi (x Ee+
n ) = x Ee+

n and fi (Int(x Ee+
n )) = Int(x Ee+

n ). Conse-
quently,

fi
�
F j Ee+

n \ X
�

= F j Ee+
n \ X and fi

�
Int
�
F j
�
Ee+
n
�

= Int
�
F j
�
Ee+
n .

Assume now j = i . As @Fi = Fi \
S

j 6=i F j , we have
�
@Fi

�
Ee+
n \ X =

[

j 6=i

�
Fi \ F j

�
Ee+
n \ X.

As fi preserves vertical lines,

(@Fi )Ee+
n \ X =

[

j 6=i
fi ((Fi \ F j )Ee+

n \ X) = fi

 
[

j 6=i
(Fi \ F j )Ee+

n \ X

!

= fi ((@Fi )Ee+
n \ X).

To finish it is enough to check fi (Int(Fi )Ee+
n ) = Int(Fi )Ee+

n . By Theorem 3.3(i)
and (4.2)

Int(Fi )Ee+
n =A(gi )Ee+

n = fi (S(gi ))⇢ fi
�
A(gi )Ee+

n
�
= fi

�
Int(Fi )Ee+

n
�
⇢ Int(Fi )Ee+

n .

The latter inclusion follows because fi preserves vertical lines and fi ({xn � 0}) ⇢
{xn � 0}.

(ii) As Een 2 Int(EC(K)) = Int(EC(Cp)), the restriction map ⇡n|@Cp : @Cp !

Rn�1 ⇥ {0} is by Proposition 2.6 a semialgebraic homeomorphism. Consequently,
Cp = @Cp Ee+

n . Pick x := (x 0, xn) 2 @Cp. If y := ⇡n(x) /2 A(gi ), then Qgi (x 0, t) >
0 for t � xn by Lemma 3.2, so

fin
�
x 0, t

�
= t

�
1+ Pi

�
x 0, t

�
Qgi

�
x 0, t

��2
� t � xn

for (x 0, t) 2 x Ee+
n . As fi (x) = x , we deduce fi (x Ee+

n ) = x Ee+
n . Thus,

fi
�
Cp \ A(gi )Ee+

n
�

= Cp \ A(gi )Ee+
n = Cp \ Int(Fi )Ee+

n .

By Theorem 3.3(i), (4.2) and (i)

Int(Fi )Ee+
n = A(gi )Ee+

n = fi (S(gi )) ⇢ fi
�
A(gi )Ee+

n \ Cp
�

= fi
�
Int(Fi )Ee+

n \ Cp
�

⇢ Int(Fi )Ee+
n .

Consequently,

fi (Cp) = fi
�
Cp \ A(gi )Ee+

n
�
[ fi

�
A(gi )Ee+

n \ Cp
�

=
�
Cp \ Int(Fi )Ee+

n
�
[ Int(Fi )Ee+

n = Cp [ Int(Fi )Ee+
n .

(iii) This is immediate because Pi vanishes identically on the hyperplanes contained
in Z .

Figure 4.1 illustrates how the polynomial map f1 acts on the cone Cp.
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Cp

f1

K K f1(Cp)

p

A(g1) A(g1)

Figure 4.1. Behavior of the polynomial map f1 over Cp.

4.1.3. Fix 1  k  s and considerK placed inRn (by means of an affine change of
coordinates  k) so thatK ⇢ {xn � 0} and Evk = Een . We preserve the names for all
our geometric objects after applying the change of coordinates  k . Set Xl := X Evl
and Zk�1 :=

Sk�1
l=1 Xl , which are unions of hyperplanes because each (n�2)-affine

subspace in X is parallel to none of the vectors Ev j . In addition, each hyperplane in
Zk�1 is not parallel to Evk (see 4.1). For each i = 1, . . . , r consider the affine change
of coordinates �i described in 4.1.1 and the polynomial map fi,k := fi,Z introduced
in 4.1.2 taking Z := �i (Zk�1) and Z0 = ?.

Define the polynomial map

Fk := f̂r,k � · · · � f̂1,k where f̂i,k := ��1
i � fi,k � �i .

We claim:

(i) Cp [ (K \ Xk) = Fk(Cp) for 1  k  s;
(ii) Cp [ (K \

Tk
j=1 X j ) ⇢ Fk(Cp [ (K \

Tk�1
j=1 X j )) and Fk(K \ X) = K \ X for

1  k  s.

To prove (i) we use recursively 4.1.2. Indeed,

Fk(Cp) =
�
f̂r,k � · · · � f̂2,k

��
f̂1,k(Cp)

�
=
�
f̂r,k � · · · � f̂2,k

��
Cp [ Int(F1)Ee+

n
�

= · · · = Cp [ Int(Fr )Ee+
n [ · · · [ Int(F1)Ee+

n = Cp [
�
K \ X Ee+

n
�

= Cp [ (K \ Xk).

Figure 4.2 shows the action of polynomial map F1 on the cone Cp.
We show now (ii). As each polynomial map f̂i appearing in the definition of

Fk satisfies by 4.1.2 (i) f̂i (K \ X) = K \ X , we have Fk(K \ X) = K \ X . By
4.1.2(iii) f̂i,k |Zk�1 = idZk�1 for i = 1, . . . , r . As Xi ⇢ Zk�1 for i = 1, . . . , k � 1,
we have f̂i,k |Tk�1

j=1 X j
= idTk�1

j=1 X j
, so Fk(Y ) \

Tk�1
j=1 X j ⇢ Fk(Y \

Tk�1
j=1 X j ) for
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Cp F1(Cp)

F1

K K

p p

Figure 4.2. Behavior of the polynomial map F1 over Cp.

each Y ⇢ Rn . As X ⇢
Tk�1

j=1 X j , we deduce by 4.1.2

Fk

 

Cp [

 

K \
k�1\

j=1
X j

!!

= Fk(Cp) [ Fk

  

(K \ X) \
k�1\

j=1
X j

!!

� (Cp [ (K \ Xk)) [

 

Fk(K \ X) \
k�1\

j=1
X j

!

= (Cp [ (K \ Xk)) [

 

(K \ X) \
k�1\

j=1
X j

!

= Cp [

 

K \
k\

j=1
X j

!

.

4.1.4. Let us finish the proof of Proposition 4.1. Define for k = 1, . . . , s the poly-
nomial map

F̂k :=  �1
k � Fk �  k : Rn ! Rn.

As Cp is a pointed cone, we have already constructed a polynomial map h0 : Rn !
Rn such that h0(Rn) = Cp. We claim: the polynomial map

h := F̂s � · · · � F̂1 � h0

satisfies h(Rn) = K \ X . It is enough to show: (F̂s � · · · � F̂1)(Cp) = K \ X .
Using recursively 4.1.3 we deduce

Cp [ (K \ X1) = F̂1(Cp) ⇢ K \ X

Cp [ (K \ (X1 \ X2)) ⇢ (F̂2 � F̂1)(Cp) ⇢ K \ X
...

Cp [

 

K \
s\

j=1
X j

!

⇢ (F̂s � · · · � F̂1)(Cp) ⇢ K \ X.



546 JOSÉ F. FERNANDO, JOSE MANUEL GAMBOA AND CARLOS UENO

To illustrate this process Figure 4.3 shows how F̂2 acts on F̂1(Cp). As

K \

 
s\

j=1
X j

!

= K \ X

and Cp ⇢ K \ X ,

K \ X = Cp [

 

K \

 
s\

j=1
X j

!!

⇢ (F̂s � · · · � F̂1)(Cp) ⇢ K \ X,

so h(K \ X) = K \ X , as required.

Cp

Change of
coordinates

ψ2
p

Cp

p

Z2

F2F̂2

Change of
coordinates

ψ−1
2

Cp

pp

Cp

Figure 4.3. Behavior of the polynomial map F̂2.

4.2. Proof of Proposition 4.2

Let E be a face ofK of dimension d  n�2. We write x := (x 0, xn) := (y, z, xn) 2
Rd ⇥ Rn�d�1 ⇥ R. Assume K \ {xn = 0} = E, K ⇢ {xn � 0} and Een 2
Int(EC(K)). Write Int(E) := {g1 > 0, . . . , gr > 0} ⇥ {0} ⇢ Rd ⇥ {0} where each
gi 2 R[y] := R[x1, . . . ,xd ]. By Proposition 2.5 there exist positive numbers �,1
such that ECv2� \ {0} ⇢ Int(EC(K)) and Cv2�(E) ⇢ K ⇢ Cv1(E). As Een 2 Int(EC(K)),
the hyperplanes spanned by the facets of K are non-vertical. Let P 2 R[x] be the
product of linear equations of these hyperplanes, so @K ⇢ {P = 0}. Fix " > 0. By
Proposition 2.10 there exists g 2 R[x0] such that g > 1 + "

p
n�d�1
� on Rn�1 and
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{xn � g} ⇢ {P > 1}. Denote I" := ]�",+"[ and consider the admissible tuple of
polynomials

ĝ" = (g1, . . . , gr ,xd+1 + ", . . . ,xn�1 + ", " � xd+1, . . . , " � xn�1, g).

If we write m := r + 2(n� 1� d), then ĝ" consists of m+ 1 polynomials. Rename
gm+1 := g. The admisible tuple ĝ" has associated a polynomial Qĝ"

constructed
in Lemma 3.2 and semialgebraic sets A(ĝ"), S(ĝ") and Ad(ĝ") provided in 3.5.
Observe that Int(E) = Ad(ĝ"). By Lemma 3.2 S(ĝ") ⇢ {xn � gm+1} ⇢ {P > 1}.
For each k � 1 consider the polynomial map

fk : Rn ! Rn, x := (x 0, xn) = (y, z, xn) 7! (y, A(x)z, Bk(x)xn),

where A := (1 + P2Qĝ"
)2 and Bk := A+Ak

2 . Note that ", �,1 > 0, gm+1, ĝ"

and P satisfy the hypotheses of Theorem 3.4. Let k0 � 1 be the positive integer
constructed in Theorem 3.4(iv).

4.2.1. Main claim:

Let T be a semialgebraic set such that K \ X ⇢ T ⇢ K. For k � k0

fk(T) = T [ Int(E) ⇢ K. (4.3)

To show (4.3) we prove the following facts for k � k0:

Fact 1. fk(T) \ Int(T) = (T \ Int(T)) [ Int(E).

Fact 2. Int(T) ⇢ fk(Int(T)).

Once they are proved and since Int(T) = Int(K), we conclude

fk(T) = ( fk(T) \ Int(K)) [ ( fk(T) \ Int(K))

= (T \ Int(K)) [ Int(E) [ Int(K) = T [ Int(E)

and equality fk(T) = T [ Int(E) follows.

4.2.2. Proof of Fact 1

We show first: (T \ Int(T)) [ Int(E) ⇢ fk(T) \ Int(T).
As ECv� \ {0} ⇢ Int(EC(K)), Theorem 3.4(ii) provides

S(ĝ")⇢Cv�(A
d(ĝ")) \ {xn > 0} ⇢ Int(E) + Int(EC(K)) ⇢ Int(K)= Int(T) ⇢ T.

By Theorem 3.4(iii) the inclusion Int(E) ⇢ fk(S(ĝ")) ⇢ fk(T) holds for k � 1,
hence

Int(E) = Int(E) \ Int(T) ⇢ fk(T) \ Int(T). (4.4)

As fk |T\Int(T) = idT\Int(T) because @T ⇢ {P = 0},

T \ Int(T) = fk(T \ Int(T)) ⇢ fk(T)  T \ Int(T) ⇢ fk(T) \ Int(T) (4.5)
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and the inclusion (T \ Int(T)) [ Int(E) ⇢ fk(T) \ Int(T) follows from (4.4) and
(4.5).

To prove fk(T) \ Int(T) ⇢ (T \ Int(T)) [ Int(E), pick a point x 2 T such
that fk(x) 62 Int(T). If x 2 T \ Int(T), then fk(x) = x 2 T \ Int(T) because
fk |T\Int(T) = idT\Int(T). If x 2 Int(T), then x 2 S(ĝ").

Otherwise, as Int(T)⇢Cv1(Int(E)), we deduce by Theorem 3.4(iv) that fk(x)2
Cv2�({x}) ⇢ {x} + Int(EC(K)) ⇢ Int(K) = Int(T), which is a contradiction.

As x 2 S(ĝ"), we have by Theorem 3.4(iii)

fk(x) 2 fk(S(ĝ")) ⇢ Cv2�(Int(E)) ⇢ Int(E) + Int(EC(K)) ⇢ Int(E) [ Int(T),

so fk(x) 2 Int(E). Therefore, the inclusion fk(T) \ Int(T) ⇢ (T \ Int(T)) [ Int(E)
holds, as required.

4.2.3. Proof of Fact 2

As Int(T) = Int(K), we have to check: Int(K) ⇢ fk(Int(K)). Its proof is long and
requires a topological argument based on a result by Janiszewski [20].

Pick a point x0 := (x 0
0, x0n) := (y0, z0, x0n) 2 Int(K), so x0n > 0. If

z0 = 0, consider the intersection x0Een \ K = x1Ee+
n , where the point x1 :=

(y0, 0, r) 2 @K must satisfy 0  r < x0n and x0Een \ Int(K) = Int(x1Ee+
n ).

As A|@K = 1, we have Bk(y0, 0, r)r = A(y0,0,r)+Ak(y0,0,r)
2 r = r . By Theo-

rem 3.4(i) limxn!+1 Bk(y0, 0, xn)xn = +1. As r < x0n , there exists s > r
such that Bk(y0, 0, s)s = x0n , so fk(y0, 0, s) = (y0, 0, x0n) = x0. Note that
(y0, 0, s) 2 Int(K), so x0 2 fk(Int(K)).

4.2.3.1. By Fact 1 for T = K we have fk(K) \ Int(K) = (K \ Int(K))[E ⇢ K, so
fk(K) ⇢ K.

4.2.3.2. We assume next that z0 6= 0 and let us prove: there exists x1 2 Int(K) such
that fk(x1) = x0 for each k � k0.

The proof of 4.2.3.2 is conducted in several steps.

4.2.3.3. Consider the 2-dimensional plane 5 determined by the points (y0, 0, 0),
(y0, 0, x0n) and x0. Let us show: fk(P) ⇢ P where P := K \5.

As fk(x) = fk(y, z, xn) = (y, A(x)z, Bk(x)xn) for x := (y, z, xn), we have
fk(5) ⇢ 5. Since fk(K) ⇢ K, it holds

fk(P) = fk(K \5) ⇢ fk(K) \ fk(5) ⇢ K \5 = P.

4.2.3.4. Set coordinates (u, v) in5 with respect to the affine reference

R :=

⇢
O := (y0, 0, 0); Ew1 =

✓
0,

z0
kz0k

, 0
◆

, Ew2 = (0, 0, 1)
�

.
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Observe that O + u Ew1 + v Ew2 = (y0, z0
kz0ku, v) and

fk
�
O + u Ew1 + v Ew2

�
=

✓
y0, A

✓
y0,

z0
kz0k

u, v
◆

z0
kz0k

u, Bk
✓
y0,

z0
kz0k

u, v
◆

v

◆

⌘

✓
↵(u, v)u,

↵(u, v) + ↵(u, v)k

2
v

◆

R
,

where ↵(u,v) := A(y0, z0
kz0ku,v) 2 R[u,v]. Consider the polynomial map

Gk := (Gk1,Gk2) : R2 ! R2, (u, v) 7!

✓
↵(u, v)u,

↵(u, v) + ↵(u, v)k

2
v

◆
.

Note that x0 ⌘ (kz0k, x0n)R =: (a, b)R, so a, b > 0. Consider the algebraic curve

Ya := {↵(u,v)u� a = 0} = G�1
k1 (a) ⇢ {u > 0}.

4.2.3.5. We claim: r := max{"
p
n � d � 1, a} � u0 for each (u0, v0) 2 Ya .

If u0 > a, then ↵(u0, v0) < 1. As P2 is the square of a polynomial,

Qĝ"

✓
y0,

z0
kz0k

u0, v0
◆

< 0.

By Lemma 3.2 we have (y0, z0
kz0ku0, 0)2A(ĝ"). In particular, z0

kz0ku0 2 I n�d�1
" , so

u0  k(", (n�d�1). . . , ")k = "
p
n � d � 1  r.

4.2.3.6. Consider the convex polygon P0 := P\ {0  u  r + 1} and the singleton
{q} := @P0 \ {u = a}. Write q := (a, c)R. Let us check: Ya \ @P0 = {q}.

As5meets Int(K), we have @P = @K\5. As Ya\({u = 0}[{u = r+1}) =
?, then

Ya \ @P0 ⇢ Ya \ @P ⇢ Ya \ @K ⇢ Ya \ {P = 0} ⇢ Ya \ {↵ = 1} = Ya \ {u = a}.

Thus, Ya \ @P0 = Ya \ @P0 \ {u = a} ⇢ {q}. As q 2 @P0 \ ({u = 0} [ {u =
r + 1}) ⇢ @K, we have ↵(a, c) = A(q) = 1. As q 2 {u = a} \ {↵(u,v) = 1}, we
conclude q 2 Ya , so Ya \ @P0 = {q}.

4.2.3.7. Given a connected topological space T and different points p, q 2 T , we
say that K ⇢ T separates p and q if these points belong to different connected
components of T \ K . Given S ⇢ R2, we say that S is “upperly unbounded” to
refer that it is unbounded in the direction of the second coordinate. We claim: There
exists an upperly unbounded connected component Z of Ya \P0 passing through q
such that Z \ {q} ⇢ Int(K).
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v=M
4

v=M
u=a

q
0

M
3

M
2

2M
3

u= 0 u=r+ 1

Z1

Zℓ

P
P′
0

Ya∩P0

Figure 4.4. Description of the fake situation.

To prove this claim we will make use of Janiszewski’s Theorem (see [20] or [4,
Theorem A]): If K1 and K2 are compact subsets of the planeR2 whose intersection
is connected, a pair of points that is separated by neither K1 nor K2 is neither
separated by their union K1 [ K2. The proof of our claim is conducted in several
steps:

Step 1. The line {u = 0} ⇢ {↵(u,v)u � a < 0} and the line {u = r + 1} ⇢
{↵(u,v)u� a > 0}.

The first inclusion is clear. To prove the second denote ⇣(u,v) := ↵(u,v)u�a
and observe that if ⇣(r + 1, v)  0, then ↵(r + 1, v) < 1. As P2 is the square of a
polynomial, we deduce Qĝ"(y0,

z0
kz0k (r + 1), v) < 0. By Lemma 3.2 we have

✓
y0,

z0
kz0k

(r + 1), 0
◆

2 A(ĝ").

In particular, z0
kz0k (r + 1) 2 I n�d�1

" and

r + 1 
�
�(", (n�d�1). . . , ")

�
� = "

p
n � d � 1  r,

a contradiction. Consequently, {u = r + 1} ⇢ {↵(u,v)u� a > 0}.

Step 2. Let M > 0 be such that all the vertices of P0 and all the upperly bounded
connected components of Ya \P0 are contained in {v < M

4 }. Consider the compact
convex polygon P0

0 := P0 \ {v  M} ⇢ [0, r + 1]⇥ [0,M]. Let Z1, . . . , Z` be the
connected components of Ya \ P0. Suppose that none of them meets both @P0 and
{v = M} (see Figure 4.4). Assume Z1, . . . , Zs are the upperly bounded connected
components of Ya \ P0 and Zs+1, . . . , Z` are the remaining ones, so they meet
{v = M} but they do not meet @P0. Define K1 := (@P0 \ {v  M

4 }) [
Ss

i=1(Zi \

P0
0) and K2 := @P0

0 [
S`

i=s+1(Zi \ P0
0) (see Figures 4.5 and 4.6). Observe that
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K1 \ K2 = @P0 \ {v  M
4 } is connected. Consider the positive real number

✏ :=min

(

dist
✓
K1, @P0

0\

⇢
v�

M
3

�◆
, dist

 
[̀

i=s+1
(Zi \ P0

0), @P
0
0 \

n
v  2M

3

o
!)

.

Let 0 < ⇢ < ✏
2 be such that q1 := (⇢, M2 ) 2 {⇣ < 0} and q2 := (r + 1� ⇢, M2 ) 2

{⇣ > 0}.
We have ⇣(q1) < 0 and ⇣(q2) > 0. Consequently, K1[ K2 = (Ya \P0

0)[ @P0
0

separates the points q1 and q2.

u=a

q
0

M
3

M
2

2M
3

u= 0 u=r+ 1

Z1

P
P ′
0

K1

W2

q
1

q2

Figure 4.5. Positions of K1 and W2.

u=a

q
0

M
3

M
2

2M
3

u= 0 u=r+ 1

Zℓ

P
P ′
0

K2

W1

q1 q2

Figure 4.6. Positions of K2 and W1.

Step 3. Let us check: neither K1 nor K2 separates the points q1 and q2.

The points q1, q2 belong to both open connected subsets

W1 :=

⇢
p 2 Int(P0

0) : 0 < dist
✓
p,
✓
@P0

0 \

⇢
v 

2M
3

�◆◆
<
✏

2

�
,

W2 :=

⇢
p 2 Int(P0

0) : 0 < dist
✓
p,
✓
@P0

0 \

⇢
v �

M
3

�◆◆
<
✏

2

�

of Int(P0
0) whereas K1 \ W2 = ? and K2 \ W1 = ?. Thus, q1, q2 are separated

neither by K1 nor by K2, which contradicts Janiszewski’s theorem.

Step 4. Consequently, there exists a connected component Z j of Ya \ P0 that
meets both @P0 and the line {v = M}, as shown in Figure 4.7. As all the upperly
bounded connected components are contained in {v < M

4 }, we deduce Z j is upperly
unbounded. In addition, Ya \ @P0 = {q}, so q 2 Z j and

Z j \ {q} ⇢ Z j \ @P0 ⇢ P \ @P = Int(P) ⇢ Int(K),

as claimed in 4.3.2.7.
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4.3.2.8. We are ready to finish the proof of 4.2.3.2. By [5, 2.9.10] Z j is the union
of a finite set F and finitely many Nash paths 0i that are Nash diffeomorphic to
]0, 1[. We may assume that 01 is upperly unbounded. Let q 0 2 Cl(01) \ 01 and let
�0 : [0, 1] ! Z j be a semialgebraic path such that �0(0) = q and �0(1) = q 0. Let
�1 : [1,+1[ ! 01[{q 0} be a semialgebraic parameterization such that �1(1) = q 0

and define

� := (�1,�2) : [0,+1[ ! Z j , t 7!

(
�0(t) if t 2 [0, 1],
�1(t) if t 2 [1,+1[.

As 01 is upperly unbounded, limt!1 �2(t) = +1. We have

Gk � �(t) =

 

a,

 ✓
a

�1(t)

◆
+

✓
a

�1(t)

◆k! �2(t)
2

!

.

As 0  �1(t)  r + 1 for t 2 [0,+1[, we have

0 <
a

r + 1
+

ak

(r + 1)k


✓
a

�1(t)

◆
+

✓
a

�1(t)

◆k

for t 2 [0,+1[. Consequently,

lim
t!1

  ✓
a

�1(t)

◆
+

✓
a

�1(t)

◆k! �2(t)
2

!

= +1. (4.6)

As x0 = (a, b)R 2 Int(P0) \ q Ee+
n , q = (a, c)R 2 @P0 and Een 2 EC(P0), we have

c < b. As q = Gk(q) = (Gk ��)(0) and using (4.6), there exists t0 2 ]0,+1[ such
that (Gk � �)(t0) = (a, b)R = x0, so there exists x1 := �(t0) 2 Z j \ {q} ⇢ Int(K)
such that Gk(x1) = x0 and 4.2.3.2 holds.

4.2.4. Conclusion of proof for Proposition 4.2

Let E1, . . . ,Em be all the faces of K of dimension  n � 2. We use the symbol
t to stress unions that involve only pairwise disjoint sets. We have K \ X =Fm

i=1 Int(Ei ). By 4.2.1 there exist polynomial maps g` : Rn ! Rn such that

g`

 

(K \ X) t
`�1G

i=1
Int(Ei )

!

= (K \ X) t
G̀

i=1
Int(Ei )

for ` = 1, . . . ,m. Consequently, g := (gm � · · · � g1) : Rn ! Rn satisfies
g(K \ X) = (K \ X) t (K \ X) = K, as required.
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v=M

u=a

qu= 0 u=r+ 1

Z1

P
P ′
0

Figure 4.7. Description of the authentic situation.

4.3. Proof of Corollary 4.3

By Propositions 4.1 and 4.2 there exists a polynomial map f0 : Rn ! Rn such that
f0(Rn) = K. Let x 0 := (x1, . . . , xn�1) and consider the polynomial map

f1 : Rn+1 ! Rn+1,

x :=
�
x 0, xn, xn+1

�
7!

�
x 0, xn+1(xnxn+1 � 1), (xnxn+1 � 1)2 + x2n

�
,

whose image is {xn+1 > 0} (see [7, Example 1.4 (iv)]). Assume that Een 2 EC(K)
and let

f2 : Rn+1 ! Rn, (x1, . . . , xn, xn+1) 7! f0(x1, . . . , xn) + xn+1Een.

We have f2({xn+1 > 0}) = Int(K), so Int(K) is the image of the polynomial map
f := ( f2 � f1) : Rn+1 ! Rn , as required.

5. Interiors of convex polyhedra as polynomial images of Rn

In this section we prove Theorem 1.2. Each degenerate convex polyhedronK ⇢ Rn

can be written in suitable coordinates asK = P ⇥ Rk where P is a non-degenerate
convex polyhedron and Int(K) = Int(P)⇥Rk . If k � n�1, then Int(K) is eitherRn

or an open half-space. The second case is a polynomial image ofRn by [7, Example
1.4 (iv)]. Thus, we will prove Theorem 1.2 assuming in addition that the convex
polyhedronK is non-degenerate and has dimension n � 2.

The general strategy is the following. By Proposition 4.1 we know that if
K ⇢ Rn is an unbounded non-degenerate convex polyhedron with n-dimensional
recession cone EC(K) and X is the union of the affine subspaces of Rn spanned by
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the faces of K of dimension n � 2, then K \ X is a polynomial image of Rn . For
each unbounded facet F of K we devise a procedure to “erase” it from K \ X in
two steps: (1) first we “push” Int(F) “inside” Int(K) to obtain a polynomial image
S of Rn contained in K \ (X [ F) and (2) we fill the gap left between S and F to
expressK \ (X [ F) as a polynomial image of Rn . We “erase” all the facets of the
initial image K \ X to obtain Int(K) as a polynomial image of Rn . To lighten the
proof of Theorem 1.2 we develop next some preliminary work. In the following we
write x 00 := (x1, . . . , xn�2), x 0 := (x 00, xn�1) and x := (x 0, xn).

5.1. Preliminary construction

We first introduce the type of polynomial maps that will allow us to push the interior
of a given facet F of a convex polyhedronK inside Int(K).

Lemma 5.1. Let K ⇢ Rn be a convex polyhedron of dimension n and let F be a
facet of K. Assume F ⇢ {xn�1 = 0}, K ⇢ {xn�1 � 0} and Een�1 2 EC(K). Let T
be a semialgebraic set obtained by removing the interior of some facets of K from
K \ X and let F 2 R[x] be a polynomial such that {F = 0} \ Int(F) = ? and F
is identically zero on the facets of K different from F. Consider the semialgebraic
set R := {F = 0} \ {xn�1 > 0} and the polynomial map f0 : Rn ! Rn, x 7!
x + F2(x)Een�1. Then

(i) f0(Int(x0Ee+
n�1)) = Int(x0Ee+

n�1) and f0(x0) = x0 for each x0 2 {F = 0};
(ii) T \ REe+

n�1 ⇢ f0(T) ⇢ T \ F.

Proof. (i) Write x0 := (x01, . . . , x0n). Consider the continuous function

 : R ! R, t 7! t + F2(x0 + t Een�1).

As  (0) = 0 and  (t) � t for each t � 0, we have  (]0,+1[) = ]0,+1[, so
f0(Int(x0Ee+

n�1)) = Int(x0Ee+
n�1) and f0(x0) = x0.

(ii) Observe that f0(x Ee+
n�1) ⇢ x Ee+

n�1 for each x 2 Rn . As Een�1 2 EC(K) and
⇢ K, we deduce f0(T) ⇢ T. In addition, if x := (x 00, xn�1, xn) 2 T is such that
f0(x) = x + F2(x)Een�1 2 F, then xn�1 = 0 and F(x) = 0, so

x 2 (K \ X) \ {xn�1 = 0} \ {F = 0} = Int(F) \ {F = 0} = ?,

which is a contradiction. Thus, f0(T) ⇢ T \ F.
Let us prove now T \ REe+

n�1 ⇢ f0(T). Pick a point x 2 T \ REe+
n�1 and write

x = y + �Een�1 where y 2 R and � � 0. Observe that x Een�1 \ K = zEen�1 where
either z belongs to a facet of K different from F or z := (x 00, 0, xn) 2 Int(F). In
the first case F(z) = 0, so by (i) f0(z) = z and x 2 zEe+

n�1 \ T = f0(zEe+
n�1 \ T).

In the second case, yEe+
n�1 ⇢ zEe+

n�1 \ T. As F(y) = 0, we have by (i) f0(y) = y
and x 2 yEe+

n�1 = f0(yEe+
n�1) ⇢ f0(T), as required.

In order to take advantage of Lemma 5.1 we need a polynomial h 2 R[x] with
some added specific characteristics, that we proceed to describe below.
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5.2. Pushing an open facet inside the interior of a convex polyhedron

Assume now that a convex, unbounded polyhedronKwith n-dimensional recession
cone is placed in Rn so that Een�1, Een 2 EC(K), F = {xn�1 = 0} \ K ⇢ {xn > 0}
and K ⇢ {xn�1 � 0}. Observe that Een 2 EC(F). Denote the facets of K with
F1, . . . ,Fe and let hi = 0 be a non-zero linear equation of the hyperplane Hi
spanned by Fi . SupposeK = {h1 � 0, . . . , he � 0},

• F1, . . . ,Fs are non-vertical and among them F1, . . . ,Fr are those non-vertical
facets ofK that meet F;

• Fs+1, . . . ,Fe are vertical and Fe = F.

As Een 2 EC(K), we may assume Ehi (Een) = 1 for i = 1, . . . , r , so that hi =
hi (x0, 0) + xn . Define

bi := hi � xn�1 = hi
�
x0, 0

�
� xn�1 + xn, (5.1)

b0
i := hi � 2xn�1 = hi

�
x0, 0

�
� 2xn�1 + xn. (5.2)

The hyperplanes Bi := {bi = 0} and B0
i := {b0

i = 0} separate by Lemma 2.8 the
facets Fi and F and meet Int(K). Consider now the affine change of coordinates

�i : Rn ! Rn, x :=
�
x 0, xn

�
7!

�
x 0, xn + hi

�
x 0, 0

��
, (5.3)

which satisfies B⇤
i := �i (Bi ) = {xn � xn�1 = 0} and B0⇤

i := �i (B0
i ) = {xn �

2xn�1 = 0}.

5.2.1. Denote the union of all the facets of K that do not meet F with G. By
Lemma 2.2 and Corollary 2.3 there exists "0 2 R such that

0<"0<min{1, dist({xn�1 = 0},G)} and K \ {xn�1  "0} ⇢ {xn > 0}. (5.4)

As each Bi \ K \ {xn�1  "0} ⇢ {xn > 0}, there exists by Lemma 2.2 � > 0 such
that Bi \ K \ {xn�1  "0} ⇢ {xn > �} for i = 1, . . . , r . Set " := min{"0, �2 } > 0.

5.2.2. DefineK0 := K\{xn�1  "} and observe that Int(K0) = Int(K)\{xn�1 <
"}. Consider the family of hyperplanes containing the non-vertical facets of K
together with all hyperplanes B 0

i . By Proposition 2.10 there exists a polynomial Gi
such that

{xn � Gi } ⇢
r\

j=1

n
b0
j � ��1

i >1
o

\
s\

k=1

n
hk � ��1

i > 1
o

⇢
n
b0
i � ��1

i > 1
o

= {xn > 2xn�1 + 1}.

(5.5)

Define Bi := Bi \ Int(K0). We claim:

Bi Een \ Int(K) ⇢ Bi Ee+
n [ ({b0

i  0} \ Int(K0)) ⇢ Int(K0). (5.6)
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As Een 2 EC(K) and Bi ⇢ Int(K0), we have

Bi Ee+
n ⇢ Int(K0). (5.7)

In addition, Bi (�Een)+ ⇢ {bi  0} ⇢ {b0
i  0}. Consequently,

Bi Een \ Int(K) =
�
Bi Ee+

n [ Bi (�Een)+� \ Int(K0)

= Bi Ee+
n [

�
Bi (�Een)+ \ Int(K0)

�

⇢ Bi Ee+
n [

��
b0
i  0

 
\ Int(K0)

�
⇢ Int(K0).

5.2.3. Write ⇡n(Bi ) = {gi,1 > 0, . . . , gi,m > 0} where each gi, j 2 R[x0] is a poly-
nomial of degree one. We may assume gi,1 = xn�1. Consider the admissible tuple
gi := (gi,1, . . . , gi,m, gi,m+1) where gi,m+1 2 R[x0] is a polynomial satisfying

gi,m+1 > max
n
Gi , 1+ |hi (x0, 0)|

p
|gi,1 · · · gi,m |

o
, (i = 1, . . . , r) (5.8)

and the associated semialgebraic sets A(gi ) = ⇡n(Bi ) and S(gi ) ⇢ Bi Ee+
n . In

addition, by (5.5) we have gi,m+1 � Gi � 2xn�1.

5.2.4. We claim: hi (x0, 0) < 0 on A(gi ) ⇢ ⇡n(Bi \ K0).
Pick a point x := (x 0, xn) 2 Bi \K0. Then hi (x 0, 0) = xn�1�xn < "�� < 0.

5.2.5. By the choice of " > 0 the non-vertical facets ofK0 are Fi0 := Fi\{xn�1 
"} for i = 1, . . . , r and all of them meet the facet F ofK. By Lemma 2.9

Int(K)Een \ {xn�1 < "} = Int(K0)Een =
r[

i=1
(Bi \ Int(K0))Een

=
r[

i=1
Bi Een =

r[

i=1
A(gi )Een.

(5.9)

5.2.6. Denote S⇤(gi ) := �i (S(gi )) = {(x 0, xn + hi (x 0, 0)) : (x 0, xn) 2 S(gi )} for
i = 1, . . . , r . Then there exists a polynomial P 2 R[x00,xn] with empty zero-set
such that the zero-set 0 of the polynomial R(x) := xn�1P(x00,xn) � 1 satisfies
0 ⇢ {0 < xn�1 < "}, 0Ee+

n�1 ⇢ {R � 0} and

S(gi ) ⇢ S⇤(gi ) ⇢ 0Ee+
n�1 \ {R > 1}. (5.10)

Proof. The inclusion S(gi ) ⇢ S⇤(gi ) holds because by 5.2.4 hi (x 0, 0)  0 on
A(gi ). Write gi, j := hEai j , (x0, 1)i where Eai j 2 Rn . Pick M0 > 1 such that kEai jk 
M0 for each pair (i, j). We have

�
�gi, j

�
x 0��� =

�
�hEai j , (x 0, 1)i

�
�  kEai jkk(x 0, 1)k  M0

q
kx 0k2 + 1.
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If xn�1  " and M := M0
q
1+ 1

"2
, then

�
�gi, j (x 0)

�
�  M0

q
kx 0k2 + 1  M0

q
kx 00k2 + "2 + 1

 M
q

kx 00k2 + "2 
M
"

�
kx 00k2 + "2

�
.

(5.11)

Pick x := (x 0, xn) 2 S⇤(gi ), then (x 0, xn � hi (x0, 0)) 2 S(gi ) ⇢ {xn > 0}. By
Lemma 3.2(iii) we have (x 0, 0) 2 A(gi ), so hi (x 0, 0) < 0. By Lemma 3.2(i) and
(5.8)

xn � hi (x 0, 0) �
gi,m+1(x 0)

p
xn�1gi,2(x 0) · · · gi,m(x 0)

�
1

pxn�1
·

1
p
gi,2(x 0) · · · gi,m(x 0)

� hi (x 0, 0).

As 0 < " < 1, we deduce by (5.11)

x2n + 1� xn�
1

pxn�1
·

1
p
gi,2(x 0) · · · gi,m(x 0)

�
"
m
2

pxn�1(
p
M
p

kx 00k2 + "2)m�1
.

Consequently,

xn�1 �
"m

Mm�1(x2n + 1)2(kx 00k2 + "2)m�1 (5.12)

for each point (x 0, xn) 2 S⇤(gi ). Define

P := 3
Mm�1�x2n + 1

�2�
kx00k2 + "2

�m�1

"m

and observe that by (5.12) each S⇤(gi ) ⇢ 0Ee+
n�1 where

0 :=

⇢
xn�1 =

1
P

�
.

In addition, 0 ⇢ {0 < xn�1 < "}, 0Ee+
n�1 ⇢ {R � 0} and

S⇤(gi ) ⇢

⇢
xn�1 �

3
P

�
= {xn�1P � 1 � 2} ⇢ {R > 1},

as claimed.

5.2.7. Let F := R
Qr

j=1 b
0
j
Qe�1

k=1 hk 2 R[x] be the product of the polynomial R,
the linear equations b0

j of the hyperplanes B
0
j and the linear equations hk of the

hyperplanes Hk spanned by the facets of K except that of F. It holds {F = 0} =
0 [

Sr
j=1 B

0
j [

Se�1
k=1 Hk . As B

0
j is a separating hyperplane for F and F j , we have

F\B0
j ⇢ F\F j ⇢ @F. In addition, 0 ⇢ {0 < xn�1 < "}, so {F = 0}\Int(F)= ?.



558 JOSÉ F. FERNANDO, JOSE MANUEL GAMBOA AND CARLOS UENO

5.2.8. Let Int(K) ⇢ T ⇢ K \ X be a semialgebraic set obtained by removing the
interiors of some facets Fi ofK fromK \ X such that Fi 6= F. Define

P := T \

 

0Ee+
n�1 [

r[

j=1
{b0

j  0} [
e�1[

i=1
Fi

!

,

T0 := T \ {xn�1  "}, (5.13)
P0 := T0 \ P.

We claim:

(i) {xn�1 � "} ⇢ 0Ee+
n�1;

(ii) T0 \ F = P0 [
Sr

j=1B j Ee+
n .

Proof. (i) This inclusion follows from the fact that 0 ⇢ {0 < xn�1 < "} can be
understood as the graph over the hyperplane {xn�1 = 0} of the regular function 1

P ,
which depends on the variables (x00,xn).

(ii) Observe that Int(T0) = Int(K0). By the choice of " the convex polyhe-
dron K0 satisfies the hypothesis of Lemma 2.9, hence Int(T0)Een = Int(K0)Een =Sr

j=1B j Een . By (5.6) we have

Int(T0) = Int(T0) \ (Int(T0)Een) =
r[

j=1

�
B j Een \ Int(T0)

�

⇢
r[

j=1

�
B j Ee+

n [
��
b0
j  0

 
\ Int(T0)

��
⇢ P0 [

r[

j=1
B j Ee+

n .

In addition, @T0\F ⇢ P\T0 = P0 (use (i) to guarantee that T0\{xn�1 = "} ⇢ P0),
so by (5.7)

T0 \ F = Int(T0) [ (@T0 \ F) ⇢ P0 [
r[

j=1
B j Ee+

n ⇢ T0 \ F,

as required.

The interest of the semialgebraic set P comes from the following result, which
is illustrated in Figure 5.1.

Lemma 5.2. The polynomial map f0 : Rn ! Rn, x 7! x + F2(x)Een�1 satisfies
P ⇢ f0(T) ⇢ T \ F.

Proof. The inclusion f0(T) ⇢ T \ F follows from Lemma 5.1 and 5.2.7. We prove
next P ⇢ f0(T).

Pick x := (x 00, xn�1, xn) 2 P and consider the intersection P \ x Een�1. This
intersection consists of finitely many intervals of the line x Een�1 whose endpoints
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f0

T

F

Γ Γ
B′

i B′
i

x
n
−1

=
ε

x
n
−1

=
ε

f0(T)⊃P

Figure 5.1. Behavior of the polynomial map f0 (Lemma 5.2).

belong to {F = 0} = 0 [
Sr

j=1 B
0
j [

Se�1
i=1 Fi , so they are fixed by f0. As

limxn�1!+1 f0(x 00, xn�1, xn) = +1, we have by Corollary 2.13

x 2 P \ x Een�1 ⇢ f0(P \ x Een�1) ⇢ f0(T).

Thus, P ⇢ f0(T), as required.

The image of the polynomial map f0 is contained in T \F and contains P. The
semialgebraic set P leaves a “gap” inside T in a neighborhood of the facet F. Our
next goal is to construct another polynomial map to fill the gap that f0(T) leaves
inside T \ F.

5.3. Filling the interior gap of the convex polyhedron

Let K ⇢ Rn be an unbounded convex polyhedron with recession cone EC(K) of
dimension n. Let X be the union of the affine subspaces of Rn spanned by the faces
ofK of dimension n � 2.

Proposition 5.3. Let F be one of the unbounded facets of K and let Int(K) ⇢ T ⇢
K\X be a semialgebraic set obtained by removing the interiors of some facets Fi of
K fromK\ X such that Fi 6= F. Then there exists a polynomial map F : Rn ! Rn

such that F(T) = T \ F.

Proof. Assume first that K is placed as described in 5.2, take into account all con-
siderations developed thereafter and keep the used notations. We have constructed
a polynomial map f0 : Rn ! Rn such that P ⇢ f0(T) ⇢ T \ F (see Lemma 5.2).
By 5.2.8(i)

T1 := T \ {xn�1 � "} = P \ {xn�1 � "}.

Fix 1  i  r and consider the polynomial

Pi0 :=
rY

j=1

⇣
b0
j � ��1

i

⌘ sY

k=1

⇣
hk � ��1

i

⌘
.
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f0

T

F

Γ

Γ

B′
1

B1

B ′
1

B1
x n
−

1
=

ε

x n
−

1
=

ε

f0(T)

A(g1)

A(g1)

S(g1)

S(g
1
)

φ1
Change of
coordinates

B ′∗
1

B
∗
1

x n
−

1
=

ε

f1(S
∗(g1))

f
∗
1

φ−1
1Change of

coordinates

Γ∗

B ′∗
1

B
∗
1

x n
−

1
=

ε

S
∗(g1)

T

B ′
1

B1

Figure 5.2. Erasing an unbounded facet of a convex polyhedron.

By Lemma 3.2 and equations (5.5) and (5.8) we have S⇤(gi ) = �i (S(gi )) ⇢ {Pi0 >
1}. For each T ⇢ Rn we denote T ⇤ the set �i (T ). It holds

{Pi0 = 0} =
r[

j=1
B0⇤
j [

s[

k=1
H⇤
k .

Define Pi1 := R � ��1
i . By (5.10) S(gi ) ⇢ {R > 1}, hence S⇤(gi ) ⇢ {Pi1 > 1}.

Define Pi := (Pi0Pi1)2 and note that

S(gi ) ⇢ S⇤(gi ) ⇢ {Pi0 > 1} \ {Pi1 > 1} ⇢ {Pi > 1}.
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Consider the polynomial maps

fi := ( fi1, . . . , fin) : Rn ! Rn,

(x 0, xn) 7!
⇣
x 0, xn(1+ Pi (x)Qgi (x))

2 + 2xn�1(Pi (x)Qgi (x))
2
⌘

and
f̂i := ��1

i � fi � �i . (5.14)
Note that g := gi , P := Pi , gm+1 := gi,m+1 and h := 2xn�1 satisfy the hypotheses
of Theorem 3.3.

5.3.1. We claim: each polynomial map f̂i satisfies f̂i (T1) = T1.
To prove that f̂i (T1) = T1 it is enough to show: fi (T⇤

1) = T⇤
1 . It holds

T⇤
1 ⇢ {xn�1 � ",xn � 0}.
As S(gi ) = {Qgi  0,xn � 0} ⇢ {xn�1  "}, the polynomial Qgi is positive

on T⇤
1 , as well as Pi , which is a square, and xn�1. Thus, the inclusion fi (T⇤

1) ⇢ T⇤
1

holds by Theorem 3.3(ii) because Een 2 EC(K). As the non-vertical facets ofK⇤ are
contained in {Pi = 0} and by Theorem 3.3(iii) limxn!1 fi (x 0, xn) = +1 for each
x 0 2 {xn�1 � 0}, we deduce by Corollary 2.13 T⇤

1 ⇢ fi (T⇤
1).

5.3.2. Let us study the behavior of f̂i on P0 [
Si�1

j=1B j Ee+
n . We claim:

P0 [
i[

j=1
B j Ee+

n ⇢ f̂i

 

P0 [
i�1[

j=1
B j Ee+

n

!

⇢ f̂i (T0 \ F) ⇢ T0 \ F. (5.15)

By 5.2.8(ii) to prove the previous chain of inclusions it is enough to show

P⇤
0 [

i[

j=1
B⇤
j Ee

+
n ⇢ fi

 

P⇤
0 [

i�1[

j=1
B⇤
j Ee

+
n

!

and fi (T⇤
0 \ F⇤) ⇢ T⇤

0 \ F⇤. (5.16)

Pick a point x := (x 0, xn) 2 P⇤
0 [

Si�1
j=1B⇤

j Ee
+
n and consider the ray P⇤

0,x := x Een \
P⇤
0 ⇢ {xn � 0}, which is a finite union of intervals inside the ray x Een \ {xn > 0}
whose endpoints belong to

0⇤ [
r[

j=1
B0⇤
j [

s[

k=1
H⇤
k = {Pi = 0},

so they are fixed by fi . In addition, by Theorem 3.3(iii)

lim
t!1

fin(x 0, t) = +1,

because x 0 2 {xn�1 � 0}, hence by Corollary 2.13 P⇤
0,x ⇢ fi (P⇤

0,x ). Thus,

P⇤
0 [

i�1[

j=1
B⇤
j Ee

+
n ⇢ fi

 

P⇤
0 [

i�1[

j=1
B⇤
j Ee

+
n

!

. (5.17)
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Observe that B⇤
i Een = Bi Een because ⇡n(B⇤

i ) = ⇡n(Bi ) = A(gi ). In addition,
by (5.3) B⇤

i = {xn � xn�1 = 0} and B0⇤
i = {xn � 2xn�1 = 0}, so B⇤

i Ee+
n =

{xn � xn�1 � 0} and B0⇤
i Ee+

n = {xn � 2xn�1 � 0}. By Theorem 3.3(i)

B⇤
i Ee

+
n \ B0⇤

i Ee+
n = A(gi )Ee+

n \ {xn � 2xn�1} ⇢ fi (S(gi )).

As B0
i (�Een)+ \ T = {b0

i  0} \ T ⇢ P, we have B⇤
i Ee

+
n \ B0⇤

i (�Een)+ ⇢ P⇤
0. By

(5.10)

S(gi ) ⇢ 0⇤Ee+
n�1 \ A(gi )Ee+

n \ {xn > 0} ⇢ 0⇤Ee+
n�1 \ T⇤ \ {0 < xn�1 < "} ⇢ P⇤

0.

Consequently, by (5.13) and (5.17)

B⇤
i Ee

+
n = (B⇤

i Ee
+
n \ B0⇤

i (�Een)+) [ (B⇤
i Ee

+
n \ B0⇤

i Ee+
n ) ⇢ P⇤

0 [ fi (S(gi )) ⇢ fi (P⇤
0).

Therefore, P⇤
0 [

Si
j=1B⇤

j Ee
+
n ⇢ fi

⇣
P⇤
0 [

Si�1
j=1B⇤

j Ee
+
n

⌘
.

Let us check next: fi (T⇤
0 \ F⇤) ⇢ T⇤

0 \ F⇤.
By Theorem 3.3(i) and 5.2.8(ii)

fi (S(gi )) ⇢ A(gi )Ee+
n \ {xn � xn�1} = B⇤

i Ee
+
n ⇢ T⇤

0 \ F⇤.

The polynomial Qgi is positive on {xn � 0,xn�1 � 0} \S(gi ), as well as Pi , which
is a square, and xn�1. Thus, the inclusion fi (T⇤

0 \ (F⇤ [ S(gi ))) ⇢ T⇤
0 \ F⇤ holds

by Theorem 3.3(ii) because Een 2 EC(K). We conclude fi (T⇤
0 \ F⇤) ⇢ T⇤

0 \ F⇤.

5.3.3. Define F := f̂r � · · · � f̂1 � f0. By Lemma 5.2

P0 [ T1 ⇢ P ⇢ f0(T) ⇢ T \ F. (5.18)

By 5.3.1 and (5.15)

f̂i (T \ F) = f̂i (T1 [ (T0 \ F)) ⇢ T1 [ (T0 \ F) = T \ F

for i = 1, . . . , r . Thus, by (5.18)

F(T) ⇢ ( f̂r � · · · � f̂1)(T \ F) ⇢ T \ F. (5.19)

By 5.2.8, (5.15), (5.18) and (5.19) we deduce

T0 \ F = P0 [
r[

j=1
B j Ee+

n ⇢ ( f̂r � · · · � f̂1)(P0) ⇢ F(T) ⇢ T \ F.

In addition, by 5.3.1 and (5.18) we have T1 ⇢ F(T) ⇢ T \ F. Consequently,

T \ F = (T0 \ F) [ T1 ⇢ F(T) ⇢ T \ F,

so F(T) = T \ F, as required.

Figure 5.2 shows the combined action of the polynomial map f0 : T ! f0(T)

appearing in Lemma 5.2 and the polynomial map f̂1 : f0(T) ! T \ F constructed
in (5.14).
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5.4. Proof of Theorem 1.2

By Theorem 4.1 there exists a polynomial map f0 : Rn ! Rn such that f0(Rn) =
K \ X where X is the union of the affine subspaces of Rn spanned by the faces of
K of dimension n�2. Let F1, . . . ,Fm be the facets ofK. By Proposition 5.3 there
exists a polynomial map Fi : Rn ! Rn such that

Fi

 

(K \ X) \
i�1[

j=1
F j

!

= (K \ X) \
i[

j=1
F j ,

for i = 1, . . . ,m. Consider the polynomial map f := (Fm � · · · � F1 � f0) : Rn !
Rn . Thus,

f (Rn) = (K \ X) \
r[

j=1
F j = Int(K),

as required.

Appendix A. Some basic inequalities

Some useful inequalities concerning finite collections of positive numbers have
been used in Section 3. We collect them in the following lemma for easy refer-
ence.

Lemma A.1. Let y1, . . . , ym be positive real numbers and fix 1  i  m. Then the
following inequalities hold:

(i) y1 + · · · + ym + 1
y1···ym � m + 1 > 1;

(ii) y1 + · · · + ym + 1
y1···ym � yi + m m

q
1
yi ;

(iii)
⇣
y1 + · · · + ym + 1

y1···ym

⌘m
yi > mm � 1.

Proof. (i) Denote z :=
Qm

i=1 yi . It is enough to show

z 

1+ z
mP

i=1
yi

m + 1
. (A.1)

Consider the positive real numbers zi := yi z for i = 1, . . . ,m and zm+1 = 1. By
the arithmetic-geometric inequality

m+1

vu
u
t

m+1Y

i=1
zi 

m+1P

i=1
zi

m + 1
.

As
Qm+1

i=1 zi = zm+1 and
Pm+1

i=1 zi = 1+ z
Pm

i=1 yi , inequality (A.1) holds.
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(ii) By the arithmetic-geometric inequality

m

s
1
yi

= m

s
1

y1 · · · ym

Y

j 6=i
y j 

1
y1 · · · ym

+
P

j 6=i
y j

m
,

so the statement holds.
(iii) Using (ii) we have

✓
y1 + · · · + ym +

1
y1 · · · ym

◆m
yi �

 

yi + m m

s
1
yi

!m

yi � ym+1
i + mm > mm,

as required.
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