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1 Introduction

A subset M ⊂ R
n is said to be basic semialgebraic if it can be written as

M = {x ∈ R
n : f (x) = 0, g1(x) > 0, . . . , gm(x) > 0}

for some polynomials f, g1, . . . , gm ∈ R[x1, . . . ,xn]. The finite unions of basic semialge-
braic sets are called semialgebraic sets. A continuous function f : M → R is said to be
semialgebraic if its graph is a semialgebraic subset of R

n+1. Usually, semialgebraic function
just means a function, non necessarily continuous, whose graph is semialgebraic. How-
ever, since all semialgebraic functions occurring in this article are continuous we will omit
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300 J. F. Fernando, J. M. Gamboa

for simplicity the continuity condition when we refer to them. Likewise, a continuous map
ϕ : N → M between semialgebraic sets whose graph is semialgebraic will be called, simply,
a semialgebraic map.

The sum and product of functions, defined pointwise, endow the set S(M) of semial-
gebraic functions on M with a natural structure of commutative ring whose unity is the
semialgebraic function with constant value 1. In fact S(M) is an R-algebra, if we identify
each real number r with the constant function which just attains this value. The most simple
examples of semialgebraic functions on M are the restrictions to M of polynomials in n vari-
ables. Other relevant ones are the absolute value of a semialgebraic function, the maximum
and the minimum of a finite family of semialgebraic functions, the inverse and the k-root of
a semialgebraic function whenever these operations are well-defined.

It is obvious that the subset S∗(M) of bounded semialgebraic functions on M is a real
subalgebra of S(M). For the time being, we denote by S�(M), indistinctly, either S(M)
or S∗(M) in case the involved statements or arguments are valid for both rings. More-
over, if p ∈ M , we will denote by m�

p the maximal ideal of all functions in S�(M) van-
ishing at p. For each f ∈ S�(M) and each semialgebraic subset N ⊂ M , we denote
Z N ( f ) = {x ∈ N : f (x) = 0} and DN ( f ) = N\Z N ( f ). In case N = M , we say that
Z M ( f ) is the zeroset of f . Our purpose in this work is to study the algebraic, topological
and functorial properties of the Zariski and maximal spectra of the rings of semialgebraic
and bounded semialgebraic functions on a semialgebraic set. Since the usual notations for
these objects become cumbersome, we replace them by the following ones. Let M ⊂ R

n be
a semialgebraic set. We denote

Specs(M) = Spec(S(M)), Spec*
s (M) = Spec(S∗(M)),

βs M = Specmax(S(M)), β*
sM = Specmax(S∗(M)),

and we abbreviate Spec�
s(M) = Spec(S�(M)) and β�

sM = Specmax(S�(M)). As it is well-
known the real spectrum and real maximal spectrum of S�(M) coincide with its classical
Zariski spectrum and maximal spectrum. Consequently, we will be mainly concerned about
Zariski spectra. Of course, some of our initial results, that we include in Sect. 3 for the sake of
completeness, surely can be obtained using a different approach involving the theory of “Real
closed rings” introduced by Schwartz in [16] and [17], and successfully used, for instance,
in [4] and [5]. The main reason for our choice is that our approach, that works only over the
real numbers and not over an arbitrary real closed field, is based on the celebrated classical
theory of rings of continuous functions (see [14]), requires less algebraic background and
admits a less involved presentation.

A crucial tool to understand the functorial properties of the operators Specs(·) and Spec*
s (·)

is the semialgebraic Tietze–Urysohn Lemma as stated by Delfs–Knebush in [6], whose scope
is determined in 2.9. Of course, the first expected consequence of this result says that if
C ⊂ M is a closed semialgebraic subset of M , then its closure in Spec�

s(M) is homeo-
morphic to Spec�

s(C) (see 4.6 and 5.15). This together with the proof of the functoriality of
Specs(·) and Spec*

s (·) (see 4.1) completes the first part of Sect. 4. The rest of this section is
focused on the proof of the following result (see 4.8 and 4.9), which has further applications
in other contexts (see [7,9,12]):

(1.1) Let N ⊂ M ⊂ R
m be semialgebraic sets such that N is open in M and locally com-

pact. Denote Y = M\N and let j : N ↪→ M be the inclusion map. Define L(Y )= ⋃
f Z( f ),

where Z( f )= {p ∈ Specs(M) : f ∈ p} and f runs over all f ∈ S(M) such that Z M ( f )= Y .
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On the spectra of rings of semialgebraic functions 301

Then, the map

Specs( j) : Specs(N ) → Specs(M), p �→ Specs( j)(p) = {g ∈ S(M) : g ◦ j = g|N ∈ p}
is a homeomorphism onto its image Specs(M)\L(Y ). Moreover, the preimage of each maxi-
mal ideal of S(M) is a maximal ideal of S(N ), while the direct image of a maximal ideal of
S(N ) is not necessarily a maximal ideal of S(M). Even more, if M is also locally compact,
then L(Y ) = ClSpecs(M)(Y ).

It is well-known that locally compact semialgebraic sets present a nicer behaviour than
arbitrary ones when dealing with their rings of semialgebraic and bounded semialgebraic
functions (see for instance [1, Ch. 2] and [10]). The reason is that a locally compact semi-
algebraic set M is an open subset of each Hausdorff compactification of M . The previous
result 1.1, which is a new evidence of the importance of locally compact semialgebraic sets
in semialgebraic geometry, is the key to compare the spectra Specs(M) and Specs(Mlc) for
an arbitrary semialgebraic set M , where Mlc denotes the largest locally compact and dense
subset of M , which turns out to be a semialgebraic set.

As we have shown in [11], it is also useful to compare the spectra Specs(M) and Specs(X)
where M is a locally compact semialgebraic set and X is one of its semialgebraic compac-
tifications; recall that a compactification (X, j) of M is a semialgebraic compactification
of M if j : M → X is a semialgebraic map. In [11] we compute the Krull dimensions
of the rings S(M) and S∗(M) by comparing them with the Krull dimensions of the rings
S(X) = S∗(X) for suitable semialgebraic compactifications X of M . Moreover, we see in
[7] that these semialgebraic compactifications provide, by using 1.1, further information to
study chains of prime ideals in rings of semialgebraic functions.

On the other hand, concerning the spectrum of the ring of bounded semialgebraic functions
of a semialgebraic set, the most revealing result in this work, proved in 5.1, is the following:

(1.2) Let N ⊂ R
n and M ⊂ R

m be semialgebraic sets and letϕ : N → M be a semialgebraic
map. Suppose there exists a semialgebraic set Y ⊂ M such that:

(i) M1 = M\Y is locally compact and dense in M.
(ii) The restriction ψ = ϕ|N1 : N1 = N\ϕ−1(Y ) → M1 = M\Y is a semialgebraic

homeomorphism.

Let Z = ClSpec*
s (M)

(Y ). Then, the map Spec*
s (ϕ) : Spec*

s (N ) → Spec*
s (M) is surjective

and its restriction Spec*
s (ϕ)| : Spec*

s (N )\ Spec*
s (ϕ)

−1(Z) → Spec*
s (M)\Z is a homeomor-

phism.
The most typical situation to apply 1.2 concerns the choice N = N1 = M1 = Mlc and

ϕ = j : Mlc ↪→ M the inclusion map. Another typical setting to apply 1.2 is a blowing-up
of the Zariski closure of the semialgebraic set M (see [1, 3.5.8]). Namely,

(1.3) Let X be a real affine algebraic set, and let Y � X be an algebraic subset of X.
Then, the blowing up σ : E(X, Y ) → X of X with center Y is a proper regular map whose
restriction σ | : E(X, Y )\σ−1(Y ) → X\Y is a biregular isomorphism.

Now, let M ⊂ R
n be a semialgebraic set and let Y � X be an algebraic subset of the

Zariski closure X of M such that M1 = M\Y is locally compact and dense in M . Denote
N = ClE(X,Y )(σ

−1(M1)) ∩ σ−1(M) the strict transform of M . Then, 1.2 applies to the
restriction ϕ = σ |N : N → M .

Observe that also in this setting of bounded semialgebraic functions, local compactness
plays an essential role to compare and understand spectra of rings of bounded semialgebraic
functions on semialgebraic sets. On the other hand, we construct in 5.17 a “stratification” of
a semialgebraic set M whose strata are ordered in such a way that each of them is maximal
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302 J. F. Fernando, J. M. Gamboa

with respect to the local compactness and density properties (see 2.4) in the complement in
M of the union of the precedent ones (and the first stratum is maximal in M). This construc-
tion combined with 1.2 will provide us a better analysis of the spectrum of S∗(M) when
M is not necessarily locally compact (see 5.18). In fact, the local study of the spectrum of
the ring of bounded semialgebraic functions on an arbitrary semialgebraic set M is reduced,
via 5.19, to the study of the open subsets of the semialgebraic spectrum of S∗(Rm) for each
0 ≤ m ≤ dim M .

Next, recall that S∗(M) is a Gelfand ring (see [11, 3.1(iii)]), and so there exists a con-
tinuous retraction rM : Spec*

s (M) → β*
sM which maps each prime ideal p of S∗(M) to

the unique maximal ideal m∗ containing p (see 3.3). We will use such retraction to transfer
in Sect. 6 the statements proved in Sect. 5 for the operator Spec*

s to the operator β*
s. Here it

is worthwhile mentioning that the map Spec*
s (ϕ) : Spec*

s (N ) → Spec*
s (M) induced by a

semialgebraic map ϕ : N → M between semialgebraic sets N and M , maps β*
sN into β*

sM ,
see 5.9. Hence, it makes sense to denote β*

sϕ : β*
sN → β*

sM the restriction of Spec*
s (ϕ)

to β*
sN .

The article is organized as follows. In Sects. 2 and 3, which have a preliminary character,
we collect basic results and terminology concerning semialgebraic sets and functions and
Zariski and maximal spectra of rings of semialgebraic and bounded semialgebraic functions
on a semialgebraic set, respectively. We develop in the subsequent sections the main results
of this work. In Sect. 4 we approach the study of spectra of rings of semialgebraic functions,
while Sect. 5 is devoted to analyze spectra of rings of bounded semialgebraic functions.
Finally, in Sect. 6, we transfer the statements proved in Sects. 4 and 5 to maximal spectra of
rings of semialgebraic and bounded semialgebraic functions.

2 Preliminaries on semialgebraic sets and functions

As we have announced in Sect. 1, in this section we present some preliminary terminology
and results concerning semialgebraic sets and semialgebraic functions that will be useful in
the rest of the work. We point out first that sometimes it will be advantageous to assume
that the semialgebraic set M we are working with is bounded. Such assumption can be done
without loss of generality. Namely,

Remark 2.1 Let M ⊂ R
n be a semialgebraic set and let Bn(0, 1) ⊂ R

n be the open ball of
center the origin and radius 1. The semialgebraic homeomorphism

ϕ : Bn(0, 1) → R
n, x �→ x

√
1 − ‖x‖2

,

induces a ring isomorphism S(M) → S(N ), f �→ f ◦ ϕ, where N = ϕ−1(M), that maps
S∗(M) onto S∗(N ). Hence, if necessary, we may always assume that M is bounded.

The following result, which concerns the representation of closed semialgebraic subsets
of a semialgebraic set as zerosets of semialgebraic functions, is also well-known and it will
be used freely along this work.

Lemma 2.2 Let Z be a closed semialgebraic subset of the semialgebraic set M ⊂ R
n. Then,

there exists h ∈ S∗(M) such that Z = Z M (h).

Proof Take for instance h = min{1, dist(·, Z)}. �
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On the spectra of rings of semialgebraic functions 303

Next, we recall some properties of the set of regular points of a semialgebraic set.

(2.3) Set of regular points of a semialgebraic set. Let M ⊂ R
m be a d-dimensional

semialgebraic set. We denote by Reg(M) the set of regular points of M , that is, those points
x ∈ M which have a neighbourhood V x in M analytically diffeomorphic to R

d ; also denote
δ(M) = M\ Reg(M). Recall that Reg(M) is a nonempty open semialgebraic subset of M
and δ(M) is a semialgebraic set of dimension ≤ d − 1 (see [18] for further details).

As it is well-known local closedness has been revealed, in the semialgebraic setting and
in fact for the purposes of this work, as an important property for the validity of results
which are in the core of semialgebraic geometry. Recall that the locally closed subsets of a
locally compact topological space coincide with the locally compact ones (see for instance
[2, Sect. 9.7. Prop.12–13]). Namely,

Lemma 2.4 Let X be a Hausdorff and locally compact topological space. Given M ⊂ X,
the following conditions are equivalent:

(i) M is locally closed.
(ii) M = U ∩ ClX (M) where U = X\(ClX (M)\M) is an open subset of X.

(iii) M is a locally compact space.

Remark 2.5 Notice that if M ⊂ R
n is a semialgebraic set, then also the sets ClRn (M) and

U = R
n\(ClRn (M)\M) are semialgebraic. Thus, if M ⊂ R

n is a locally compact semialge-
braic set, it can be written as the intersection of a closed and an open semialgebraic subsets
of R

n .

Next, we recall some of the main properties of the largest locally compact and dense
subset Mlc of a semialgebraic set M . As we will see later, this set Mlc provides very useful
information concerning the spectra of the rings of semialgebraic and bounded semialgebraic
functions on M . Its construction is the main goal of [7, 3.8].

Theorem 2.6 Let M ⊂ R
n be a semialgebraic set. Define

ρ0(M) = ClRn (M)\M and ρ1(M) = ρ0(ρ0(M)) = ClRn (ρ0(M)) ∩ M.

Then, the semialgebraic set Mlc = M\ρ1(M) = ClRn (M)\ ClRn (ρ0(M)) is the largest
locally compact and dense subset of M and it coincides with the set of points of M which
have a compact neighbourhood in M. Note that Mlc is an open subset of M.

In fact, we can go even further showing the local nature of the operator ρ1. Namely,

Corollary 2.7 Let M ⊂ R
n be a semialgebraic set and let U ⊂ R

n be an open semialgebraic
set. Then, ρ1(M ∩ U ) = ρ1(M) ∩ U.

Proof First, note that

ρ1(M ∩ U ) = ClRn (ClRn (M ∩ U )\(M ∩ U )) ∩ M ∩ U,

while ρ1(M) ∩ U = ClRn (ρ0(M)) ∩ M ∩ U , and so it suffices to check that

ClRn (ρ0(M)) ∩ U = ClRn (ClRn (M ∩ U )\(M ∩ U )) ∩ U.

Now, U being an open set, we have

ClRn (ρ0(M)) ∩ U = ClRn (ρ0(M) ∩ U ) ∩ U = ClRn (ClRn (M) ∩ U\(M ∩ U )) ∩ U

= ClRn (ClRn (M ∩ U ) ∩ U\(M ∩ U )) ∩ U

= ClRn (ClRn (M ∩ U )\(M ∩ U )) ∩ U,

and we are done. �
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304 J. F. Fernando, J. M. Gamboa

Next, we approach the continuous extension of semialgebraic functions defined on a semi-
algebraic set N to a larger semialgebraic set M . The most obvious way to do that is to extend
bounded semialgebraic functions by zero after multiplying by a semialgebraic function that
converges to zero on the semialgebraic set ClM (N )\N . Namely,

Lemma 2.8 Let N ⊂ M ⊂ R
m be semialgebraic sets. Write Y = M\N and take b ∈ S∗(N ).

Let h ∈ S�(M) be such that Y ⊂ Z M (h). Then, the product (h|N )b can be continuously
extended by 0 to a function B ∈ S�(M).

Proof Since b is bounded on N and h vanishes identically on Y , the limit limx→p(h|N b)(x)
is 0, for all p ∈ Y ∩ClM (N ). Thus, (h|N )b can be continuously extended by 0 to the whole M .
The graph of such extension B being the union graph(h|N b)∪ (Y × {0}), is a semialgebraic
set, and so B ∈ S�(M). �

On the other hand, we also have continuous extension results for semialgebraic functions
in the same vein as the classical Tietze–Urysohn’s Lemma (see [6]). In fact, we cannot go
much further than to work with closed semialgebraic subsets N of a semialgebraic set M to
guarantee the continuous extension to M of any arbitrary semialgebraic function on N . More
precisely,

(2.9) Scope of Tietze’s extension. Let N ⊂ M ⊂ R
n be semialgebraic sets. Then,

(i) The homomorphism φ : S(M) → S(N ), f �→ f |N is surjective if and only if N is a
closed subset of M.

(ii) The homomorphism φ : S∗(M) → S∗(N ), f �→ f |N is surjective if and only if either
N is closed in M or, for all p ∈ ClM (N )\N, the local dimension dim p N = 1 and the
germ Np has just one semialgebraic half-branch set germ.

Proof We begin by proving (i). If N is closed in M then φ is surjective, by the semialgebraic
version of Tietze–Urysohn’s Lemma [6]. Conversely, if N is not closed in M , then there
exists a point p ∈ ClM (N )\N . It is clear that the semialgebraic function on N defined by
f : N → R,x �→ 1/‖x − p‖ cannot be continuously extended to p. Hence, it cannot be
continuously extended to M , as wanted.

Next, we proceed to prove (ii). Again, φ is surjective for a closed N as follows from
the semialgebraic version of Tietze–Urysohn’s Lemma. Moreover, if the local dimension
dim p N = 1 and the set germ Np has just one half-branch for all p ∈ ClM (N )\N , then
each bounded semialgebraic function f on N admits a continuous extension to ClM (N ).
This is so because there exists the limit of f at a point along a half-branch (see for instance
[10, 2.6]). Once f ∈ S∗(N ) is continuously extended to ClM (N ), we extend it to a function
in S∗(M) by using again the semialgebraic version of Tietze–Urysohn’s Lemma.

Conversely, assume that N is not closed in M and that there exists a point p ∈ ClM (N )\N
such that the set germ Np contains two different semialgebraic half-branch germs at p. Let
C0 ⊂ N and C1 ⊂ N be representatives of two such half-branch germs, that can be chosen
closed in N and disjoint. By the semialgebraic version of Tietze–Urysohn’s Lemma, there
exists g ∈ S∗(N ) such that g|C0 ≡ 0 and g|C1 ≡ 1. Since g cannot be continuously extended
to p, it cannot be continuously extended to M . Thus, the germ Np contains just one semial-
gebraic half-branch germ at p or, equivalently, as follows from the Curve Selection Lemma
(see [1, 2.5.5]), for all p ∈ ClM (N )\N the local dimension dim p N = 1 and the set germ
Np has just one semialgebraic half-branch set germ. �

Next, we recall the notion and some remarkable properties of the z-ideals of the ring S(M)
of semialgebraic functions on a semialgebraic set M (see for instance [10, Sect. 3] for further
details concerning z-ideals of the ring S(M)).
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On the spectra of rings of semialgebraic functions 305

Definition 2.10 Along this work whenever we consider an ideal of S�(M)we mean a proper
ideal of S�(M). Recall that an ideal a of S(M) is a z-ideal if whenever two functions
f, g ∈ S(M) satisfy Z M ( f ) ⊂ Z M (g) and f ∈ a, then g ∈ a.

One of the main properties of z-ideals is that they enjoy a Nullstellensatz (see for instance
[10, 3.4]). Namely,

Theorem 2.11 (Nullstellensatz) Let M ⊂ R
n be a locally compact semialgebraic set. Let a

be an ideal of S(M). Then, a is a z-ideal if and only if a is a radical ideal. In particular, if p

is a prime ideal, then p is a z-ideal.

To finish this section, we present the concept and some properties of the semialgebraic
depth of a prime ideal (see [11, 4.4]), where it has been fruitfully used to compute the Krull
dimension of rings of semialgebraic and bounded semialgebraic functions. In this work, we
will provide further applications of such invariant.

(2.12) Semialgebraic depth. Let M ⊂ R
n be a semialgebraic set. We define the semialge-

braic depth of a prime ideal p of S(M) as dM (p) = min{dim Z M ( f ) : f ∈ p}.
A basic property of semialgebraic depth is the following one, proved in [11, 4.4].

(2.12.1) Let p, q be two prime z-ideals of S(M) such that q � p. Then, dM (p) < dM (q).
In particular, if M ⊂ R

n is a locally compact semialgebraic set, all prime ideals of
S(M) are, by 2.11, z-ideals, and so given prime ideals p, q of S(M) such that q � p, then
dM (p) < dM (q).

3 Generalities about spectra of rings of semialgebraic functions

In this section we study some preliminary algebraic and topological properties concerning
spectra of rings of semialgebraic and bounded semialgebraic functions that will be used in
the next sections to obtain the main results of this work. Surely, part of the terminology and
preliminary results that we present now are well-known, but we include them here to fix the
notation and to use them freely in the subsequent sections. We have preferred, because of its
simplicity, to adjust the classical approach for rings of continuous functions, which is nicely
and rigorously compiled by Gillman–Jerison in [14], instead of the more sophisticated theory
of “Real closed rings” created much later by Schwartz in [16] and [17], and employed, among
others, by Cherlin and Dickmann (see [4,5]). Although this last theory has been revealed as
a very powerful tool, it requires a larger algebraic background that seems to be inessential to
approach the study of the algebraic, functorial and topological properties of spectra of rings
of semialgebraic functions on a semialgebraic subset of the Euclidean space R

n . Of course,
for our approach it is crucial to work over the real numbers and not over an arbitrary real
closed field.

(3.1) Zariski spectra versus real spectra. We recall here that the Zariski spectrum
Spec�

s(M) = Spec(S�(M)) of S�(M) is the collection of all prime ideals of S�(M). This set
Spec�

s(M) is usually endowed with the Zariski topology which has as a basis of open sets
the family of sets DSpec�

s (M)( f ) = {p ∈ Spec�
s(M) : f �∈ p}, where f ∈ S�(M). We denote

ZSpec�
s (M)( f ) = Spec�

s(M)\DSpec�
s (M)( f ).

(3.1.1) We recall first: For every p ∈ Spec�
s(M) the quotient field qf(S�(M)/p) admits a

unique ordering. In particular, this implies that p is a real ideal, that is, if a2
1 + · · · + a2

p ∈ p,
then each ai ∈ p. For further details concerning real or orderable fields and the real spectrum
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306 J. F. Fernando, J. M. Gamboa

of a commutative ring with unity, see [1, Ch.1, Ch.7]. As it is well-known, it is enough to check
that each function f ∈ S�(M) is, mod p, either a square or the opposite of a square. Indeed,
since ( f −| f |)( f +| f |) = f 2 −| f |2 = 0 ∈ p, we have f +p = ±(| f |+p) = ±(√| f |+p)2

where
√| f | ∈ S�(M).

Thus qf(S�(M)/p) admits a unique ordering ≤ whose nonnegative elements are the
squares. Hence, the map p �→ (p,≤) defines a bijection between Spec�

s(M) and the real spec-
trum Specr (S�(M)) of S�(M). In what follows both spectra will be denoted by Spec�

s(M).
Moreover, using the fact that a radical ideal coincides with the intersection of all prime ideals
containing it, we deduce that any radical ideal a of S�(M) is a real ideal.

(3.1.2) Each radical ideal a of the ring S�(M) satisfies a “convexity condition” which is ubiq-
uitous in Real Geometry. Namely: Given f, g ∈ S�(M) such that g ∈ a and 0 ≤ f (x) ≤ g(x)
for each point x ∈ M, then also f ∈ a.

Indeed, by 2.8, we get a semialgebraic function h ∈ S�(M) defined by

h(x) =
{

f 2(x)
g(x) if g(x) �= 0,

0 if g(x) = 0.

Since f 2 = gh ∈ a, also f ∈ a. In particular, if f, g ∈ S�(M) and f is a unit such that
0 < f (x) ≤ g(x) for each point x ∈ M , then also g is a unit.

(3.1.3) In fact, we can translate the convexity condition to the ordering of the field
qf(S�(M)/p). More precisely: If 0 ≤ f + p ≤ g + p in the ring S�(M)/p, then we may
assume that 0 ≤ f (x) ≤ g(x) for all x ∈ M .

Indeed, f +p = | f |+p and so we can substitute f by | f |. This guarantees that f (x) ≥ 0
for allx ∈ M . On the other hand, since (g− f )+p ≥ 0, the difference h = (g− f )−|g− f | ∈ p

and (g − h) − f = |g − f | just attains nonnegative values. Thus, substituting g by g − h,
we are done.

(3.1.4) As another consequence of the convexity, we have: The set of prime ideals of the
ring S�(M) containing a fixed prime ideal p form a chain. Otherwise, there would exist two
prime ideals q1 and q2 in S�(M) containing p such that q1 �⊂ q2 and q2 �⊂ q1. Thus, there
exist f1 ∈ q1\q2 and f2 ∈ q2\q1. Since qf(S�(M)/p) is a real field, we may assume that
0 ≤ f 2

2 + p ≤ f 2
1 + p, and in fact we can suppose, by 3.1.3, that 0 ≤ f 2

2 (x) ≤ f 2
1 (x) for all

x ∈ M . This together with f1 ∈ q1 and 3.1.2 implies that f2 ∈ q1, a contradiction.

(3.1.5) We also deduce from convexity property for radical ideals that: The quotient A =
S�(M)/a of the ring S�(M) by a radical ideal a is an f -ring, that is, it is a lattice-ordered
ring such that for all f , g, h ≥ 0 in A, inf{ f , g} = 0 implies that inf{ f h, g} = 0.

Indeed, since a is radical, it is a convex ideal and, by [14, 5.2], the quotient A is a lattice-
ordered ring. Let {pi }i∈I be the collection of all prime ideals of S�(M) containing a. Observe
that since a = ⋂

i∈I pi the map ϕ : A = S�(M)/a ↪→ ∏
i∈I S�(M)/pi is a monomorphism

whose compositions πi ◦ϕ : A → S�(M)/pi with the canonical projections πi are surjective
for all i ∈ I , that is, A is the subdirect sum of the totally ordered rings {S�(M)/pi }i∈I . Thus,
by [3], A is an f -ring.

(3.1.6) The usual topology in the real spectrum of S�(M) is the spectral topology which has
as a basis of open sets the family of sets

USpec�
s (M)( f1, . . . , fr ) = {p ∈ Spec�

s(M) : f1 + p > 0, . . . , fr + p > 0 in qf(S�(M)/p)}
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where f1, . . . , fr ∈ S�(M). In fact, this topology coincides with the Zariski topology because

DSpec�
s (M)( f ) = USpec�

s (M)( f ) ∪ USpec�
s (M)(− f )

and USpec�
s (M)( f ) = DSpec�

s (M)( f + | f |).
Thus, along the rest of the work we will use indistinctly both basis of open sets according

to our convenience.

(3.1.7) Of course, M (endowed with the Euclidean topology) can be embedded in the
Zariski spectrum Spec�

s(M) as a dense subspace via the map φ : M → Spec�
s(M), p �→ m�

p .
For the time being, we identify M with φ(M), which provides the equalities: DM ( f ) =
DSpec�

s (M)( f ) ∩ M and Z M ( f ) = ZSpec�
s (M)( f ) ∩ M .

The rings S(M) and S∗(M) differ, in a crucial way, in their respective sets of units.
In fact, a function f ∈ S∗(M) with empty zeroset is a unit in S(M), but it is not neces-
sarily a unit in S∗(M), because 1/ f needs not to be bounded. The semialgebraic function
f : M → R, x �→ 1/(1 + ‖x‖), where M is an unbounded semialgebraic set, provides an
example of such situation. In some sense, this is the main difference between both rings. As
we see immediately, the ring S(M) is a localization of S∗(M). This provides a nice relation
between the prime ideals of both rings. Namely,

Lemma 3.2 Let M ⊂ R
n be a semialgebraic set and let W(M) ⊂ S∗(M) be the multiplica-

tive set of those functions f ∈ S∗(M) such that Z M ( f ) = ∅. Then, S(M) = S∗(M)W(M) is
the localization of S∗(M) at the multiplicative set W(M). Moreover, we denote by S(M) ⊂
Spec(S∗(M)) the set of prime ideals of S∗(M) which do not intersect W(M). Then:

(i) Spec(S(M)) is in one-to-one correspondence with S(M) via the maps

j : Spec(S(M)) → S(M), p �→ p ∩ S∗(M)
j−1 : S(M) → Spec(S(M)), q �→ qS(M).

(ii) Both maps j and j−1 preserve inclusions and, in particular, minimal ideals.
(iii) The map j is a homeomorphism onto its image S(M), and it is moreover a closed map

if and only if M is compact; if such is the case S∗(M) = S(M) and j = id.

Proof The equality S(M) = S∗(M)W(M) is pretty evident since each function f ∈ S(M)
can be written as a quotient f = g/h, where g = f/(1+ f 2) ∈ S∗(M) and h = 1/(1+ f 2) ∈
W(M). This guarantees all the asserts about the map j except for its not closedness when
M is not compact. To check the latter we may assume, by 2.1, that M is bounded. So if it
is not compact there exists a point p ∈ ClRn (M)\M . Consider the bounded semialgebraic
function f on M given by x �→ ‖x− p‖. Note that f ∈ W(M) but it is not a unit in S∗(M).
Let m∗ be a maximal ideal in S∗(M)which contains f . Since f ∈ W(M), m∗ �∈ im j and so
the map j : Specs(M) → Spec*

s (M) is not surjective. On the other hand, since M is a dense
subset of Spec*

s (M) contained in im j , this last is not a closed subset of Spec*
s (M). Hence,

j is not a closed map. �

Next, we focus our attention in a relevant subspace of Spec�
s(M): its maximal spectrum.

We begin by exposing some preliminary properties of this space that will be used later.

(3.3) Maximal spectra. The collection β�
sM of all maximal ideals of S�(M) is endowed

with the topology induced by the Zariski topology (or equivalently the spectral topology) of
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Spec�
s(M). In what follows, given f, f1, . . . , fr ∈ S�(M), we denote

Dβ�
s M ( f ) = DSpec�

s (M)( f ) ∩ β�
sM,

Uβ�
s M ( f1, . . . , fr ) = USpec�

s (M)( f1, . . . , fr ) ∩ β�
sM,

Zβ�
s M ( f ) = β�

sM\Dβ�
s M ( f ) = ZSpec�

s (M)( f ) ∩ β�
sM.

By [1, 7.1.25(ii)], β�
sM is a compact, Hausdorff space and it contains M as a dense sub-

space, that is, β�
sM is a Hausdorff compactification of M . Observe that if M is compact, then

the injective continuous map φ : M → β�
sM, p �→ m�

p is in fact bijective (because in this
case M is dense and closed in β�

sM) and so β�
sM = M .

(3.3.1) As it happens for rings of continuous functions (see [14, Sect. 7]), the respective max-
imal spectra βs M and β*

sM of S(M) and S∗(M) are homeomorphic (see [13, 3.5] for full
details). Indeed, S�(M) being a Gelfand ring, the map (·)∗ : Specs(M) → β*

sM, p → p∗,
where p∗ is the only maximal ideal of S∗(M) containing p ∩ S∗(M), is well-defined. In
fact, (·)∗ = rM ◦ j1 where j1 : Specs(M) ↪→ Spec*

s (M), p → p ∩ S∗(M) and rM :
Spec*

s (M) → β*
sM is the retraction which maps each prime ideal of S∗(M) to the only

maximal ideal containing it. In addition, the previous map (·)∗ is continuous because so are
j1 and rM (see [15, 1.2]). Moreover, if j2 : βs M ↪→ Specs(M) is the inclusion map, also
� = rM ◦ j1 ◦ j2 = (·)∗ ◦ j2 : βs M → β*

sM is continuous. Furthermore, � is proper,
because β�

sM is compact and Hausdorff, and in fact it is surjective too, because the closed
set im� contains the dense subset M of β*

sM (see 3.1.7). In fact, as we prove in [13, 3.5],
the map � is also injective and therefore it is a homeomorphism. More precisely,

(3.3.2) The map� : βs M → β*
sM which maps each maximal ideal m of S(M) to the unique

maximal ideal m∗ of S∗(M) that contains m ∩ S∗(M), is a homeomorphism. Moreover,
�(mp) = m∗

p for all p ∈ M .
Thus, it is not an abuse of notation to denote m∗ every maximal ideal of S∗(M). Moreover,

m will denote the unique maximal ideal of S(M) such that m ∩ S∗(M) ⊂ m∗.

(3.4) Some maximal ideals of S∗(M) that will be useful in this work are those defined by
means of a semialgebraic path (see [10, 2.5]). Namely, given a semialgebraic set M ⊂ R

n and
a semialgebraic path α : (0, 1] → M , the set m∗

α = { f ∈ S∗(M) : limt→0( f ◦ α)(t) = 0} is
a maximal ideal of S∗(M). Of course, distinct enough semialgebraic paths provide different
maximal ideals. More precisely,

Lemma 3.5 Let M ⊂ R
n be a bounded and noncompact semialgebraic set, and let p ∈

ClRn (M)\M. Let αi : [0, 1] → R
n be two semialgebraic paths such that αi (0) = p,

αi ((0, 1]) ⊂ M and α1((0, 1]) ∩ α2((0, 1]) = ∅. Then, m∗
α1

�= m∗
α2

.

Proof Notice that Ci = αi ((0, 1]) is a closed subset of M for i = 1, 2. By 2.9, there exists
f ∈ S∗(M) such that f |C1 ≡ 1 and f |C2 ≡ 0. Hence, f ∈ m∗

α2
\m∗

α1
, and so m∗

α1
�= m∗

α2
.

�
Remark 3.6 Let M ⊂ R

n be a semialgebraic set. Then, M is compact if and only if the right
square of the following diagram commutes, that is, j1 ◦ j2 = j3 ◦�. Thus, the behaviour of
� is not “optimal” in case M is not compact.

M
� � ��

idM

��

βs M � � j2 ��

�

���
�
� Specs(M)� �

j1
��

M
� � �� β*

sM
� � j3 �� Spec*

s (M)
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Indeed, if M is compact, then β�
sM = {m�

p : p ∈ M} ≡ M . Thus, m∗
p = mp ∩ S∗(M),

that is, ( j1 ◦ j2)(mp) = ( j3 ◦�)(m∗
p) for all p ∈ M . On the other hand, if M is not compact,

we may assume by 2.1 that M is bounded. Let p ∈ ClRn (M)\M ; by the Curve Selection
Lemma [1, 2.5.5], there exists a semialgebraic path α : [0, 1] → R

n such that α(0) = p and
α((0, 1]) ⊂ M . By 3.4, the set m∗

α = { f ∈ S∗(M) : limt→0( f ◦ α)(t) = 0} is a maximal
ideal of S∗(M). Let m ∈ βs M be the maximal ideal of S(M) such that �(m) = m∗

α and
consider the bounded semialgebraic function f : R

n → R, x �→ ‖x − p‖/(1 + ‖x − p‖),
whose zeroset in R

n is {p}, and so it is a unit in S(M). Thus, f ∈ m∗
α\m, which implies

( j1 ◦ j2)(m) = m ∩ S∗(M) �= m∗
α = ( j3 ◦�)(m).

4 Functoriality of Specs

In this section, we are mainly concerned with two questions: (1) Given a closed semialge-
braic subset C of a semialgebraic set M , we will realize the Zariski spectrum of S�(C) as
the closure of C in Spec�

s(M); (2) To compare the spectra of two suitable semialgebraic sets.
More precisely, we are led to compare Specs(N ) and Specs(M) where M is arbitrary and
N ⊂ M is open in M and locally compact. It is necessary to impose the local compactness
condition on N because Łojasiewicz’s inequality is not longer true for non locally compact
semialgebraic sets (see [10, 3.5]). On the other hand, it is often useful to compare Specs(M)
and Specs(X) where X is a semialgebraic compactification of a locally compact semialge-
braic set M (see also [11]). Recall also that if M is locally compact, then it is open in X
(see 2.4). Hence, both situations are very similar and admit a simultaneous treatment.

We begin by presenting some well-known basic functorial properties for Spec�
s . From

them we achieve straightforwardly our first purpose of realizing the spectrum of S�(C) as
the closure of C in Spec�

s(M) for every closed semialgebraic subset C of M .

Lemma 4.1 Let N ⊂ R
n and M ⊂ R

m be semialgebraic sets and let ϕ : N → M be a
semialgebraic map. Then:

(i) There exists a unique continuous map Spec�
s(ϕ) : Spec�

s(N ) → Spec�
s(M) which

extends ϕ.
(ii) Let q be a prime z-ideal of S(N ). Then, p = Specs(ϕ)(q) is a z-ideal of S(M).

(iii) Let ψ : M → P be another semialgebraic map, where P ⊂ R
p is a semialgebraic set.

Then, Spec�
s(ψ) ◦ Spec�

s(ϕ) = Spec�
s(ψ ◦ ϕ).

Proof The homomorphism φ : S�(M) → S�(N ), f �→ f ◦ ϕ induces a continuous map
Spec�

s(ϕ) : Spec�
s(N ) → Spec�

s(M), q �→ φ−1(q), and let us show that Spec�
s(ϕ) extends ϕ.

(i) Let q ∈ N and p = ϕ(q) ∈ M . Consider the maximal ideal n�
q of S�(N ) associated

to q and the maximal ideal m�
p of S�(M) associated to p. To prove that Spec�

s(ϕ) extends
ϕ it is enough to check that Spec�

s(ϕ)(n
�
q) is a maximal ideal, because this together with the

obvious inclusion Spec�
s(ϕ)(n

�
q) = φ−1(n�

q) ⊂ m�
p yields the equality Spec�

s(ϕ)(n
�
q) = m�

p .
But we have R ↪→ S�(M)/φ−1(n�

q) ↪→ S�(N )/ n�
q ∼= R and so φ−1(n�

q) is a maximal ideal
of S�(M). The uniqueness of Spec�

s(ϕ) follows from the density of N in Spec�
s(N ).

(ii) Let h ∈ S(M) and g ∈ p such that Z M (g) ⊂ Z M (h). Thus,

Z N (φ(g)) = Z N (g ◦ ϕ) ⊂ Z N (h ◦ ϕ) = Z N (φ(h)),

and since q is a z-ideal and φ(g) ∈ q, we deduce that φ(h) ∈ q, that is, h ∈ p.
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(iii) It suffices to employ the uniqueness in (i), because the equality

(Spec�
s(ψ) ◦ Spec�

s(ϕ))|N = Spec�
s(ψ)|M ◦ Spec�

s(ϕ)|N = ψ ◦ ϕ = Spec�
s(ψ ◦ ϕ)∣∣N

implies Spec�
s(ψ) ◦ Spec�

s(ϕ) = Spec�
s(ψ ◦ ϕ). �

Remarks 4.2 (i) Let N ⊂ M ⊂ R
n be semialgebraic sets, and let j : N ↪→ M be the inclu-

sion map. The induced map Spec�
s( j) : Spec�

s(N ) → Spec�
s(M) is defined by q �→ φ−1(q),

where φ : S�(M) → S�(N ), g �→ g|N = g ◦ j . By an (intuitive) abuse of notation we will
frequently write q ∩ S�(M) instead of φ−1(q).

(ii) In the proof of 4.1(ii) we have not used the primality of p and q. Therefore, if φ :
S(M) → S(N ), f �→ f ◦ ϕ, then φ−1(a) is a z-ideal of S(M) whenever a is a z-ideal of
S(N ).

The following results, which are expectable and surely well-known, show the good behav-
iour of the operator Spec�

s .

Lemma 4.3 Let N ⊂ M ⊂ R
n be semialgebraic sets. Consider the homomorphism φ :

S�(M) → S�(N ), f → f |N and a prime ideal p of S�(M). Then, p ∈ ClSpec�
s (M)(N ) if

and only if ker φ ⊂ p. Moreover, if N is closed in M and p /∈ ClSpec�
s (M)(N ) there exists

f ∈ S�(M)\p such that N = Z M ( f ).

Proof Suppose that p ∈ ClSpec�
s (M)(N ) and let f �∈ p. Then, DN ( f ) = N ∩ DSpec�

s (M)( f )
is not empty, that is, there exists a point p ∈ N such that f (p) �= 0, and so f �∈ ker φ. Thus,
ker φ ⊂ p.

Conversely, suppose that ker φ ⊂ p and let g �∈ p, that is, p ∈ DSpec�
s (M)(g). Then,

g �∈ ker φ, that is, there exists a point p ∈ N such that g(p) �= 0, or equivalently, N ∩
DSpec�

s (M)(g) = DN (g) �= ∅. Hence, p ∈ ClSpec�
s (M)(N ).

For the second part, there exists, by 2.2, a function g ∈ S�(M) such that N = Z M (g). If
g /∈ p, we choose f = g. Hence, suppose that g ∈ p. Since p /∈ ClSpec�

s (M)(N ) there exists
h ∈ ker φ\p. Then, the function f = g2 + h2 does the job. �
Corollary 4.4 Let N ⊂ M ⊂ R

n be semialgebraic sets such that M is locally compact.
Consider the homomorphism φ : S(M) → S(N ), f → f |N and a prime ideal p of S(M).
Then, p ∈ ClSpecs(M)(N ) if and only if there exists h ∈ p such that Z M (h) ⊂ ClM (N ).

Proof By 4.3, p ∈ ClSpecs(M)(N ) if and only if it contains all the semialgebraic functions on
M vanishing identically on N . Suppose first that p ∈ ClSpecs(M)(N ), and let h ∈ S(M) such
that ClM (N ) = Z M (h). Then, h ∈ p because h|N ≡ 0.

Suppose, conversely, that p contains a function h ∈ S(M) such that Z M (h) ⊂ ClM (N ),
and let g ∈ S(M) be a function that vanishes identically on N . Then, Z M (h) ⊂ Z M (g), and
since M is locally compact, p is, by 2.11, a z-ideal. Therefore g ∈ p. �
Corollary 4.5 Let C1,C2 ⊂ M ⊂ R

n be semialgebraic sets such that C1 and C2 are closed
subsets of M. Then, ClSpec�

s (M)(C1 ∩ C2) = ClSpec�
s (M)(C1) ∩ ClSpec�

s (M)(C2).

Proof For the nonobvious inclusion let q ∈ ClSpec�
s (M)(C1) ∩ ClSpec�

s (M)(C2). Consider the
epimorphisms (see 2.9)

φ : S�(M) → S�(C1 ∩ C2), f �→ f |C1∩C2 , φ1 : S�(M) → S�(C1), f �→ f |C1 ,

φ2 : S�(M) → S�(C2), f �→ f |C2 , θ : S�(M) → S�(C1 ∪ C2), f �→ f |C1∪C2 .

By 4.3, it suffices to check that ker φ ⊂ q. The ideal q contains ker φ1 + ker φ2, because
q ∈ ClSpec�

s (M)(C1)∩ClSpec�
s (M)(C2). Thus, it is enough to prove that ker φ ⊂ ker φ1+ker φ2.

123

Author's personal copy



On the spectra of rings of semialgebraic functions 311

Indeed, let f ∈ ker φ. Since f |C1∩C2 = 0, there exists g ∈ S�(C1∪C2) such that g|C1 = 0
and g|C2 = f |C2 . Since θ is surjective, there exists h1 ∈ S�(M) such that θ(h1) = g. Note
that h1 ∈ ker φ1 and h2 = f − h1 ∈ ker φ2. So, f = h1 + h2 ∈ ker φ1 + ker φ2, and we are
done. �

The next result characterizes the surjectivity of the homomorphism S�(M) → S�(N ) for
semialgebraic sets N ⊂ M ⊂ R

n in terms of the corresponding spectra. Namely,

Corollary 4.6 Let N ⊂ M ⊂ R
n be semialgebraic sets and let j : N ↪→ M be the inclusion

map. The following statements are equivalent:

(i) The homomorphism φ : S�(M) → S�(N ), f �→ f |N is surjective.
(ii) Spec�

s(N ) ∼= ClSpec�
s (M)(N ) via Spec�

s( j).

Proof First, we check that (i) �⇒ (ii). Since φ is surjective, S�(M)/ ker φ ∼= S�(N ). Hence,
there exists a one-to-one correspondence between the prime ideals of S�(N ) and the prime
ideals of S�(M) containing ker φ. That is, by 4.3, the map

γ : Spec�
s(N ) → ClSpec�

s (M)(N ) ⊂ Spec�
s(M), q �→ Spec�

s( j)(q)

is bijective and continuous. To prove that it is a homeomorphism it is enough to see that
it is an open map. Given g ∈ S�(N ) there exists G ∈ S�(M) such that G|N = g and so
γ (DSpec�

s (N )(g)) = DSpec�
s (M)(G) ∩ ClSpec�

s (M)(N ) is an open subset of ClSpec�
s (M)(N ).

Next, we prove that (ii) �⇒ (i). We distinguish two cases according as we are dealing
with S(M) or S∗(M). In the first case, suppose by way of contradiction, that φ is not sur-
jective or, equivalently, that N is not closed in M (see 2.9(i)). Let p ∈ ClM (N )\N . The
maximal ideal mp ∈ ClSpecs(M)(N ) and so q = Specs( j)−1(mp) ∈ Specs(N ). Note that
φ(mp) = φ(φ−1(q)) ⊂ q. Now, since the semialgebraic function f (x) = ‖x − p‖ lies in
mp , then f |N ∈ q. However, this is impossible because f |N is a unit of the ring S(N ). Thus,
N is closed in M , and so φ is surjective.

Next, we proceed with the case of bounded functions. If φ is not surjective, then, by 2.9, N
is not closed in M and there exists a point p ∈ ClM (N )\N such that the germ Np contains two
different half-branch germs. Let α1 and α2 be parametrizations of these half-branch germs.
By 3.5, the maximal ideals m∗

αi
∈ Spec*

s (N ) are different but, as we will see immediately,
Spec*

s ( j)(m∗
αi
) = m∗

p for i = 1, 2, which contradicts the injectivity of Spec*
s ( j). Indeed,

f ∈ Spec*
s ( j)(m∗

αi
) if and only if limt→0( f ◦ αi )(t) = 0, or equivalently, if f (p) = 0;

hence, Spec*
s ( j)(m∗

αi
) = m∗

p , as claimed. �
Next, as a consequence of 4.5 and 4.6, we describe the relationship between the connected

components of a semialgebraic set M and the ones of Spec�
s(M).

Corollary 4.7 Let M1, . . . ,Mk be the connected components of the semialgebraic set M ⊂
R

n. Then, their closures ClSpec�
s (M)(Mi ) ∼= Spec�

s(Mi ) are the connected components of
Spec�

s(M). In particular, Spec�
s(M) has a finite number of connected components, and it is

connected if and only if M is so.

Proof First, recall that M has a finite number of connected components ([1, 2.4.5]), say
M1, . . . ,Mk , which are closed semialgebraic subsets of M . Note that each ClSpec�(M)(Mi ) is

connected and Spec�
s(M) = ⋃k

i=1 ClSpec�(M)(Mi ). Thus, the sets ClSpec�(M)(Mi ) being, by
4.5, pairwise disjoint, the closures ClSpec�(M)(M1), . . . ,ClSpec�(M)(Mk) are the connected
components of Spec�

s(M).
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On the other hand, the homomorphism φi : S�(M) → S�(Mi ), f �→ f |Mi is, by 2.9,
surjective, because Mi is closed in M . Hence, ClSpec�

s (M)(Mi ) and Spec�
s(Mi ) are homeo-

morphic, by 4.6. �
Now, we are ready to focus our efforts in the study of Specs(M) by comparing it with

other better known spectra. Given semialgebraic sets Y ⊂ M ⊂ R
n such that Y is closed in

M , we denote E(Y ) = { f ∈ S(M) : Z M ( f ) = Y }, which is nonempty by 2.2, and define
the spectral envelope of Y in Specs(M) as L(Y ) = ⋃

f ∈E(Y ) ZSpecs(M)( f ). The main result
of this section, which is a precise reformulation of 1.1, is the following.

Theorem 4.8 Let N ⊂ M ⊂ R
n be semialgebraic sets such that N is open in M and locally

compact. Denote Y = M\N and let j : N ↪→ M be the inclusion map. Then,

(i) The map Specs( j) : Specs(N ) → Specs(M) is a homeomorphism onto its image
Specs(M)\L(Y ).

(ii) Let q ∈ Specs(N ) such that p = Specs( j)(q) is a maximal ideal of S(M). Then, q is a
maximal ideal of S(N ).

(iii) Assume that N � M is a dense subset of M.

(a) If p is a minimal prime ideal of S(M), then p �∈ L(Y ).
(b) There exist maximal ideals n of S(N ) whose images Specs( j)(n) are not maximal

ideals of S(M).
The proof of 4.8 requires some preliminary work that we begin right now. We start with

some remarks concerning the spectral envelope L(Y ).
Remarks 4.9 Let Y ⊂ M ⊂ R

n be semialgebraic sets such that Y is closed in M and let
L(Y ) be the spectral envelope of Y in Specs(M). Then:

(i) By 4.3, Y ⊂ ClSpecs(M)(Y ) ⊂ ⋂
f ∈E(Y ) ZSpecs(M)( f ) ⊂ L(Y ).

(ii) If M is locally compact then ClSpecs(M)(Y ) = L(Y ).
Indeed for (ii) it is enough to check, by 4.3, that each p ∈ L(Y ) contains the kernel
of the homomorphism φ : S(M) → S(Y ), g → g|Y . Let f ∈ E(Y ) such that f ∈ p.
Observe that Z M ( f ) = Y ⊂ Z M (h) for each h ∈ ker φ and so, p being a z-ideal
because M is locally compact, also h ∈ p.

(iii) It is proved in [7, 4.14] that all maximal ideals of S(M) are z-ideals. Then, arguing
as in (ii), it follows that L(Y ) ∩ βs M = ClSpecs(M)(Y ) ∩ βs M = Clβs M (Y ). Thus, by
4.8(ii), we deduce that

Specs( j)(Specs(N )) ∩ βs M = Specs( j)(βs N ) ∩ βs M = βs M\ Clβs M (Y ).

(iv) If M is not locally compact then the equality ClSpecs(M)(Y ) = L(Y ) is false in general,
as we see in the next example.

Example 4.10 Let M ⊂ R
n be a semialgebraic set which is not locally compact. Then, there

exists a closed semialgebraic subset Y ⊂ M such that ClSpecs(M)(Y ) � L(Y ).
Indeed, there exist, by [10, 2.9], a closed semialgebraic subset C ⊂ M and a semialge-

braic homeomorphism ψ : C → T = {(x, y) ∈ R
2 : 0 < y ≤ x ≤ 1} ∪ {(0, 0)} and, by

[10, 3.5.1], the set

q = { f ∈ S(T ) : ∃ε > 0 | f extends continuously by 0 to T ∪ ((0, ε] × {0})}
is a fixed prime ideal of S(T ) which is not a z-ideal. Consider the ring epimorphism φ :
S(M) → S(T ), f �→ f |C ◦ ψ−1 and let us check that the prime ideal p = φ−1(q) ∈
L(Y )\ ClSpecs(M)(Y ), where Y = {p = ψ−1(0, 0)}.
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By 2.2, there exists g ∈ S(M) such that Z M (g) = C . Consider the semialgebraic func-
tion h = y ∈ S(T ). By 2.9, there exists f ∈ S(M) such that f |C = h ◦ ψ . Then, h1 =√

f 2 + g2 ∈ S(M) extends h ◦ ψ and Z M (h1) = {p}, that is, h1 ∈ E(Y ). Therefore,
p ∈ L(Y ), because h1 ∈ p.

On the other hand, by 2.9 there exists a1 ∈ S(M)with a1|T = a◦ψ , where a = x2 +y2 ∈
S(T ). Then, b1 =

√
a2

1 + g2 is a semialgebraic extension to M of a ◦ψ and Z M (b1) = {p},
that is, b1|Y ≡ 0. However, b1 �∈ p because a �∈ q, so, by 4.3, p �∈ ClSpecs(M)(Y ), as wanted.

�

Next, we present an algebraic characterization of the prime ideals occurring in the spectral
envelope L(Y ).
Lemma 4.11 Let N ⊂ M ⊂ R

n be semialgebraic sets such that N is open in M and locally
compact and denote Y = M\N. Let φ : S(M) → S(N ), f �→ f |N and let p be a prime
ideal of S(M). Then, the following conditions are equivalent:

(i) φ(p)S(N ) = S(N ).
(ii) There exists f ∈ p such that Z M ( f ) = Y , that is, p ∈ L(Y ).

The proof of 4.11 requires a preliminary result that will be useful also later (see 4.13).

Lemma 4.12 Let N ⊂ M ⊂ R
m be semialgebraic sets such that N is open in M and locally

compact and denote Y = M\N. Then,

(i) Z = ClRn (M)\N is a closed semialgebraic subset of R
n and Z ∩ M = Y . In particular,

there exists c ∈ S(Rn) such that ZRn (c) = Z.
(ii) For each f ∈ S(N ) and each c ∈ S(Rn) such that ZRn (c) = Z, there exist h ∈

S(ClRn (M)) and k ≥ 1 satisfying h|N = (c|N )
k f and ZClRn (M)(h) = Z ∪ Z N ( f ).

Proof (i) It is pretty obvious that Z ∩ M = (ClRn (M)\N ) ∩ M = M\N = Y . Let us check
that Z is closed in R

n . In fact, it is enough to see that N is open in ClRn (M). Observe that, by
2.6, N ⊂ Mlc and clearly it is an open subset of Mlc. On the other hand, since Mlc is dense
in ClRn (M) we deduce, by 2.4, that Mlc is an open subset of ClRn (M); hence, N is open in
ClRn (M), and we are done. Now, the existence of c ∈ S(Rn) such that ZRn (c) = Z follows
from 2.2.

(ii) By [1, 2.6.4] there exist an integer k ≥ 1 and h ∈ S(ClRn (M)) which is identically
zero outside N satisfying h|N = (c|N )

k f . Hence, since Z N (c) = Z ∩ N = ∅,

ZClRn (M)(h) = (ClRn (M)\N ) ∪ Z N (h) = Z ∪ Z N ( f ) ∪ Z N (c) = Z ∪ Z N ( f ),

as wanted. �
Proof of Lemma 4.11 (i) �⇒ (ii) If φ(p)S(N ) = S(N ) there exist a1, . . . , ar ∈ p and
b1, . . . , br ∈ S(N ) such that 1 = (a1|N )b1 +· · ·+(ar |N )br . By 4.12, there exists c ∈ S(Rn)

such that Z = ClRn (M)\N = ZRn (c) and Z ∩ M = Y ; in particular Z M (c|M ) = Y . Again
by 4.12, there exists an integer k ≥ 1 such that each product (c|N )

kbi ∈ S(N ) can be contin-
uously extended by zero to the whole ClRn (M). Denote by fi such extension and gi = fi |M .
Then, (c|M )

k = a1g1 + · · · + argr ∈ p, and so also f = c|M ∈ p and Z M ( f ) = Y .
(ii) �⇒ (i) This is trivial because (1/ f )|N is a unit in S(N ). �
The next result, which has a quite technical formulation explains, among other things, the

behaviour of the semialgebraic depth (see 2.12) under suitable extension and contraction of
ideals, and it is the key for the proof of 4.8. Anyway, this result has interest by its own and
has further consequences (see for instance [7]).
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Lemma 4.13 Let N ⊂ M ⊂ R
n be semialgebraic sets such that N is open in M and locally

compact. Let φ : S(M) → S(N ), f �→ f |N be the homomorphism induced by the inclusion
j : N ↪→ M and denote Y = M\N. The following properties hold:

(i) Let q ∈ Specs(N ) and p = Specs( j)(q). Then, dN (q) = dM (p) and p �∈ L(Y ).
(ii) Let p ∈ Specs(M)\L(Y ). Then, p is a z-ideal and q = φ(p)S(N ) is a prime z-ideal of

S(N ). Moreover, Specs( j)(q) = p and q is the unique prime ideal a of S(N ) such that
Specs( j)(a) = p.

Proof Let us denote φ1 : S(ClRn (M)) ↪→ S(M), f �→ f |M and θ = φ ◦ φ1. By 4.12, there
exists c ∈ S(Rn) such that ZRn (c) = Z = ClRn (M)\N . Let us prove now the items in the
statement.

(i) Observe first that the semialgebraic function c has no zero in N and so c|M �∈ p =
Specs( j)(q) = φ−1(q). Next, let f ∈ q; by 4.12(ii) there exist k ≥ 1 and a semialgebraic func-
tion h ∈ S(ClRn (M)) such that h|N = (c|N )

k f and ZClRn (M)(h) = Z∪Z N ( f ). Thus h|N ∈ q

and so h ∈ θ−1(q). By 2.2, there exists G ∈ S(Rn) such that ZRn (G) = ClRn (Z N ( f )). Let us
check that the semialgebraic function g = G|M ∈ p and it satisfies dim Z N ( f ) ≥ dim Z M (g).
First, we see that g ∈ p. Indeed,

ZClRn (M)(h) = Z ∪ Z N ( f ) = ZRn (c) ∪ ClRn (Z N ( f ))

= ZRn (c) ∪ ZRn (G) = ZRn (cG) = ZClRn (M)(cG).

Therefore, ClRn (M) being locally compact, we get, by 2.11, c|ClRn (M)G|ClRn (M) ∈ θ−1(q).
Thus, (c|M )g = (c|M )(G|M ) ∈ φ−1(q) = p and, since c|M �∈ p, we conclude that g ∈ p.
Now we must compare the dimensions of Z N ( f ) and Z M (g):

dim Z N ( f ) = dim ClRn (Z N ( f )) = dim ZRn (G) ≥ dim Z M (g).

Hence, we conclude that dM (p) ≤ dN (q). The converse inequality is obvious because
dim Z M (h) ≥ dim(Z N (h|N )) for each h ∈ p, and so dM (p) = dN (q). Finally, notice
that φ(p)S(N ) ⊂ q �= S(N ), that is, φ(p)S(N ) �= S(N ) and, by 4.11, p �∈ L(Y ).

(ii) First, we check that q is a prime ideal. Once this be done, it follows from 2.11 that it
is a z-ideal, because N is locally compact. Indeed, let f, g ∈ S(N ) such that f g ∈ q. We
write f g = (a1|N )b1 + · · · + (ar |N )br , where each ai ∈ p and bi ∈ S(N ). By 4.12 there
exists an integer k ≥ 1 such that (c|N )

k f , (c|N )
kg and (c|N )

2kbi can be extended by zero,
respectively, to semialgebraic functions F,G, Bi ∈ S(ClRn (M)). Therefore, the product
(F |M )(G|M ) satisfies

(F |M )(G|M ) = a1(B1|M )+ · · · + ar (Br |M ) ∈ p.

Observe that the previous equality holds because

(F |N )(G|N )=(c|N )
k f (c|N )

kg = (c|N )
2k f g = (a1|N )(c|N )

2kb1 + · · · + (ar |N )(c|N )
2kbr ,

and outside N both sides of the equality vanish. By the primality of p, we may assume
that F |M ∈ p and this implies (c|N )

k f = F |N ∈ q. Since c|N is a unit in S(N ) because
Z N (c) = ∅, we conclude that f ∈ q.

Let us check now the equality p = Specs( j)(q). Since p ⊂ φ−1(φ(p)S(N )) =
Specs( j)(q), it suffices to prove the converse inclusion. Fix h ∈ Specs( j)(q); hence
h|N ∈ q = φ(p)S(N ), and so

h|N = (a1|N )b1 + · · · + (ar |N )br , where each ai ∈ p and bi ∈ S(N ).
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By 4.12, there exists an integer s ≥ 1 such that (c|N )
s(h|N ) and (c|N )

sbi can be extended by
zero, respectively, to semialgebraic functions H , hi ∈ S(ClRn (M)). Therefore, H |M satisfies

H |M = a1(h1|M )+ · · · + ar (hr |M ) ∈ p.

The previous equality holds because

H |N = (c|N )
s(h|N ) = (a1|N )(c|N )

sb1 + · · · + (ar |N )(c|N )
sbr ,

and outside N both sides of the equality vanish identically. Thus, (c|M )
sh = H |M ∈ p, and

c|M �∈ p because Z M (c) = Y and p �∈ L(Y ). Hence h ∈ p, and so p = Specs( j)(q).
Next, it follows from 4.1(ii) that p = Specs( j)(q) is a z-ideal since q is so. Finally, let a be

a prime ideal of S(N ) with Specs( j)(a) = p. Thus, q = φ(p)S(N ) = φ(φ−1(a))S(N ) ⊂ a,
and by (i), dN (a) = dM (p) = dN (q). Hence, N being locally compact, the equality q = a

follows from 2.11 and 2.12.1. �

Now, we are almost ready to prove 4.8. Just in order to avoid unnecessary repetitions, we
recall first an elementary but useful criterion of minimality, whose proof is straightforward.

Lemma 4.14 Let R be a reduced commutative ring with unity and let p be a prime ideal of
R. Then, p is a minimal prime ideal of R if and only if for every f ∈ p there exists g ∈ R\p

such that f g = 0.

Proof of Theorem 4.8 Recall that, by 4.12(ii), there exists a semialgebraic function c ∈
S(Rn) such that ZRn (c) = Z = ClRn (M)\N .

(4.8.1) Moreover, by 4.12(ii), given g ∈ S(N ) there exist G ∈ S(ClRn (M)) and k ≥ 1 such
that G|N = (c|N )

kg and ZClRn (M)(G) = Z N (g) ∪ Z .
Let us enter into the proof of the different assertions in the statement of 4.8:
(i) By 4.13, the map Specs( j) : Specs(N ) → Specs(M)\L(Y ) is a continuous bijec-

tion. Thus, to prove that it is a homeomorphism, it is enough to check that it is an
open map. In fact, it suffices to prove that Specs( j)(DSpecs(N )(g)) is an open subset of
Specs(M)\L(Y ) for every g ∈ S(N ). With the notation in 4.8.1, all reduces to check the
equality Specs( j)(DSpecs(N )(g)) = DSpecs(M)(G|M )\L(Y ).

Given p ∈ DSpecs(M)(G|M )\L(Y ) there exists q ∈ Specs(N ) such that Specs( j)(q) = p.
Then, (c|N )

kg = G|N �∈ q, and so q ∈ DSpecs(N )(g). Therefore p ∈ Specs( j)(DSpecs(N )(g)).
Conversely, let p ∈ Specs( j)(DSpecs(N )(g)) and let q ∈ DSpecs(N )(g) with p =

Specs( j)(q). Notice that c|N �∈ q, because Z N (c) = ∅; hence, G|N = (c|N )
kg �∈ q, and so

G|M �∈ p = Specs( j)(q).
(ii) Since Z M (c) = Y and p �∈ L(Y ), it follows that c|M �∈ p. Let now f ∈ S(N )\q; by

4.12 there exist an integer s ≥ 1 and F ∈ S(ClRn (M)) such that F |N = (c|N )
s f . Since

both c|N , f �∈ q, also F |N �∈ q, that is, F |M �∈ p. Since p is a maximal ideal there exists
H ∈ S(M) such that 1 − H(F |M ) ∈ p. Thus, the function h = H |N ∈ S(N ) satisfies the
equality 1 − h(c|N )

s f ∈ q, that is, f is invertible modulo q; hence, q is a maximal ideal.
(iii.a) Assume that a minimal prime ideal p of S(M) lies in L(Y ). Thus, Y = Z M ( f ) for

some f ∈ p. By the minimality of p, there exists g ∈ S(M)\p such that f g = 0 (see 4.14).
Hence, M = ClM (N ) = ClM (M\Z M ( f )) ⊂ Z M (g), that is, g = 0, a contradiction.

(iii.b) Suppose, by way of contradiction, that Specs( j)(n) is a maximal ideal of S(M) for
all n ∈ βs N . Hence, since βs N is compact and βs M is Hausdorff, the image of the continuous
map Specs( j)|βs N : βs N → βs M is a closed subset of βs M that contains N .
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On the other hand, Clβs M (N ) = βs M , because N is dense in M and M is dense in βs M .
Therefore, Specs( j)|βs N is surjective. This implies that

Y ⊂ βs M ∩ L(Y ) = Specs( j)(βs N ) ∩ L(Y )
⊂ Specs( j)(Specs(N )) ∩ L(Y ) = (Specs(M)\L(Y )) ∩ L(Y ) = ∅,

a contradiction. �
As a consequence of 4.13, and to finish this section, we get sufficient conditions for a

prime ideal to be a z-ideal in the general setting.

Corollary 4.15 Let M ⊂ R
n be a semialgebraic set and let p be a prime ideal of S(M) such

that Z M ( f ) ∩ Mlc �= ∅ for all f ∈ p. Then, p is a z-ideal.

Proof Let Y = M\Mlc and j : Mlc ↪→ M . By 2.6, Mlc is open in M and locally compact.
The hypothesis Z M ( f ) ∩ Mlc �= ∅ for all f ∈ p means that p �∈ L(Y ). Thus, by 4.13(ii), p

is a z-ideal. �
Example 4.16 The previous condition is sufficient but not necessary for a prime ideal to be a
z-ideal. Indeed, let M ⊂ R

n be a non locally compact semialgebraic set, and let p ∈ M\Mlc

and f : M → R,x �→ ‖x − p‖. Then, the maximal ideal mp is a z-ideal containing f but
Z M ( f ) ∩ Mlc = ∅.

5 Functoriality of Spec*
s

In this section we deal with the Zariski spectrum Spec*
s (M) of the ring S∗(M) of bounded

semialgebraic functions on a semialgebraic set M . Given a semialgebraic map ϕ : N → M ,
we will denote by Spec*

s (ϕ) : Spec*
s (N ) → Spec*

s (M) the induced map already defined in
4.1. The main result here is the following (see 1.2), which can be understood as the counterpart
of 4.8 for the Zariski spectrum Spec*

s (M).

Theorem 5.1 Let N ⊂ R
n and M ⊂ R

m be semialgebraic sets and let ϕ : N → M be a
semialgebraic map. Suppose there exists a semialgebraic set Y ⊂ M such that:

(i) M1 = M\Y is locally compact and dense in M.
(ii) The map ψ = ϕ|N1 : N1 = N\ϕ−1(Y ) → M1 = M\Y is a semialgebraic homeomor-

phism.

Denote Z = ClSpec*
s (M)

(Y ). Then, the map Spec*
s (ϕ) : Spec*

s (N ) → Spec*
s (M) is surjective

and its restriction Spec*
s (ϕ) | : Spec*

s (N )\ Spec*
s ( f )−1(Z) → Spec*

s (M)\Z is a homeomor-
phism.

The proof of 5.1 requires some preparation that we present divided into several steps.
First, we need to compare the spectra of suitable pairs of semialgebraic sets. More precisely,
we are led to compare Spec*

s (N ) and Spec*
s (M) where M is arbitrary and N ⊂ M is locally

compact and dense in M . The local compactness of N is still needed since we will use the
results obtained in the previous section about the map Specs( j) : Specs(N ) → Specs(M),
where j : N ↪→ M is the inclusion map. Moreover, it is also useful to compare the spectra
Spec*

s (M) and Spec*
s (X) = Specs(X), where X is a semialgebraic compactification of a

locally compact semialgebraic set M . As it is well-known, M being locally compact, it is
open in X (see 2.4). To avoid unnecessary repetitions we introduce the following definition,
which comprises simultaneously the situations described above.
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Definition 5.2 A suitable arranged tuple is a 5-tuple (M, N , Y, j, i), where:

(i) N � M ⊂ R
n are semialgebraic sets and N is locally compact and dense in M .

(ii) Y = M\N and j : N ↪→ M and i : Y ↪→ M are the inclusion maps.

Note that the pair (M, N ) determines the full tuple.

Remarks 5.3 (i) Recall that N being locally compact and dense in M , it is also an open subset
of M , see 2.4. Hence, Y = M\N = ClM (N )\N is a closed subset of M whose dimension is
smaller than dim N = dim M (see [1, 2.8.13]).

(ii) Notice that both situations described above are particular cases of a suitable arranged
tuple. The first one often corresponds to the choice (M, N ) = (M,Mlc), while the second
one corresponds to (M, N ) = (X,M).

The first step to approach the proof of 5.1 is the following result, which has interest by its
own and will be useful in further contexts (see for instance [9,12]).

Lemma 5.4 Let (M, N , Y, j, i) be a suitable arranged tuple and let p0 ⊂ p be prime ideals
of S∗(M) such that p0 is minimal 1 and p �∈ Z = ClSpec*

s (M)
(Y ). Then,

(i) a = p0S(N ) ∩ S∗(N ) is a prime ideal of S∗(N ) and a ∩ S∗(M) = p0.
(ii) b = √

pS∗(N )+ a is a prime ideal of S∗(N ) and Spec*
s ( j)−1(p) = {b}.

(iii) The map Spec*
s ( j)| : Spec*

s (N )\ Spec*
s ( j)−1(Z) → Spec*

s (M)\Z is a homeomor-
phism.

Before proving 5.4 we need some preliminary results concerning prime ideals. We begin
with a kind of counterpart of 4.11 in our setting. More precisely,

Lemma 5.5 Let (M, N , Y, j, i) be a suitable arranged tuple and let p ∈ Spec*
s (M) be a

prime ideal such that pS∗(N ) = S∗(N ). Then, p ∈ ClSpec*
s (M)

(Y ).

Proof By 4.3 all reduces to prove that ker φ ⊂ p, where φ : S∗(M) → S∗(Y ), f �→ f |Y .
Let h ∈ ker φ, that is, Y ⊂ Z M (h). The hypothesis pS∗(N ) = S∗(N ) means that there exist
a1, . . . , ar ∈ p and b1, . . . , br ∈ S∗(N ) such that 1 = (a1|N )b1 + · · · + (ar |N )br . By 2.8
there exists, for each index k, an extension uk ∈ S∗(M) of (h|N )bk . Then, since N is dense
in M , we get h = a1u1 + · · · + ar ur ∈ p, and we have finished. �

Next, we present a useful criterion to determine when a radical ideal of S∗(M) is a prime
ideal; for further results in this direction see also [7, 5.3–4].

Lemma 5.6 Let M ⊂ R
n be a semialgebraic set and let a be a radical ideal of S∗(M) which

contains a prime ideal p of S∗(M). Then, a is a prime ideal.

Proof Let f, g ∈ S∗(M) such that f g ∈ a and let h = | f | − |g|. Denote a1 = max{h, 0}
and a2 = min{h, 0} and observe that h = a1 + a2, |h| = a1 − a2 and a1a2 = 0 ∈ p. Since p

is a prime ideal, we may assume that a2 ∈ p ⊂ a. Note that h + m∗ ≥ 0 in the ordered field
S∗(M)/m∗ for all m∗ ∈ Zβs M (a2). Indeed,

h + m∗ = a1 + a2 + m∗ = a1 + m∗ = a1 − a2 + m∗ = |h| + m∗ = (
√|h| + m∗)2 ≥ 0.

1 In fact, for the validity of the statement it is enough to ask that no function in S∗(M) with empty zeroset
occurs in p0, and p0S(M) �∈ L(Y ). As we will see in 5.8 each minimal prime ideal p0 of S∗(M) satisfies
such properties.
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Thus, since h = | f | − |g|, we deduce that Zβs M (a2) ∩ Zβs M ( f ) ⊂ Zβs M (g) and so

Zβs M (a
2
2 + f 2g2) = Zβs M (a

2
2 + g2) ⊂ Zβs M (g).

Hence, by Łojasiewicz inequality for S∗(M) [10, 3.12], there exist b ∈ S∗(M) and � ≥ 1
such that g� = (a2

2 + f 2g2)b ∈ a. Therefore g ∈ a, because a is a radical ideal, and so a is a
prime ideal. �

Concerning minimal prime ideals we need the following.

Lemma 5.7 Let N ⊂ M ⊂ R
n be semialgebraic sets such that N is dense in M. Let q be a

minimal prime ideal of S∗(N ). Then, q ∩ S∗(M) is a minimal prime ideal of S∗(M).

Proof Notice that, by 2.6, Nlc is dense in M because it is dense in N and N is dense in
M . Since Nlc is a locally compact and dense subset of M , it follows from 2.4 that Nlc is
open in M . Thus, Y = M\Nlc is closed in M and by 2.2 there exists h ∈ S∗(M) such that
Z M (h) = Y .

To prove the minimality of p = q ∩ S∗(M) is equivalent, see 4.14, to check that for each
f ∈ p there exists g ∈ S∗(M)\p such that f g = 0. Since q is a minimal prime ideal and
f |N ∈ q, there exists g0 ∈ S∗(N )\q such that ( f |N )g0 = 0. Observe that, by 2.8, there
exists an extension g ∈ S∗(M) of (h|N )g0. Notice that f g = 0 because N is dense in M ,
and to finish it is enough to check that g �∈ p. Otherwise, (h|N )g0 = g|N ∈ q and since
g0 �∈ q we deduce that h|N ∈ q. By the minimality of q there exists b ∈ S∗(N )\q such that
(h|N )b = 0. This implies, since Z N (h) = N\Nlc, that N = ClN (Nlc) ⊂ Z N (b), that is,
b = 0, a contradiction. Hence, g �∈ p, and we are done. �
Lemma 5.8 Let (M, N , Y, j, i) be a suitable arranged tuple and let p be a minimal prime
ideal of S∗(M). Then, p �∈ ClSpec*

s (M)
(Y ), p ∩ W(M) = ∅, and pS(M) �∈ L(Y ), Moreover,

pS(N ) and pS(N ) ∩ S∗(N ) are, respectively, minimal prime ideals of S(N ) and S∗(N ).

Proof First, let us check that p �∈ ClSpec*
s (M)

(Y ). Otherwise, there exists, by 4.3, f ∈ q such
that Z M ( f ) = Y . Since p is a minimal prime ideal, there exists, by 4.14, g ∈ S∗(M)\p such
that f g = 0. Since Z M ( f ) = Y , we deduce that N ⊂ Z M (g), or equivalently, g = 0 because
N is dense in M , a contradiction; hence, p �∈ ClSpec*

s (N )
(Y ).

The above argument does not use that Y �= ∅. Hence, applied it to the “generalized suitable
arranged tuple” (M,M,∅, i, j)we deduce the equality p∩W(M) = ∅. Thus, pS(M) is, by
3.2, a minimal prime ideal of S(M). Moreover, since N is dense in M it follows from 4.8(iii.a)
that pS(M) �∈ L(Y ). Whence, by 4.13(ii), the map Specs( j) : Specs(N ) → Specs(M) sat-
isfies Specs( j)(pS(N )) = pS(M).

For the last part it suffices to see, using again by 3.2, that pS(N ) is a minimal prime ideal
of S(N ). Indeed suppose, by way of contradiction, that pS(N ) is not a minimal prime ideal
of S(N ). Then, there exists a prime ideal q � pS(N ). Observe that pS(N ) ∈ ClSpecs(N )(q)

and by the continuity of the map Specs( j) : Specs(N ) → Specs(M), it follows that

pS(M) = Specs( j)(pS(N )) ∈ ClSpecs(M)(Specs( j)(q)).

Thus, Specs( j)(q) ⊂ pS(M) and since pS(M) is a minimal prime ideal of S(M), we get
the equality Specs( j)(q) = pS(M), which contradicts the injectivity of Specs( j) proved in
4.8(i). �

Now, we are already prepared to approach the proof of 5.4.
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Proof of Lemma 5.4 First, to simplify notation, denote φ : S∗(M) → S∗(Y ), f �→ f |Y
and consider the commutative diagram

S∗(M) �
� ��

� �

��

S∗(N )� �

��
S(M) � � �� S(N )

Since Y is closed in M and p �∈ ClSpec*
s (M)

(Y ) there exists, by 4.3, a function h ∈ S∗(M)\p

such that Y = Z M (h). We fix this function all along the proof.
(i) The primality of a = p0S(N ) ∩ S∗(N ) has been just proved in 5.8. Moreover,

a ∩ S∗(M) = p0S(N ) ∩ S∗(N ) ∩ S∗(M) = p0S(N ) ∩ S∗(M) = p0.

Just the last equality requires some comment. Of course, it is enough to check the inclu-
sion p0S(N ) ∩ S∗(M) ⊂ p0. Let f ∈ p0S(N ) ∩ S∗(M) and let a1, . . . , ar ∈ p0 and
g1, . . . , gr ∈ S(N ) be such that f |N = (a1|N )g1 + · · · + (ar |N )gr ; hence,

f |N

1 + ∑r
i=1 |gi | =

r∑

i=1

(ai |N )
( gi

1 + ∑r
i=1 |gi |

)
.

By 2.8, the bounded semialgebraic functions on N

h|N

1 + ∑r
i=1 |gi | and

(
gi

1 + ∑r
i=1 |gi |

)

h|N

extend continuously by 0 to semialgebraic functions G0,Gi ∈ S∗(M) and it follows readily
(G0|N )( f |N ) = (a1|N )(G1|N ) + · · · + (ar |N )(Gr |N ). Moreover, N being dense in M , we
have G0 f = a1G1+· · ·+ar Gr ∈ p0. Note that Y = Z M (G0)while, by 5.8, p0S(M) /∈ L(Y ),
which implies G0 �∈ p0; hence, f ∈ p0, as wanted.

(ii) First we check that b �= S∗(N ). Otherwise, there would exist a� ∈ p, b� ∈ S∗(N ) and
c ∈ a such that 1 = (a1|N )b1 +· · ·+ (ar |N )br +c. Note that (h|N )c admits, by 2.8, an exten-
sion g ∈ S∗(M) to M . Thus, g|N = (h|N )c ∈ a, and so, by part (i), g ∈ a∩S∗(M) = p0 ⊂ p.
Also each product (h|N )b� admits, by 2.8, an extension g� ∈ S∗(M). Therefore, the equality

h|N = (a1|N )(h|N )b1 + · · · + (ar |N )(h|N )br + (h|N )c

can be rewritten as

h|N = (a1|N )(g1|N )+ · · · + (ar |N )(gr |N )+ g|N ,

and, N being dense in M , it follows that h = a1g1 + · · · + argr + g ∈ p, a contradiction.
Thus, b is a radical ideal of S∗(N ) containing the prime ideal a; hence, by 5.6, b is a prime
ideal too. Moreover, pS∗(N ) ⊂ b, and so

p ⊂ pS∗(N ) ∩ S∗(M) ⊂ b ∩ S∗(M).

In fact the inclusion p ⊂ b ∩ S∗(M) is an equality. Indeed, given f ∈ b ∩ S∗(M) there
exist k ≥ 1 and a� ∈ p, b� ∈ S∗(N ) and c ∈ a such that

( f |N )
k = (a1|N )b1 + · · · + (ar |N )br + c.

By 2.8, there exists g ∈ S∗(M) such that g|N = (h|N )c ∈ a. Therefore, by part (i), g ∈
a ∩ S∗(M) = p0 ⊂ p. Moreover, for each index 1 ≤ � ≤ r there exists, by 2.8, a function
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g� ∈ S∗(M) with g�|N = (h|N )b�. Hence, N being dense in M ,

h f k = a1g1 + · · · + argr + g ∈ p.

Since h �∈ p, we conclude that f k ∈ p and therefore f ∈ p. Thus, b ∩ S∗(M) = p, that is,
Spec*

s ( j)(b) = p.
To finish the proof of (ii), we must show that b is the unique prime ideal of S∗(N ) lying over

p. Suppose that b1 and b2 are two distinct prime ideals of S∗(N ) such that bi ∩ S∗(M) = p

for i = 1, 2. We may assume that there exists a function q ∈ b1\b2 and, by 2.8, there exists
p ∈ S∗(M) such that p|N = (h|N )q . Thus,

p ∈ b1 ∩ S∗(M) = p = b2 ∩ S∗(M),

and so (h|N )q ∈ b2, that is, h|N ∈ b2. Consequently, h ∈ b2 ∩ S∗(M) = p, a contradiction.
(iii) By part (ii) the map Spec*

s ( j)| : Spec*
s (N )\ Spec*

s ( j)−1(Z) → Spec*
s (M)\Z is bijec-

tive. Since it is continuous, to prove that it is a homeomorphism it is enough to check that it
is an open map. For that, it suffices to see that given g ∈ S∗(N ) the following equality holds
true:

Spec*
s ( j)(DSpec*

s (N )
(g) ∩ (Spec*

s (N )\ Spec*
s ( j)−1(Z)))

=
⋃

a∈ker φ

DSpec*
s (M)

(Ga) ∩ (Spec*
s (M)\Z),

where Ga ∈ S∗(M) is the unique extension by 0 of (a|N )g to the whole M . We check both
inclusions:

⊂) Let q ∈ DSpec*
s (N )

(g) ∩ (Spec*
s (N )\ Spec*

s ( j)−1(Z)). Then, g �∈ q and there exists
a ∈ ker φ\(q ∩ S∗(M)). Hence a|N �∈ q, and so (a|N )g �∈ q. Thus, Ga �∈ q ∩ S∗(M), that is,
Spec*

s ( j)(q) = q ∩ S∗(M) ∈ DSpec*
s (M)

(Ga) ∩ (Spec*
s (M)\Z).

⊃) Let p ∈ DSpec*
s (M)

(Ga) ∩ (Spec*
s (M)\Z) for some a ∈ ker φ and let q ∈ Spec*

s (N )

be the unique prime ideal of S∗(N ) with Spec*
s ( j)(q) = p. Note that g �∈ q, because Ga �∈ p

and Ga |N = (a|N )g. Thus, q ∈ DSpec*
s (N )

(g) ∩ (Spec*
s (N )\ Spec*

s ( j)−1(Z)), as wanted. �
We have proved in 4.8(iii) that if N � M ⊂ R

n are semialgebraic sets such that N is
dense in M and locally compact, then there exist a maximal ideals n of S(N ) whose image
Specs( j)(n) under the map Specs( j) : Specs(N ) → Specs(M) are not maximal ideals of
S(M). The situation changes dramatically in dealing with rings of bounded semialgebraic
functions even in the most general possible situation. Namely,

Lemma 5.9 Let ϕ : N → M be a semialgebraic map between the semialgebraic sets
N ⊂ R

n and M ⊂ R
m. Then, Spec*

s (ϕ) : Spec*
s (N ) → Spec*

s (M) maps β*
sN into β*

sM.

Proof First, we analyze the quotients of rings of bounded semialgebraic functions by maxi-
mal ideals. Let n∗ be a maximal ideal of S∗(N ). Then, S∗(N )/n∗ is (isomorphic to) the field
R of real numbers. Indeed, by 3.1.1 the field S∗(N )/n∗ admits a unique ordering, whose
cone of nonnegative elements is the subset {h + n∗ ∈ S∗(N )/n∗ : h − |h| ∈ n∗}. Thus, the
inclusion map R ↪→ S∗(N )/n∗ : r �→ r + n∗, is an (injective) homomorphism of ordered
fields and in fact it is an isomorphism, because S∗(N )/n∗ is an archimedean extension of R.

Next, consider the homomorphism φ : S∗(M) → S∗(N ), f �→ f ◦ ϕ. Let n∗ be a
maximal ideal of S∗(N ) and denote m∗ = Spec*

s (ϕ)(n
∗) = φ−1(n∗). Then, the sequence of

homomorphisms

R ↪→ S∗(M) φ→ S∗(N ) → S∗(N )/n∗ ∼= R
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induce isomorphisms S∗(M)/m∗ ∼= S∗(N )/n∗ ∼= R, which implies that m∗ is a maximal
ideal of S∗(M). �

The next step to approach 5.1 concerns the proof of the fact that if (M, N , Y, j, i) is a
suitable arranged tuple, then the map Spec*

s ( j) : Spec*
s (N ) → Spec*

s (M) is surjective. In
particular, this is so if M is a compactification of a locally compact semialgebraic set N . In
fact, we begin by studying this case.

Lemma 5.10 Let M ⊂ R
n be a locally compact semialgebraic set and let (X, j) be a

semialgebraic compactification of M. Then:

(i) Given a chain of prime ideals p0 � · · · � pr in S(X), there exists a chain of prime
ideals q0 � · · · � qr in S∗(M) such that qk ∩ S(X) = pk for k = 0, . . . , r .

(ii) The map Spec*
s ( j) : Spec*

s (M) → Spec*
s (X) is surjective.

Proof Since the second statement is a particular case of (i), it is enough to prove the first
one. Without loss of generality we may assume that j is the inclusion map and X ⊂ R

n .
Moreover, we can suppose that M � X , that is, M is noncompact, since for M = X the
result is evident. In fact, we may also assume that the given chain admits no refinement. In
particular, this implies that p0 is a minimal prime ideal of S(X) and pr is a maximal ideal of
S(X). Denote also pr+1 = S(X).
(5.10.1) We claim that: p0S(M) is a prime z-ideal of S(M) and p0S(M) ∩ S(X) = p0.

Indeed, let Y = X\M and observe that, p0 being a minimal prime ideal of S(X), it follows
from 4.8(iii.a) that p0 �∈ L(Y ). Now the claim follows from 4.13(ii).

By 5.4(i) and 5.8, q0 = p0S(M) ∩ S∗(M) is a minimal prime ideal of S∗(M) such that
q0 ∩ S(X) = p0. Consider, for each 1 ≤ k ≤ r + 1, qk = √

pkS∗(M)+ q0. Note that each
qk is either S∗(M) or a radical ideal (hence a z-ideal) of S∗(M) that contains the prime ideal
q0. Thus, by 5.6, either qk = S∗(M) or qk is a prime ideal. Fix an index 0 ≤ k ≤ r and let us
see that qk � qk+1. This will prove, in particular, that qk is a prime ideal for k = 0, . . . , r .

Denote dX (pr+1) = −1 and observe that, by 2.12.1, there exists f ∈ pk+1\pk such that
dim Z X ( f ) = dX (pk+1) (for k = r , we take f = 1, that satisfies dim Z X ( f ) = −1). Let us
see that f |M ∈ qk+1\qk . Otherwise there exist a1, . . . , as ∈ pk, b1, . . . , bs ∈ S∗(M), h ∈ q0

and � ≥ 1 such that ( f |M )
� = (a1|M )b1 +· · ·+ (as |M )bs + h. Since b1, . . . , bs are bounded

semialgebraic functions and f, a1, . . . , as are defined on the whole X there exists, by 2.8,
H ∈ S(T ) such that H |M = h, where T = M ∪ Z X (a2

1 + · · · + a2
s ). Hence, we get

(5.10.2) dX (pk+1) = dim Z X ( f �) ≥ dim ZT ( f �) ≥ dim ZT (H2 + a2
1 + · · · + a2

s ).
On the other hand, by 2.2, there exists g ∈ S∗(Rn) such that ZRn (g) = ClX (Z M (h)).

Note that Z M (g) = Z M (h) and, p0S(M) being a z-ideal, it follows that g|M ∈ p0S(M).
Thus, g|X ∈ p0S(M) ∩ S(X) = p0 ⊂ pk and so (g|X )

2 + a2
1 + · · · + a2

s ∈ pk . Moreover,
ZT (g) = ClX (Z M (h)) ∩ T ⊂ ZT (H), and consequently

ZT (H
2 + a2

1 + · · · + a2
s ) = ZT (H

2) ∩ Z X (a
2
1 + · · · + a2

s )⊃ ZT (g
2) ∩ Z X (a

2
1 +· · · + a2

s )

= T ∩Z X (g
2)∩Z X (a

2
1 + · · · + a2

s ) = Z X (g
2 + a2

1 + · · · + a2
s ).

Therefore, by 5.10.2, we get

dX (pk+1) ≥ dim ZT
(
H2 + a2

1 + · · · + a2
s

) ≥ dim Z X
(
g2 + a2

1 + · · · + a2
s

) ≥ dX (pk),

which contradicts 2.12.1. In this way we have proved that qk � qk+1 for 0 ≤ k ≤ r and, as
observed above, this implies that qk is a prime ideal of S∗(M) for k = 0, . . . , r .
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To finish, we must check the equality qk ∩ S(X) = pk . Pick functions fk+1 ∈ pk+1\pk

with dim Z X ( fk+1) = dX (pk+1). We have just proved that fk+1|M ∈ qk+1\qk , that is,
fk+1 ∈ qk+1 ∩ S(X)\qk ∩ S(X). In this way, we obtain a chain of prime ideals of S(X)

p0 = q0 ∩ S(X) � · · · � qr ∩ S(X).
Since, by 3.1.4, the unique prime ideals containing p0 are the pk’s for k = 0, . . . , r , it follows
that Spec*

s ( j)(qk) = qk ∩ S(X) = pk for all k = 0, . . . , r . �
The next result, that extends the previous one to a more general setting, completes 5.4 in

our approach to prove 5.1. Once more, this result have further applications in other contexts
(see [7,9]).

Corollary 5.11 Let (M, N , Y, j, i) be a suitable arranged tuple. Then:

(i) Given a chain of prime ideals p0 � · · · � pr in S∗(M), there exists a chain of prime
ideals q0 � · · · � qr in S∗(N ) such that qk ∩ S∗(M) = pk for k = 0, . . . , r .

(ii) The map Spec*
s ( j) : Spec*

s (N ) → Spec*
s (M) is surjective.

Proof Again, the second statement follows immediately from (i); hence it is enough to prove
the first one. We may assume that the given chain admits no refinement. In particular, this
implies that p0 is a minimal prime ideal of S∗(M) and pr is a maximal ideal of S∗(M). By
[11, 4.11], there exists a semialgebraic compactification (X, j0) of M such that if ak =
pk ∩ S(X) then ak � ak+1 for k = 0, . . . , r − 1.

Notice that (X, j1 = j0 ◦ j) is a compactification of N because, N being dense in M , it is
also dense in X . Thus, by 5.10, there exists a chain of prime ideals q0 � · · · � qr in S∗(N )
such that qk ∩ S(X) = ak for k = 0, . . . , r . This is the chain we are looking for.

(5.11.1) Let us see first that q0 ∩ S∗(M) = p0. Indeed, p0 being a minimal prime ideal, it
follows from 5.4(i) and 5.8 that q = p0S(N ) ∩ S∗(N ) is a minimal prime ideal of S∗(N )
such that q ∩ S∗(M) = p0, and all reduces to check the equality q0 = q.

But a0 is, by 5.7, a minimal prime ideal of S(X) and so, using again 5.4(i) and 5.8,
q̂ = a0S(N ) ∩ S∗(N ) is a minimal prime ideal of S∗(N ) with q̂ ∩ S(X) = a0. On the
other hand, a0 being a minimal prime ideal, it does not occur in L(Y ) = ClSpecs(X)(Y ), see
4.9(ii) and 4.8(iii.a), where Y = X\N . Hence, by 5.4(iii), q̂ = q0 because Specs( j)( q̂ ) =
Specs( j)(q0) = a0 /∈ ClSpecs(X)(Y ). Therefore, the inclusion a0 ⊂ p0 implies

q0 = q̂ = a0S(N ) ∩ S∗(N ) ⊂ p0S(N ) ∩ S∗(N ) = q,

and so q0 = q because q is a minimal prime ideal; hence, q0 ∩ S∗(M) = q ∩ S∗(M) = p0.
Consider now the chain of prime ideals b0 ⊂ · · · ⊂ br , where bk = qk ∩S∗(M). We must

check that each bk = pk , and we have just seen in 5.11.1 that this is so for k = 0. In fact
b0 ⊂ · · · ⊂ br is an strict chain because, for k = 0, . . . , r − 1,

bk ∩ S(X) = qk ∩ S(X) = ak � ak+1 = bk+1 ∩ S(X).
By 3.1.4, p0, . . . , pr are all the prime ideals of S∗(M) containing p0 = b0, and so bk = pk

for k = 1, . . . , r . �
After all this preparatory work, we present now the proof of 5.1 as an almost straightfor-

ward consequence of 5.4 and 5.11. More precisely,

Proof of Theorem 5.1 First, consider the inclusion maps j : N1 ↪→ N and i : M1 ↪→ M ,
that satisfy ϕ ◦ j = i ◦ ψ . Consequently, Spec*

s (ϕ) ◦ Spec*
s ( j) = Spec*

s (i) ◦ Spec*
s (ψ).
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Moreover, the map Spec*
s (ψ) : Spec*

s (N1) → Spec*
s (M1) is a homeomorphism because

ψ : N1 → M1 is so (use 4.1(iii)). By 5.11, the map Spec*
s (i) is surjective. Hence, so is the

composition Spec*
s (i) ◦ Spec*

s (ψ) = Spec*
s (ϕ) ◦ Spec*

s ( j) and so Spec*
s (ϕ) is surjective too.

Next, consider the commutative diagrams

N
ϕ �� M

N1
ψ ����

j

��

M1
��

i

��

�⇒
Spec*

s (N )
Spec*

s (ϕ) �� Spec*
s (M)

Spec*
s (N1)

Spec*
s (ψ) ��

Spec*
s ( j)

��

Spec*
s (M1)

Spec*
s (i)

��

As observed above, the map Spec*
s (ψ) : Spec*

s (N1) → Spec*
s (M1) is a homeomorphism.

Hence, to achieve the statement it is enough to use the following facts:

(1) ClSpec*
s (N )

(ϕ−1(Y )) ⊂ Spec*
s (ϕ)

−1(ClSpec*
s (M)

(Y )),
(2) Spec*

s (ψ)
−1(Spec*

s (i)
−1(ClSpec*

s (M)
(Y ))) = Spec*

s (ϕ ◦ j)−1(ClSpec*
s (M)

(Y )),
(3) Both maps

Spec*
s ( j) | : Spec*

s (N1)\ Spec*
s ( j)−1(ClSpec*

s (N )
(T )) → Spec*

s (N )\ ClSpec*
s (N )

(T ),

Spec*
s (i) | : Spec*

s (M1)\ Spec*
s (i)

−1(ClSpec*
s (M)

(T )) → Spec*
s (M)\ ClSpec*

s (M)
(Y ),

where T = ϕ−1(Y ) are, by 5.4(iv), homeomorphisms.

Next, we present other nice consequences of 5.11. We begin by characterizing under
what conditions, given an inclusion map j : N ↪→ M between two semialgebraic sets
N ⊂ M ⊂ R

n , the spectral map Spec*
s ( j) : Spec*

s (N ) → Spec*
s (M) is surjective.

Corollary 5.12 Let N ⊂ M ⊂ R
n be semialgebraic sets and let j : N ↪→ M be the

inclusion map. Then, the following statements are equivalent:

(i) The homomorphism φ : S(M) → S(N ), f �→ f |N is injective.
(ii) The set N is dense in M.

(iii) The map Spec*
s ( j) : Spec*

s (N ) → Spec*
s (M) is surjective.

(iv) The image of the restriction Spec*
s ( j)| : β*

sN → Spec*
s (M) is β*

sM.

Proof Let us prove first the equivalence between (i) and (ii). If N is not dense in M , there
exists f ∈ S(M) with Z M ( f ) = ClM (N ) �= M . Then, f ∈ ker φ\{0}, and so φ is not
injective. Suppose now that N is dense in M , and let f ∈ ker φ. Then, N ⊂ Z M ( f ), and so
M = ClM (N ) = Z M ( f ), that is, f = 0. Hence, φ is injective.

To prove (ii) �⇒ (iii) suppose that N is dense in M and consider the set Nlc ⊂ N ,
which is locally compact and dense in M . Thus, Nlc is an open subset of M (see 2.4) and
M ⊂ ClRn (Nlc). Consider the inclusion maps j1 : Nlc ↪→ N , i = j ◦ j1 : Nlc ↪→ M and
i1 : M\Nlc ↪→ M . Since (M, Nlc,M\Nlc, i, i1) is a suitable arranged tuple, the composition
Spec*

s (i) = Spec*
s ( j) ◦ Spec*

s ( j1) is, by 5.11, surjective and so Spec*
s ( j) is surjective too.

Next, we prove (iii) �⇒ (iv). By 5.9, Spec*
s ( j)(β*

sN ) ⊂ β*
sM and so it only remains to

check that β*
sM ⊂ Spec*

s ( j)(β*
sN ). Indeed, given m∗ ∈ β*

sM there exists p ∈ Spec*
s (N )

such that Spec*
s ( j)(p) = m∗. Let n∗ ∈ β*

sN be the unique maximal ideal of S∗(N ) con-
taining p. Then, m∗ = Spec*

s ( j)(p) ⊂ Spec*
s ( j)(n∗) and, m∗ being maximal, we get m∗ =

Spec*
s ( j)(n∗).

Finally, to show (iv) �⇒ (ii) we must check that N is dense in M . Otherwise, by 2.7 there
exists a nonempty open semialgebraic subset A of M\ρ1(M) = Mlc such that A ∩ N = ∅.
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Moreover, since β*
sM is a Hausdorff compactification of the locally compact space Mlc, it

follows from 2.4 that Mlc is an open subset of β*
sM . Consequently, A is a nonempty open

subset of β*
sM with A ∩ N = ∅, that is, the closed subset β*

sM\A of β*
sM contains N .

Therefore,

β*
sM = Spec*

s ( j)(β*
s N ) = Spec*

s ( j)(Clβ*
s N (N )) ⊂ Clβ*

s M (N ) ⊂ β*
sM\A,

which contradicts the fact that A is nonempty. �
Corollary 5.13 (Going-up) Let (M, N , Y, i, j) be a suitable arranged tuple. Then,

(i) If p0 � p1 are prime ideals of S∗(M) and q0 is a prime ideal of S∗(N ) such that
q0 ∩ S∗(M) = p0, there exists a prime ideal q1 of S∗(N ) such that q0 � q1 and
q1 ∩ S∗(M) = p1.

(ii) If p is a prime ideal of S∗(M) and q ∈ Spec*
s ( j)−1(p), then

Spec*
s ( j)(ClSpec*

s (N )
(q)) = ClSpec*

s (M)
(p).

Proof Observe first that part (ii) is an straightforward consequence of part (i) and 3.1.4.
Thus, let us prove (i). Indeed, let a0 be a minimal prime ideal of S∗(N ) contained in q0.
Observe that b0 = a0 ∩ S∗(M) ⊂ q0 ∩ S∗(M) = p0 is, by 5.7, a minimal prime ideal of
S∗(M). Let b0 � · · · � br be the collection of all the prime ideals of S∗(M) containing b0;
of course, p0 and p1 are two of these prime ideals, and let 1 ≤ s ≤ r with bs = p1. Since b0

is a minimal prime ideal, its fiber Spec*
s ( j)−1(b0) is, by 5.4(iii) and 5.8, a singleton, and so

Spec*
s ( j)−1(b0) = {a0}. By 5.11, there exists a chain of prime ideals a0 � · · · � ar in S∗(N )

such that ai ∩ S∗(M) = bi for i = 0, . . . , r . Hence, q1 = as is a prime ideal of S∗(N ) and
q1 ∩ S∗(M) = p1, and all reduces to see that q0 � q1. This follows from 3.1.4, because the
prime ideals of S∗(N ) containing a0 form a chain. �
Remark 5.14 (Going-down) Let us see now that if (M, N , Y, i, j) is a suitable arranged
tuple, then the homomorphism φ : S∗(M) ↪→ S∗(N ), f �→ f |N enjoys the going-down
property if and only if for all p ∈ Y the dimension dim p N = 1 and the germ Np has just
one semialgebraic half-branch set germ.

Suppose first that for all p ∈ Y = M\N = ClM (N )\N the dimension dim p N = 1
and the germ Np has just one semialgebraic half-branch set germ. Then, by 2.9, the injec-
tive homomorphism φ is also surjective. Thus, it trivially enjoys the going-down property.
Conversely, assume that there exists p ∈ Y such that the germ Np contains two different
semialgebraic half-branch set germs. We may assume the existence of two semialgebraic
paths α, γ : [0, 1] → M such that α(0) = γ (0) = p, α((0, 1]) ∪ γ ((0, 1]) ⊂ N and
α((0, 1])∩γ ((0, 1]) = ∅. Let p2 = m∗

p and consider the prime ideal of S∗(M) (see [8, 3.5])

p1 = { f ∈ S∗(M) : ∃ ε > 0 such that ( f ◦ α)|(0, ε] = 0} � p2.

The maximal ideal (see 3.4) of S∗(N ) defined by

q2 = {g ∈ S∗(N ) : lim
t→0

(g ◦ γ )(t) = 0}

satisfies Spec*
s ( j)(q2) = p2, and it is enough to prove there is no prime ideal q1 ⊂ q2 of

S∗(N ) such that Spec*
s ( j)(q1) = p1. Consider the maximal ideal

n = {g ∈ S(N ) : ∃ ε > 0 such that (g ◦ γ )|(0, ε] = 0}
of S(N ), see [8, 3.5]. By [8, 5.17], there is no prime ideal in between n ∩ S∗(N ) and q2.
Thus, if q1 ⊂ q2 is a prime ideal of S∗(N ) with Spec*

s ( j)(q1) = p1 then, by [7, 5.1],
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q1 ⊂ n ∩ S∗(N ). But this is false, because there exists, by 2.2, a function f ∈ S∗(M) such
that Z M ( f ) = α([0, 1]), and so f |N ∈ q1\(n ∩ S∗(N )). �

Corollary 5.15 Let N ⊂ M ⊂ R
n be semialgebraic sets such that N is dense in M and let

j : N ↪→ M be the inclusion map. Let C ⊂ M be a closed semialgebraic subset of M such
that C1 = C ∩ N is dense in C. Then, Spec*

s ( j)(ClSpec*
s (N )

(C1)) = ClSpec*
s (M)

(C).

Proof Consider the inclusion maps j1 : C1 ↪→ N , j2 : C1 ↪→ C, j3 : C ↪→ M and the
composition i = j ◦ j1 = j3 ◦ j2 : C1 ↪→ M . By 5.12, and since C1 is dense in C , we
have Spec*

s ( j2)(Spec*
s (C1)) = Spec*

s (C). Moreover, since C and C1 are, respectively, closed
semialgebraic subsets of M and N , the following equalities

Spec*
s ( j1)(Spec*

s (C1)) = ClSpec*
s (N )

(C1) and Spec*
s ( j3)(Spec*

s (C)) = ClSpec*
s (M)

(C).

are the immediate consequence of 2.9 and 4.6. Next, by the functoriality, Spec*
s (i) =

Spec*
s ( j) ◦ Spec*

s ( j1) = Spec*
s ( j3) ◦ Spec*

s ( j2), and we deduce

Spec*
s ( j)(ClSpec*

s (N )
(C1)) = Spec*

s (i)(Spec*
s (C1))

= Spec*
s ( j3)(Spec*

s (C)) = ClSpec*
s (M)

(C),

which concludes the proof. �
(5.16) Behaviour of Spec*

s under certain “stratifications”. The main result 5.1 of this sec-
tion is useful to analyze the spectrum of S∗(M) when M is not necessarily locally compact,
via the use of different “stratifications” of M . The first one is suggested by the construction
of the operator ρ1(·), see 2.6, and the strata are ordered in such a way that each of them is
maximal with respect to the local compactness property in the complement in M of the union
of the precedent ones (and the first stratum is maximal in M).

Definition 5.17 Let M ⊂ R
n be a semialgebraic set. We define the family PM = {Pi (M)}i≥1

of maximal locally compact pieces of M as follows: Consider N1 = M and Ni+1 = ρ1(Ni )

for i ≥ 1 and define Pi (M) = Ni\Ni+1 for i ≥ 1. From [1, 2.8.13] it follows that dim Ni+1 <

dim Ni −1. In particular, the family (of nonempty elements of) PM is finite. Moreover, Pi (M)
is, by 2.6, the largest locally compact and dense subset of Ni . This together with the equality
P1(M) = M\ρ1(M) justify the name of these sets associated to M .

Furthermore, by the definition of ρ1(·), Ni+1 is a closed subset of Ni and, by 2.6, Pi (M) =
Ni\Ni+1 is dense in Ni . Thus, proceeding inductively it follows that each Ni is closed in M
and ClM (Pi (M)) = Ni for i ≥ 1.

Proposition 5.18 Let M ⊂ R
n be a semialgebraic set and let PM = {Pi (M)}r

i=1 be the
family of maximal locally compact pieces of M. Let ji : Pi (M) ↪→ Ni = ClM (Pi (M))
be the inclusion map. Then, Spec*

s (M) is the disjoint union of subsets homeomorphic to
Spec*

s (Pi (M))\ Spec*
s ( ji )−1(ClSpec*

s (Ni )
(ρ1(Ni ))) for i = 1, . . . , r .

Proof Notice that Ni+1 = ρ1(Ni ) and Pi (M) = Ni\Ni+1 for i = 1, . . . , r , where Nr+1 =
∅. Since M = ⋃r

i=1 Ni , we have

r⋃

i=1

(ClSpec*
s (M)

(Ni )\ ClSpec*
s (M)

(Ni+1)

= ClSpec*
s (M)

(N1)\ ClSpec*
s (M)

(Nr+1) = ClSpec*
s (M)

(M) = Spec*
s (M).
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By 4.6, the spaces ClSpec*
s (M)

(Ni )\ ClSpec*
s (M)

(Ni+1) and Spec*
s (Ni )\ ClSpec*

s (Ni )
(Ni+1) are

homeomorphic. Thus, to finish it is enough to check that the spaces

Spec*
s (Ni )\ ClSpec*

s (Ni )
(Ni+1) and Spec*

s (Pi (M))\ Spec*
s ( ji )

−1(ClSpec*
s (Ni )

(ρ1(Ni )))

are homeomorphic. But this last follows from 5.4(iii) applied to the suitable arranged tuple
(Nk = ClM (Pk(M)),Pk(M), Nk\Pk(M), jk, ik), where ik : Nk\Pk(M) ↪→ Nk . �

Our last goal in this section is to reduce the local study of the spectrum of the ring of
bounded semialgebraic functions on an arbitrary semialgebraic set M to the study of the
semialgebraic spectrum of S∗(Rm) for each 0 ≤ m ≤ dim M .

Proposition 5.19 Let M ⊂ R
n be a semialgebraic set. Then, there exist semialgebraic sets

A1, . . . , Ar ⊂ M and closed semialgebraic subsets C1, . . . ,Cr of M, such that:

(i) Each Ai is Nash diffeomorphic to R
di for some 0 ≤ di ≤ dim M, via a Nash diffeo-

morphism ϕi : R
di → Ai .

(ii) M = ⋃r
i=1 Ai .

(iii) Spec*
s (M) is the disjoint union of open subsets which are homeomorphic via the map

Spec*
s ( ji ◦ ϕi ) to the open subsets of Spec*

s (R
di )

Ai = Spec*
s (R

di )\ Spec*
s ( ji ◦ ϕi )

−1(ClSpec*
s (M)

(Ci ))

for i = 1, . . . , r , where ji : Ai ↪→ M is the inclusion map.

Proof We proceed by induction on the dimension of M . If M has dimension 0 the result is
trivially true because Spec*

s (M) = M . Suppose the result proved for dimension d − 1 and
let us see that it is also true for d = dim M .

Let B = Reg(M), which is an open semialgebraic subset of M , see 2.3. By [1, 2.9.10], B is
the disjoint union of a finite number of Nash submanifolds Bi for i = 1, . . . , s, each of them
Nash diffeomorphic to an open hypercube (0, 1)dim Bi . We may assume that for i = 1, . . . , �,
the Nash manifold Bi has dimension d and that for i = � + 1, . . . , s the dimension of Bi

is < d . Note that B0 = ⋃�
i=1 Bi is an open subset of B and so of M , because both B0 and

B are pure dimensional Nash manifolds of dimension d . Let E0 = M\B0 which is a closed
semialgebraic subset of M of dimension ≤ d − 1, see 2.3. Let T0 = ClM (B0) which is a
closed pure dimensional subset of M of dimension d that satisfies M = T0 ∪ E0. This last
implies Spec*

s (M) = ClSpec*
s (M)

(T0) ∪ ClSpec*
s (M)

(E0), and therefore

Spec*
s (M)\ ClSpec*

s (M)
(E0) = ClSpec*

s (M)
(T0)\ ClSpec*

s (M)
(E0). (∗)

Let j : T0 ↪→ M be the inclusion map. Since T0 is closed in M it follows from 2.9 and
4.6 that the induced map Spec*

s ( j) : Spec*
s (T0) → ClSpec*

s (M)
(T0) is a homeomorphism. By

the same reason, ClSpec*
s (M)

(E0) is homeomorphic to Spec*
s (E0) via the map induced by the

inclusion map E0 ↪→ M . Thus, the spaces

ClSpec*
s (M)

(T0)\ ClSpec*
s (M)

(E0) and Spec*
s (T0)\ Spec*

s ( j)−1(ClSpec*
s (M)

(E0))

are homeomorphic. Let j ′ : B0 ↪→ T0 be the inclusion map. Recall that dim E0 ≤ d − 1 and
T0 is a pure dimensional semialgebraic set of dimension d such that B0 = T0\(E0 ∩ T0) is
locally compact, because it is a Nash manifold. Hence, by 5.4, the spaces

Spec*
s (B0)\ Spec*

s ( j ′)−1(ClSpec*
s (T0)

(E0 ∩ T0)) and Spec*
s (T0)\ ClSpec*

s (T0)
(E0 ∩ T0)
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are homeomorphic via Spec*
s ( j ′). Note also that

ClSpec*
s (T0)

(E0 ∩ T0) ⊂ Spec*
s ( j)−1(ClSpec*

s (M)
(E0)).

Consequently, the set Spec*
s (B0)\ Spec*

s ( j ◦ j ′)−1(ClSpec*
s (M)

(E0)) is homeomorphic, via

Spec*
s ( j ◦ j ′), to Spec*

s (T0)\ Spec*
s ( j)−1(ClSpec*

s (M)
(E0)) which, as we have seen above in

(∗), is homeomorphic to Spec*
s (M)\ ClSpec*

s (M)
(E0).

On the other hand, B0 = ⋃�
i=1 Bi where the Bi ’s are the connected components of B0.

By 4.7, Spec*
s (B0) ∼= ⊔�

i=1 Spec*
s (Bi ) and the subspaces ClSpec*

s (B0)
(Bi ) ∼= Spec*

s (Bi ), for

i = 1, . . . , � are the connected components of Spec*
s (B0). Thus,

Spec*
s (B0)\ Spec*

s ( j ◦ j ′)−1(ClSpec*
s (M)

(E0))

∼=
�⊔

i=1

(Spec*
s (Bi )\ Spec*

s (ei )
−1(ClSpec*

s (M)
(E0)))

where ei : Bi ↪→ M is the inclusion map. Let ψi : R
d → Bi be a Nash diffeomorphism for

i = 1, . . . , �. Then,

Spec*
s (M)\ ClSpec*

s (M)
(E0) ∼= Spec*

s (B0)\ Spec*
s ( j ◦ j ′)−1(ClSpec*

s (M)
(E0))

∼=
�⊔

i=1

(Spec*
s (R

d)\ Spec*
s (ψi ◦ ei )

−1(ClSpec*
s (M)

(E0))).

Let us denote A j = B j and C j = E0 for j = 1, . . . , �. Note that each A j is Nash
diffeomorphic to R

d and each C j is closed in M . Moreover, B0 = M\E0 = ⋃�
j=1 A j .

Now, since dim E0 ≤ d − 1 and ClSpec*
s (M)

(E0) ∼= Spec*
s (E0) by 4.6, we apply to E0

the inductive hypothesis to obtain semialgebraic subsets A�+1, . . . , Ar ⊂ M and closed
semialgebraic subsets of E0 (and hence of M), say C�+1, . . . ,Cr , such that:

(i) Each Ai is Nash diffeomorphic to R
di for some 0 ≤ di ≤ dim E0, via a Nash diffeo-

morphism ϕi : R
di → Ai .

(ii) E0 = ⋃r
i=�+1 Ai .

(iii) Spec*
s (E0) is the disjoint union of sets which are homeomorphic via the map Spec*

s ( ji ◦
ϕi ) to the open subset of Spec*

s (R
di )

Ai = Spec*
s (R

di )\ Spec*
s ( ji ◦ ϕi )

−1(ClSpec*
s (E0)

(Ci ))

for i = �+ 1, . . . , r , where ji : Ai ↪→ E0 is the inclusion map.
Finally, a straightforward verification shows that the semialgebraic subsets A1, . . . , Ar

and C1, . . . ,Cr of M satisfy all the required conditions. �

6 Functoriality of βs and β*
s

We have proved in 4.8 the existence of semialgebraic mapsϕ : N → M and maximal ideals of
S(N )whose image under the induced map Specs(ϕ) : Specs(N ) → Specs(M) is not a maxi-
mal ideal of S(M). However, by [11, 3.1(iii)] and [15, 1.2], the retraction sM : Specs(M) →
βs M , which maps each prime ideal of S(M) to the unique maximal ideal of S(M) containing
it, is a continuous map. In this way, we define βsϕ = sM ◦ Specs(ϕ)|βs N : βs N → βs M .
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Observe that since N and M are respectively dense in βs N and βs M , the map βsϕ is the
unique continuous extension of ϕ : N → M to βs N taking values in βs M .

On the other hand, by 5.9, Spec*
s (ϕ) : Spec*

s (N ) → Spec*
s (M) maps β*

sN into β*
sM .

Hence, we denote β*
sϕ = Spec*

s (ϕ)|β*
s N : β*

sN → β*
sM . Again by [11, 3.1(iii)] and [15,

1.2], the retraction rM : Spec*
s (M) → β*

sM which maps each prime ideal of S∗(M) to the
unique maximal ideal of S∗(M) containing it, is a continuous map. Consider the inclusion
maps iM : βs M ↪→ Specs(M) and jM : β*

sM ↪→ Spec*
s (M), and let kM : Specs(M) →

Spec*
s (M), p �→ p∩S∗(M)which is, by 3.2, a homeomorphism onto its image. By 3.3.1&2,

the composition �M = rM ◦ kM ◦ iM : βs M → β*
sM is a homeomorphism. Moreover, we

have sM = �−1
M ◦ rM ◦ kM and kM ◦ Specs(ϕ) = Spec*

s (ϕ) ◦ kN . This, together with the
equality rM ◦Spec*

s (ϕ)◦ jN = Spec*
s (ϕ)◦ jN , provides the following commutative diagram:

N

ϕ

��

� � �� βs N

�N

��

βsϕ

��

� � iN �� Specs(N )

Specs(ϕ)

��

sN
�� � � kN �� Spec*

s (N )

Spec*
s (ϕ)

��

rN ��
β*

sN

β*
sϕ

��

��jN

��

M
� � �� βs M

�M

��
� � iM �� Specs(M)

sM
�� � � kM �� Spec*

s (M)
rM ��

β*
sM��jM

��

Thus, via �N and �M , we can translate the properties of the operator β*
s to properties of βs.

This is why we focus our attention in the study of the behaviour of β*
s.

(6.1) In what follows, we will use the retraction rM : Spec*
s (M) → β*

sM to transfer to
β*

smany statements proved in Sect. 5 for Spec*
s . We have the following commutative diagram

N

ϕ

��

� � �� β*
sN

β*
sϕ

��

� � jN �� Spec*
s (N )rM

��

Spec*
s (ϕ)

��
M

� � �� β*
sM

� � jM �� Spec*
s (M)rM

��

We proceed first to establish some direct consequences of the commutativity of the dia-
gram above and the corresponding results for Spec*

s . Of course, we begin by pointing out (as
a direct consequence of 4.1) the functoriality of β*

s.

Corollary 6.2 Let ϕ : N → M and ψ : M → P be semialgebraic maps between
semialgebraic sets N ⊂ R

n,M ⊂ R
m and P ⊂ R

p. Then β*
sψ ◦ β*

sϕ = β*
s(ψ ◦ ϕ) and

β*
sϕ : β*

sN → β*
sM is the unique continuous extension of ϕ to β*

sN taking values in β*
sM.

Next, concerning the closure in β*
sM of a semialgebraic subset of M , we adapt to our

context, by means of diagram 6.1, the corresponding results 4.3 and 4.6 for Spec*
s (M).

Corollary 6.3 Let N ⊂ M ⊂ R
n be semialgebraic sets and consider the homomorphism

φ : S∗(M) → S∗(N ), f → f |N induced by the inclusion map j : N ↪→ M.

(i) Let m∗ ∈ β*
sM. Then, m∗ ∈ Clβ*

s M (N ) if and only if ker φ ⊂ m∗.
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(ii) If φ is surjective, then β*
sN ∼= Clβ*

s M (N ) ⊂ β*
sM via β*

s j . Moreover, the homeomor-

phism Spec*
s ( j) : Spec*

s (N ) → ClSpec*
s (M)

(N ) extends the homeomorphism β*
s j .

Remarks 6.4 (i) In general β*
sN �∼= Clβ*

s M (N ). Consider, for instance, the open disc M =
{x2 + y2 < 1} ⊂ R

2 and the punctured circle N = {x2 + y2 = 1/4}\{(1/2, 0)}. Then, one
can check that β*

sN is homeomorphic to [0, 1] (see for instance [13, 4.9]) while the closure
Clβ*

s M (N ) = ClM (N ) = {x2 + y2 = 1/4} is homeomorphic to S
1.

Thus, if we do not impose φ to be surjective in 6.3, then the map β*
sϕ : β*

sN → Clβ*
s M (N )

is a quotient map, (that is, a proper, surjective and continuous map) which is not in general
a homeomorphism. �

Again, as it happens for Spec�
s(M) (see 4.5), the closure in β*

sM commutes with finite
intersections of closed semialgebraic subsets of M . Namely,

Corollary 6.5 Let C1,C2 ⊂ M ⊂ R
n be semialgebraic sets such that C1 and C2 are closed

subsets of M. Then, Clβ*
s M (C1 ∩ C2) = Clβ*

s M (C1) ∩ Clβ*
s M (C2).

Concerning the connected components of β*
sM , we prove, using 4.7, the following result.

Corollary 6.6 Let M1, . . . ,Mk be the connected components of the semialgebraic set M ⊂
R

n. Then, their closures Clβ*
s M (Mi ) ∼= β*

sMi are the connected components of β*
sM. In par-

ticular, β*
sM has a finite number of connected components, and it is connected if and only if

M is so.

Proof In 4.7 we proved that the connected components of Spec*
s (M) are ClSpec*

s (M)
(Mi ) ∼=

Spec*
s (Mi ). By 6.1, rM (ClSpec*

s (M)
(Mi )) = Clβ*

s M (Mi ) are connected subsets of β*
sM whose

union equals β*
sM . Since each Clβ*

s M (Mi ) is closed in β*
sM and they are, by 6.5, finitely

many and pairwise disjoint, we conclude that Clβ*
s M (M1), . . . ,Clβ*

s M (Mk) are the connected

components of β*
sM . Finally, by 6.3, Clβ*

s M (Mi ) ∼= β*
sMi for i = 1, . . . , k.

In the main result of this section, which follows essentially from 4.1 and 6.1, we study
the behaviour of the operator β*

s on a suitable arranged tuple. More precisely,

Theorem 6.7 Let (M, N , Y, j, i) be a suitable arranged tuple and consider the homomor-
phism φ : S∗(M) ↪→ S∗(N ), f �→ f |N induced by j . Then:

(i) The map β*
s j : β*

sN → β*
sM is surjective, proper and continuous.

(ii) The restriction β*
s j | : β*

sN\(β*
s j)−1(Clβ*

s M (Y )) → β*
sM\ Clβ*

s M (Y ) is a homeomor-
phism.

(iii) The diagram

Spec*
s (N )\ Spec*

s ( j)−1(ClSpec*
s (M)

(Y )) ��

rN

��

Spec*
s (M)\ ClSpec*

s (M)
(Y )

rM

��
β*

sN\(β*
s j)−1(Clβ*

s M (Y )) ��
��

jN

��

β*
sM\ Clβ*

s M (Y )
��

jM

��

is commutative. That is, the homeomorphism in the upper row extends the homeomor-
phism in the bottom row.

(iv) Let m be a maximal ideal of S(M) and let m∗ be the maximal ideal of S∗(M) containing
p = m ∩ S∗(M). Then, a = φ(p)S∗(N ) �= S∗(N ). Moreover, each maximal ideal n∗
of S∗(N ) containing a satisfies β*

s j (n∗) = m∗.
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Proof (i) Since β*
s j is a continuous map from the compact space β*

sN to the Hausdorff space
β*

sM , it is a proper map and in particular its image is a closed subset of β*
sM . But im β*

s j
contains N , which is a dense subset of β*

sM . Hence, β*
s j is also surjective.

Parts (ii) and (iii) follow straightforwardly from 4.1, 5.4 and 6.1.
(iv) Suppose that a = S∗(N ). Then, there exist a1, . . . , ar ∈ S∗(N ) and b1, . . . , br ∈ p

such that 1 = a1(b1|N )+ · · · + ar (br |N ). Since b1, . . . , br ∈ m the zeroset Z M (b2
1 + · · · +

b2
r ) �= ∅ and we choose a point p ∈ Z M (b2

1 +· · ·+b2
r ). On the other hand, the semialgebraic

functions a1, . . . , ar being bounded, there exist the limit of each product ai bi at the point p,
which equals 0, and so 0 = limx→p(a1b1 + · · · + ar br ) = limx→p 1 = 1, a contradiction.
Thus, a is a (proper) ideal of S∗(N ). Finally, let n∗ be a maximal ideal of S∗(N ) which
contains a. Then

p = m ∩ S∗(M) ⊂ a ∩ S∗(M) ⊂ n∗ ∩ S∗(M) ∈ β*
sM.

But m∗ is the unique maximal ideal of S∗(M) that contains the prime ideal p. Hence,
β*

s j (n∗) = n∗ ∩ S∗(M) = m∗, and we are done. �
The counterpart of 5.1 in our context can be stated as follows.

Corollary 6.8 Let N ⊂ R
n and M ⊂ R

m be semialgebraic sets and let ϕ : N → M be a
semialgebraic map. Suppose that there exists a closed semialgebraic set Y ⊂ M such that:

(a) M1 = M\Y is locally compact and dense in M.
(b) The restriction ψ = ϕ|N1 : N1 = N\ϕ−1(Y ) → M1 = M\Y is a semialgebraic

homeomorphism.

Denote Z = Clβ*
s M (Y ). Then, the map β*

sϕ : β*
sN → β*

sM is surjective and the restriction

β*
sϕ| : β*

sN\(β*
sϕ)

−1(Z) → β*
sM\Z is a homeomorphism.

As one can expect, we obtain for the maximal spectrum β�
sM some “stratification” results

in the same vein as 5.18 and 5.19.

Corollary 6.9 Let M ⊂ R
n be a semialgebraic set and let PM = {Pi (M)}r

i=1 be the fam-
ily of maximal locally compact pieces of M. Let ji : Pi (M) ↪→ Ni = ClM (Pi (M)) be
the inclusion map. Then, β*

sM is the disjoint union of subsets which are homeomorphic to
β*

s Pi (M)\(β*
s ji )−1(Clβ*

s Ni
(ρ1(Ni ))) for i = 1, . . . , r .

Finally, as an straightforward consequence of 5.19 and 6.7, the local study of β*
sM for an

arbitrary semialgebraic set M can be reduced to analyze the open subsets of β*
s R

m for all
0 ≤ m ≤ dim M . Namely,

Corollary 6.10 Let M ⊂ R
n be a semialgebraic set. Then, there exist semialgebraic subsets

{Ai }r
i=1 and {Ci }r

i=1 of M, where each Ci is closed in M, such that M = ⋃r
i=1 Ai , and

Nash diffeomorphisms ϕi : R
di → Ai for some 0 ≤ di ≤ dim M and each i = 1, . . . , r .

Moreover, let ji : Ai ↪→ M be the inclusion map for i = 1, . . . , r . Then, β*
sM is the dis-

joint union of subsets which are homeomorphic via β*
s ( ji ◦ ϕi ) to the open subsets Ai =

β*
s R

di \β*
s ( ji ◦ ϕi )

−1(Clβ*
s M (Ci )) of β*

s R
di .
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