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Abstract

We clarify a difficulty that appears in [R. Quarez, J. Algebra 238 (2001) 139] to bound the
Pythagoras number of a real irreducible algebroid curve by its multiplicity.
0 2004 Elsevier Inc. All rights reserved.

Let A be a real irreducible algebroid curve. In [2] an algorithm is developed to
estimate the length of a sum of squaresdinThis algorithm involves the use of Gram
matrices and gives bounds for the Pythagoras numlidr) of A. In particular, the
bound p(A) < mult(A) follows from this algorithm. Our purpose here is to clarify a
difficulty that appears in th&eneral Case of the proof of Theorem 3.4 in [2], in
relation with the existence of some limits of rational functions whose expressions are
not explicit. We will use all notations in [2] and follow closely the proof there. Now,
let F = af 4+ 4 asz be a sum of squares iA and setw = w(F)/2. To estimate the
minimum number of squares needed to exprEsas a sum of squares we use Gram
matrices as follows. We may assume that & < ¢, see [2]. We writd™ = (ng, ..., nu—1)
with n; = inf{fk € I': k =i mod m} and ¢, the canonical generator of ordey. Let

© = OgU---UB,,_1 Where®; = (¢, . bu.bng. - - - » b, 101} anduo = E[2¢/ng] +1. We
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proceed similarly to th@reparation part of the proof of Theorem 3.4 in [2], and observe
that if {n%,n5, ..., n),} = {no, n1, ..., n,y_1} we can replace the ordered system of linear
generator® = OgU---UB,_1by®' =01 U---U B, where

@i/={I/Inl’.’Wn;(/J)nos~~51//nl{¢u0_1} f0ri=1,...,r<m, and

no
m
o
Vg =+ D kiibudugs iy € R @) 20, ()
j=r+1 '
O = {bu By bngs---» G $i0 ) fori=r+1,....m.
Let us now proceed with th8eneral Case. Let Hy € M.,0xmu, € the restricted Gram

matrix canonically associated 0 relative to®, andM € M,,,,«s(R) be a matrix such
that

F=OMM'®' = ®Hy®' mod r®*.

We can write
My Hy1 -+ Hiy
M=| |, Ho=| it -~ i [,
M, Hy1 -+ Hpm

where M; = (m}d) € Muyxs (R) and H;; = (h;'{jz)lgk,gguo = M,‘M; € Muoxuo(R). Let
Bi =inf{k: hi’ #0} =inflk: v} = (m!q,...,mi)) # O}; if B; does not exist we will take
Bi; = 0. Consider the matrix

— (1Y —(li ]
h= (g5 1< jem = (Vb V8, D jcm:
where (-, ) designs the usual dot product. Letklk = r < m. Reordering the elements
no,ni, ..., n,—1 and renaming themas, ..., n,,, we can suppose that:

the vectors{v;}l, ..., vy } are independent,

.
vg; =Z)Ljivﬂi forallj=r+1,...,m,

i=1
pi=p; foralli=1,...,randj=r+1,...,msuchthat; #0.

Indeed, it is enough to take| = n;, such thatg;, > g; forall i =1,...,m; n), =
ni, such that the vector&;/’;ﬁ, v}sz} are independent angd;, > g; for all i such that

the vectors{v;ﬁl, vg;} are independent. Proceeding inductively we obtaindependent

vectors{vid ..., vy } with the desired conditions. Sin((éiﬂji’ﬂi)lgi’jgr is the matrix of
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the usual dot product with respect to the linearly independent systélm - Up b, we
have de@hg’ﬁj)lg,-, j<nv #0foranyN =1, ..., r. Here we recall the following immediate
but useful fact from linear algebra: give@l, ey vgr e R¢,
1 i
rk{vﬂl, e ”/rffr} = rk((”}iw ”é_i))lgi,jgm =r.

Therefore, ifr = m, using the construction of [2, 3.4] we are done. Hence, we can suppose
r <m. Let p be an integer and consider the matfixe 9,,x.(R), such that/, =0 if
p<0and

0 0 .
Jp, = if 0.
< Tug—p+1 O) p=
Let A € Mun—ryugxrug(R) be the matrix

Ar41,1dB1—Bra+1 0 ArrlrdB—piat+l
A= (jidpi—pj+1) = : . :
AmadBi—Bu+l o AmrJdg—pa+1

andV € Mo xmue (R) the matrix

Ly 0
V= 0 .
< —A I(m—r)uo >
Then, one checks easily that

V—l= Iruo 0
A I(m—r)uo .

And therefore
F=ovivMmv)(vi)e' =e'H'@®) mod:t,

where H = VMM'V' and © = ®V~L1. Moreover, since we always consider the
restricted Gram matrix modulg®*¢, we can suppose that the ordered system of linear
generator®)’ = ©@; U---U @, satisfies

O = (Vs Yo bng - Yy 3} fori=1,...,r<m, and

no

m
Bi—Bj
wn; =¢nl’ + Z )"ji¢n/j¢n0 ]v )"l] € Rv
j=r+1

O ={us bu s --» G i} fori=r+1,....m.
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Sincep; > pg; foralli=1,...,r, j=r+1,...,m such thatx;; # 0, it is clear that
Y € A fori =1,...,r,and henc®’ is an ordered system of linear generators of tigpe
It is not difficult to check that if we consider fal’ the integersg; as above and the
submatrixh’ we have that:

lgl:ﬂl/ ifi:].,...,r,
Bi<B or Bi=0 ifi=r+1,...,m,
r =rk(h) < rk(h).

Therefore, after applying this construction &b finitely many times, say;, we obtain
a matrix H@ € Myyuoxmu, and an ordered system of linear generatofd such that

(9)
F= @(q)H(q)(@(q))f mod r¢t¢ HYD — < qu O)
) 0o o)

WhereHl(q) eMm

tion of [2, 3.4] toHl(q) we are done. O

As we said before, a corollary of this algorithm is the bowid) < mult(A). This can
be proved directly by means of the well-known Pfister’s diagonalization trick [1]. This trick
works here because: (1) Any quadratic fofnover R[s] can always be diagonalizated
with a single denominator”, because»(R[s]) = 1. (2) The denominator can be cleared
if Q is positive semidefinite, sincegenerates a real ideal [3, 4.5]. (8)is a free module
of rankm = mult(A) over a ringR[¢] for a suitable serieg € A, as proved in [2, 2.1].
Note however that this argument goes no further, as it gives no algorithm to study lengths
of sums of squares of.

(R) and rkh?) = r@ < m. Finally, applying the construc-

r@Dugxr@ug
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