Some remarks on the computation of Pythagoras numbers of real irreducible algebroid curves through Gram matrices

José F. Fernando ${ }^{\mathrm{a}, 1}$ and Ronan Quarez ${ }^{\mathrm{b}, *}$
${ }^{a}$ Depto. Matemáticas, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
${ }^{\text {b }}$ UFR Mathémathiques, Campus de Beaulieu, Université de Rennes 1, 35042 Rennes cedex, France

Received 12 December 2001
Communicated by Leonard Lipshitz

Abstract

We clarify a difficulty that appears in [R. Quarez, J. Algebra 238 (2001) 139] to bound the Pythagoras number of a real irreducible algebroid curve by its multiplicity. © 2004 Elsevier Inc. All rights reserved.

Let A be a real irreducible algebroid curve. In [2] an algorithm is developed to estimate the length of a sum of squares in A. This algorithm involves the use of Gram matrices and gives bounds for the Pythagoras number $p(A)$ of A. In particular, the bound $p(A) \leqslant \operatorname{mult}(A)$ follows from this algorithm. Our purpose here is to clarify a difficulty that appears in the General Case of the proof of Theorem 3.4 in [2], in relation with the existence of some limits of rational functions whose expressions are not explicit. We will use all notations in [2] and follow closely the proof there. Now, let $F=a_{1}^{2}+\cdots+a_{s}^{2}$ be a sum of squares in A and set $\omega=\omega(F) / 2$. To estimate the minimum number of squares needed to express F as a sum of squares we use Gram matrices as follows. We may assume that $0<\omega<c$, see [2]. We write $\Gamma=\left\langle n_{0}, \ldots, n_{m-1}\right\rangle$ with $n_{i}=\inf \{k \in \Gamma: k \equiv i \bmod m\}$ and $\phi_{n_{i}}$ the canonical generator of order n_{i}. Let $\Theta=\Theta_{0} \cup \cdots \cup \Theta_{m-1}$ where $\Theta_{i}=\left\{\phi_{n_{i}}, \phi_{n_{i}} \phi_{n_{0}}, \ldots, \phi_{n_{i}} \phi_{n_{0}}^{u_{0}-1}\right\}$ and $u_{0}=E\left[2 c / n_{0}\right]+1$. We

[^0]proceed similarly to the Preparation part of the proof of Theorem 3.4 in [2], and observe that if $\left\{n_{1}^{\prime}, n_{2}^{\prime}, \ldots, n_{m}^{\prime}\right\}=\left\{n_{0}, n_{1}, \ldots, n_{m-1}\right\}$ we can replace the ordered system of linear generators $\Theta=\Theta_{0} \cup \cdots \cup \Theta_{m-1}$ by $\Theta^{\prime}=\Theta_{1}^{\prime} \cup \cdots \cup \Theta_{m}^{\prime}$ where
\[

$$
\begin{gather*}
\Theta_{i}^{\prime}=\left\{\psi_{n_{i}^{\prime}}, \psi_{n_{i}^{\prime}} \phi_{n_{0}}, \ldots, \psi_{n_{i}^{\prime}} \phi_{n_{0}}^{u_{0}-1}\right\} \quad \text { for } i=1, \ldots, r \leqslant m, \quad \text { and } \\
\psi_{n_{i}^{\prime}}=\phi_{n_{i}^{\prime}}+\sum_{j=r+1}^{m} \lambda_{i j} \phi_{n_{j}^{\prime}} \phi_{n_{0}}^{\alpha_{j}}, \quad \lambda_{i j} \in R, \alpha_{j} \geqslant 0, \tag{*}\\
\Theta_{i}^{\prime}=\left\{\phi_{n_{i}^{\prime}}, \phi_{n_{i}^{\prime}} \phi_{n_{0}}, \ldots, \phi_{n_{i}^{\prime}} \phi_{n_{0}}^{u_{0}-1}\right\} \quad \text { for } i=r+1, \ldots, m
\end{gather*}
$$
\]

Let us now proceed with the General Case. Let $H_{0} \in \mathfrak{M}_{m u_{0} \times m u_{0}}$ be the restricted Gram matrix canonically associated to F relative to Θ, and $M \in \mathfrak{M}_{m u_{0} \times s}(R)$ be a matrix such that

$$
F \equiv \Theta M M^{t} \Theta^{t}=\Theta H_{0} \Theta^{t} \bmod t^{\omega+c}
$$

We can write

$$
M=\left(\begin{array}{c}
M_{1} \\
\vdots \\
M_{m}
\end{array}\right), \quad H_{0}=\left(\begin{array}{ccc}
H_{11} & \cdots & H_{1 m} \\
\vdots & \ddots & \vdots \\
H_{m 1} & \cdots & H_{m m}
\end{array}\right)
$$

where $M_{i}=\left(m_{k l}^{i}\right) \in \mathfrak{M}_{u_{0} \times s}(R)$ and $H_{i j}=\left(h_{k \ell}^{i j}\right)_{1 \leqslant k, \ell \leqslant u_{0}}=M_{i} M_{j}^{t} \in \mathfrak{M}_{u_{0} \times u_{0}}(R)$. Let $\beta_{i}=\inf \left\{k: h_{k k}^{i i} \neq 0\right\}=\inf \left\{k: v_{k}^{i}=\left(m_{k 1}^{i}, \ldots, m_{k s}^{i}\right) \neq 0\right\}$; if β_{i} does not exist we will take $\beta_{i}=0$. Consider the matrix

$$
h=\left(h_{\beta_{i}, \beta_{j}}^{i j}\right)_{1 \leqslant i, j \leqslant m}=\left(\left\langle v_{\beta_{i}}^{i}, v_{\beta_{j}}^{j}\right\rangle\right)_{1 \leqslant i, j \leqslant m}
$$

where $\langle\cdot, \cdot\rangle$ designs the usual dot product. Let $\operatorname{rk}(h)=r \leqslant m$. Reordering the elements $n_{0}, n_{1}, \ldots, n_{m-1}$ and renaming them as $n_{1}^{\prime}, \ldots, n_{m}^{\prime}$, we can suppose that:
the vectors $\left\{v_{\beta_{1}}^{1}, \ldots, v_{\beta_{r}}^{r}\right\}$ are independent,

$$
v_{\beta_{j}}=\sum_{i=1}^{r} \lambda_{j i} v_{\beta_{i}} \quad \text { for all } j=r+1, \ldots, m
$$

$$
\beta_{i} \geqslant \beta_{j} \quad \text { for all } i=1, \ldots, r \text { and } j=r+1, \ldots, m \text { such that } \lambda_{j i} \neq 0
$$

Indeed, it is enough to take $n_{1}^{\prime}=n_{i_{1}}$ such that $\beta_{i_{1}} \geqslant \beta_{i}$ for all $i=1, \ldots, m ; n_{2}^{\prime}=$ $n_{i_{2}}$ such that the vectors $\left\{v_{\beta_{i_{1}}}^{i_{1}}, v_{\beta_{i_{2}}}^{i_{2}}\right\}$ are independent and $\beta_{i_{2}} \geqslant \beta_{i}$ for all i such that the vectors $\left\{v_{\beta_{i_{1}}}^{i_{1}}, v_{\beta_{i}}\right\}$ are independent. Proceeding inductively we obtain r independent vectors $\left\{v_{\beta_{1}}^{i_{1}}, \ldots, v_{\beta_{r}}^{i_{r}}\right\}$ with the desired conditions. Since $\left(h_{\beta_{i}, \beta_{j}}^{i j}\right)_{1 \leqslant i, j \leqslant r}$ is the matrix of
the usual dot product with respect to the linearly independent system $\left\{v_{\beta_{1}}^{1}, \ldots, v_{\beta_{r}}^{r}\right\}$, we have $\operatorname{det}\left(h_{\beta_{i}, \beta_{j}}^{i j}\right)_{1 \leqslant i, j \leqslant N} \neq 0$ for any $N=1, \ldots, r$. Here we recall the following immediate but useful fact from linear algebra: given $v_{\beta_{1}}^{1}, \ldots, v_{\beta_{r}}^{r} \in \mathbb{R}^{s}$,

$$
\operatorname{rk}\left\{v_{\beta_{1}}^{1}, \ldots, v_{\beta_{r}}^{r}\right\}=\operatorname{rk}\left(\left\langle v_{\beta_{i}}^{i}, v_{\beta_{j}}^{j}\right\rangle\right)_{1 \leqslant i, j \leqslant m}=r
$$

Therefore, if $r=m$, using the construction of [2,3.4] we are done. Hence, we can suppose $r<m$. Let p be an integer and consider the matrix $J_{p} \in \mathfrak{M}_{u_{0} \times u_{0}}(R)$, such that $J_{p}=0$ if $p \leqslant 0$ and

$$
J_{p}=\left(\begin{array}{cc}
0 & 0 \\
I_{u_{0}-p+1} & 0
\end{array}\right) \quad \text { if } p>0
$$

Let $\lambda \in \mathfrak{M}_{(m-r) u_{0} \times r u_{0}}(R)$ be the matrix

$$
\lambda=\left(\lambda_{j i} J_{\beta_{i}-\beta_{j}+1}\right)=\left(\begin{array}{ccc}
\lambda_{r+1,1} J_{\beta_{1}-\beta_{r+1}+1} & \cdots & \lambda_{r+1, r} J_{\beta_{r}-\beta_{r+1}+1} \\
\vdots & \ddots & \vdots \\
\lambda_{m, 1} J_{\beta_{1}-\beta_{m}+1} & \cdots & \lambda_{m, r} J_{\beta_{r}-\beta_{m}+1}
\end{array}\right)
$$

and $V \in \mathfrak{M}_{m u_{0} \times m u_{0}}(R)$ the matrix

$$
V=\left(\begin{array}{cc}
I_{r u_{0}} & 0 \\
-\lambda & I_{(m-r) u_{0}}
\end{array}\right)
$$

Then, one checks easily that

$$
V^{-1}=\left(\begin{array}{cc}
I_{r u_{0}} & 0 \\
\lambda & I_{(m-r) u_{0}}
\end{array}\right)
$$

And therefore

$$
F \equiv \Theta V^{-1}\left(V M M^{t} V^{t}\right)\left(V^{-1}\right)^{t} \Theta^{t}=\Theta^{\prime} H^{\prime}\left(\Theta^{\prime}\right)^{t} \bmod t^{\omega+c}
$$

where $H^{\prime}=V M M^{t} V^{t}$ and $\Theta^{\prime}=\Theta V^{-1}$. Moreover, since we always consider the restricted Gram matrix modulo $t^{\omega+c}$, we can suppose that the ordered system of linear generators $\Theta^{\prime}=\Theta_{1}^{\prime} \cup \cdots \cup \Theta_{m}^{\prime}$ satisfies

$$
\begin{gathered}
\Theta_{i}^{\prime}=\left\{\psi_{n_{i}^{\prime}}, \psi_{n_{i}^{\prime}} \phi_{n_{0}}, \ldots, \psi_{n_{i}^{\prime}} \phi_{n_{0}}^{u_{0}-1}\right\} \quad \text { for } i=1, \ldots, r \leqslant m, \quad \text { and } \\
\psi_{n_{i}^{\prime}}=\phi_{n_{i}^{\prime}}+\sum_{j=r+1}^{m} \lambda_{j i} \phi_{n_{j}^{\prime}} \phi_{n_{0}}^{\beta_{i}-\beta_{j}}, \quad \lambda_{i j} \in R, \\
\Theta_{i}^{\prime}=\left\{\phi_{n_{i}^{\prime}}, \phi_{n_{i}^{\prime}} \phi_{n_{0}}, \ldots, \phi_{n_{i}^{\prime}} \phi_{n_{0}}^{u_{0}-1}\right\} \quad \text { for } i=r+1, \ldots, m .
\end{gathered}
$$

Since $\beta_{i} \geqslant \beta_{j}$ for all $i=1, \ldots, r, j=r+1, \ldots, m$ such that $\lambda_{j i} \neq 0$, it is clear that $\psi_{n_{i}^{\prime}} \in A$ for $i=1, \ldots, r$, and hence Θ^{\prime} is an ordered system of linear generators of type $(*)$. It is not difficult to check that if we consider for H^{\prime} the integers β_{i}^{\prime} as above and the submatrix h^{\prime} we have that:

$$
\begin{aligned}
& \beta_{i}=\beta_{i}^{\prime} \quad \text { if } i=1, \ldots, r \\
& \beta_{i}<\beta_{i}^{\prime} \quad \text { or } \quad \beta_{i}^{\prime}=0 \quad \text { if } i=r+1, \ldots, m \\
& r=\operatorname{rk}(h) \leqslant \operatorname{rk}\left(h^{\prime}\right)
\end{aligned}
$$

Therefore, after applying this construction to H finitely many times, say q, we obtain a matrix $H^{(q)} \in \mathfrak{M}_{m u_{0} \times m u_{0}}$ and an ordered system of linear generators $\Theta^{(q)}$ such that

$$
F \equiv \Theta^{(q)} H^{(q)}\left(\Theta^{(q)}\right)^{t} \bmod t^{\omega+c}, \quad H^{(q)}=\left(\begin{array}{cc}
H_{1}^{(q)} & 0 \\
0 & 0
\end{array}\right)
$$

where $H_{1}^{(q)} \in \mathfrak{M}_{r^{(q)} u_{0} \times r^{(q)} u_{0}}(R)$ and $\operatorname{rk}\left(h^{(q)}\right)=r^{(q)} \leqslant m$. Finally, applying the construction of [2,3.4] to $H_{1}^{(q)}$ we are done.

As we said before, a corollary of this algorithm is the bound $p(A) \leqslant \operatorname{mult}(A)$. This can be proved directly by means of the well-known Pfister's diagonalization trick [1]. This trick works here because: (1) Any quadratic form Q over $R \llbracket s \rrbracket$ can always be diagonalizated with a single denominator $s^{2 r}$, because $p(\mathbb{R} \llbracket s \rrbracket)=1$. (2) The denominator can be cleared if Q is positive semidefinite, since s generates a real ideal [3,4.5]. (3) A is a free module of rank $m=\operatorname{mult}(A)$ over a ring $R \llbracket \phi \rrbracket$ for a suitable series $\phi \in A$, as proved in [2, 2.1]. Note however that this argument goes no further, as it gives no algorithm to study lengths of sums of squares of A.

References

[1] M.D. Choi, Z.D. Dai, T.Y. Lam, B. Reznick, The Pythagoras number of some affine algebras and local algebras, J. Reine Angew. Math. 336 (1982) 45-82.
[2] R. Quarez, Pythagoras numbers of real algebroid curves and Gram matrices, J. Algebra 238 (2001) 139-158.
[3] J.M. Ruiz, Aspectos aritméticos y geométricos del problema decimoséptimo de Hilbert para gérmenes analíticos, Tesis Doctoral, Univ. Complutense de Madrid, 1983.

[^0]: * Corresponding author.

 E-mail addresses: josefer@mat.ucm.es (J.F. Fernando), quarez@maths.univ-rennes1.fr (R. Quarez).
 ${ }^{1}$ Both authors supported by European RAAG HPRN-CT-2001-00271, first named author also supported by Spanish GAAR BFM2002-04797.

