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In this article we present versions of Łojasiewicz’s inequality and
the Nullstellensatz for the ring of bounded semialgebraic functions
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semialgebraic functions on a semialgebraic set M work if and only
if M is locally compact.
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1. Introduction

A subset M ⊂ R
n is said to be basic semialgebraic if it can be written as

M = {
x ∈R

n: f (x) = 0, g1(x) > 0, . . . , gm(x) > 0
}
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for some polynomials f , g1, . . . , gm ∈ R[x1, . . . ,xn]. The finite unions of basic semialgebraic sets are
called semialgebraic sets. A continuous function f : M → R is said to be semialgebraic if its graph is
a semialgebraic subset of Rn+1. Usually a semialgebraic function is a function that is not necessarily
continuous and whose graph is semialgebraic. However, since most of the semialgebraic functions in
this article are continuous, we omit the continuity condition for simplicity when we refer to them
and write functions whose graph is semialgebraic for those, which are not necessarily continuous. For
further readings about semialgebraic sets and functions we refer the reader to [2, §2].

The sum and product of functions, defined pointwise, endow the set S(M) of semialgebraic func-
tions on M with a natural structure of a commutative ring whose unity is the function with constant
value 1. In fact S(M) is an R-algebra if we identify each real number r with the constant function. The
simplest examples of semialgebraic functions on M are the restrictions of polynomials in n variables
to M . Other relevant ones are the Euclidean distance function dist(·, N) for a given semialgebraic set
N ⊂ M , the absolute value of a semialgebraic function, the maximum and the minimum of a finite
family of semialgebraic functions, the inverse and the k-root of a semialgebraic function whenever
these operations are well-defined.

It is obvious that the subset S∗(M) of bounded semialgebraic functions on M is a real subalgebra
of S(M). We denote either S(M) or S∗(M) with S�(M) if the involved statements or arguments are
valid for both rings. For each f ∈ S�(M) and each semialgebraic subset N ⊂ M we denote Z N( f ) =
{x ∈ N: f (x) = 0} and DN ( f ) = M \ Z N( f ). If N = M , we say that Z M( f ) is the zero set of f .

Łojasiewicz’s inequality is one of the main results in Real Algebraic Geometry. Its first versions are
independently due to L. Hörmander [11] and S. Łojasiewicz [12]. They invented them as the main
ingredient in their solutions to the so-called “division problem” stated by L. Schwartz [15] concerning
the division of a distribution by a polynomial or, more generally, by an analytic function.

Precisely, Hörmander’s version states that given a polynomial f ∈R[x1, . . . ,xn], there exist positive
real numbers c, μ such that c dist(x, Z M( f ))μ � | f (x)| for every x ∈ R

n with ‖x‖ � 1. On the other
hand, Łojasiewicz stated (without proof) that given a compact set K ⊂ R

n , an open neighborhood
Ω ⊂ R

n of K and an analytic function f : Ω → R, there exist positive real numbers c, μ such that
c dist(x, Z M( f ))μ � | f (x)| for all x ∈ K .

When dealing with semialgebraic functions, a useful version of this classical result appears in
[2, 2.6.6–7], which provides a Nullstellensatz for semialgebraic functions as a byproduct (see Corol-
lary 3.3). Namely,

Theorem 1.1 (Łojasiewicz’s inequality). Let M ⊂ R
n be a locally compact semialgebraic set and f , g ∈ S(M)

be such that Z M( f ) ⊂ Z M(g). Then

(i) There exist a positive integer � and h ∈ S(M) such that g� = f h.
(ii) If c = sup{|h(x)|: x ∈ M} exists, then |g(x)|� � c| f (x)| for each x ∈ M.

Remarks 1.2. (i) The previous result, and in fact the corresponding Nullstellensatz, is no longer true
if M is not locally compact, see Proposition 3.4. A very representative example of this situation is the
following one proposed in [2, 2.6.5]. Consider the semialgebraic set M := {y > 0} ∪ {(0,0)} ⊂ R

2 and
the semialgebraic functions g(x, y) = x2 + y2 and f (x, y) = y. Their zero sets are Z M( f ) = Z M(g) =
{(0,0)}. However, for each � ∈ N the limit at the origin of the semialgebraic function h� := g�

f =
(x2+y2)�

y does not exist.
(ii) Observe that Theorem 1.1(ii) says nothing if c = +∞. However, if c < +∞, it is equivalent

to Theorem 1.1(i), even if M ⊂ R
n is an arbitrary semialgebraic set. More precisely, let M ⊂ R

n be
a semialgebraic set and f , g ∈ S�(M) be such that Z M( f ) ⊂ Z M(g). If there exist a constant c > 0 and
a positive integer � � 1 such that |g(x)|� � c| f (x)| for each x ∈ M , then there exists h ∈ S�(M) such that
g2�+1 = f h.
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Indeed, for each x ∈ M we have g2�(x) � c2 f 2(x). Thus, the function h0 : M →R given by

h0(x) :=
{

g2�+1(x)
f 2(x)

if x ∈ D M( f ),

0 if x ∈ Z M( f )

is continuous because Z M( f ) ⊂ Z M(g) and the quotient g2�

f 2 is bounded on D M( f ). Moreover, h0 ∈
S(M), and in fact it is bounded if g is bounded. Since h0 f 2 = g2�+1, we deduce that h = f h0 ∈ S�(M)

satisfies the required condition.

In view of Remark 1.2(ii), we say in the following that Łojasiewicz’s inequality does not hold for
a semialgebraic set M if there exist semialgebraic functions f , g ∈ S(M) such that Z M( f ) ⊂ Z M(g)

but g /∈ √
f S(M).

Of course, Theorem 1.1(i) can be understood as a Nullstellensatz for principal ideals. To approach
the announced Nullstellensatz for arbitrary ideals (see Corollary 3.3), and since the common zero
set Z of the semialgebraic functions of a prime ideal p of S(M) provides almost no information
about such p because Z is either empty or a singleton (see Proposition 2.3), we are led to consider
the z-filter consisting of the collection of the zero sets of all functions in p (see Section 3.1). As it
is well-known, this is a classical idea used to study rings of continuous functions, which has been
compiled in full detail in [10]. On the other hand, the use of these kinds of filters is a usual technique
in Real Algebra (see for instance [1, II.1.6] and [2, 7.1, 7.5]).

In any case, the main goal of this work is to develop a similar theory (Łojasiewicz’s inequality and
Nullstellensatz) to approach the case of bounded semialgebraic functions. The existence of non-units
in S∗(M) with empty zero set requires to generalize these z-filters in order to obtain a similar Ło-
jasiewicz’s inequality, which has been revealed as a crucial tool in Real Geometry. Even more, the
bounded case can be done without the local compactness assumption. Namely,

Theorem 1.3. Let f , g be two bounded semialgebraic functions on the semialgebraic set M such that each
maximal ideal of S∗(M) containing f contains g, too. Then g� = f h for a suitable positive integer � and
a function h ∈ S∗(M). In particular, |g|� � (supM(|h|))| f | on M.

Clearly, this result (translated to the language of maximal spectra of semialgebraic rings in The-
orem 3.10) can be understood as the counterpart of the classical Łojasiewicz inequality, stated in
Theorem 1.1(ii), for rings of bounded semialgebraic functions. Its importance lies amongst others in
the fact that it provides a Nullstellensatz for the ring S∗(M) as a byproduct where M is an arbitrary
semialgebraic set (see Corollary 3.9). In contrast, the Nullstellensatz for S(M) is only true if M is
locally compact (see Proposition 3.4). To prove this fact, it is indispensable to analyze the set Mlc ⊂ M
of those points in M having a compact neighborhood in M . In fact, such set is moreover semialgebraic
(see Lemma 2.8).

The article is organized as follows. In Section 2 we introduce most of the used terminology and
we prove that every non-locally compact semialgebraic set M contains a semialgebraic subset C that
is closed in M and that is semialgebraically homeomorphic to the triangle T := {(x, y) ∈ R

2: 0 < y �
x � 1}∪{(0,0)}. This last result is the key to prove that Łojasiewicz’s inequality and the corresponding
Nullstellensatz are no longer true for non-locally compact semialgebraic sets. In Section 3 we develop
the main results of this work concerning Łojasiewicz’s inequality and the Nullstellensatz for rings
of semialgebraic and bounded semialgebraic functions on semialgebraic sets. In fact, we prove that
Theorem 1.1 can be also obtained as a byproduct of Theorem 1.3.

To finish this Introduction, we would like to point out that Łojasiewicz’s inequalities and Nullstel-
lensätze are crucial tools for the study of chains of prime ideals in rings of semialgebraic and bounded
semialgebraic functions (see [6]) and to determine the Krull dimension of the rings of semialgebraic
and bounded semialgebraic functions on a semialgebraic set (see [7] for further details).
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2. Preliminaries on semialgebraic sets and functions

In this section we present some preliminary terminology and useful results for this work.

2.1. Basics on semialgebraic sets and functions

Sometimes it will be advantageous to assume that the semialgebraic set M we are working with
is bounded. Such assumption can be done without loss of generality as we see in the next remark.
We denote the open and closed balls of Rn of center x ∈ R

n and radius ε with Bn(x, ε) and Bn(x, ε).
Their common boundary is denoted with S

n−1(x, ε).

Remark 2.1. Let M ⊂ R
n be a semialgebraic set. The semialgebraic homeomorphism

ϕ : Bn(0,1) →R
n, x 
→ x√

1 − ‖x‖2

induces a ring isomorphism S(M) → S(N), f 
→ f ◦ ϕ , where N = ϕ−1(M), that maps S∗(M) onto
S∗(N). So if necessary, we may always assume that M is bounded.

The following result, which concerns the representation of closed semialgebraic subsets of a semi-
algebraic set as zero sets of semialgebraic functions, is well-known and will be used along this work.

Lemma 2.2. Let Z be a closed semialgebraic subset of the semialgebraic set M ⊂ R
n. Then there exists h ∈

S∗(M) such that Z = Z M(h).

Proof. Take for instance h = min{1,dist(·, Z)}. �
In contrast to ideals of polynomial rings, the zero set of a prime ideal p of S�(M) provides no

substantial information about p because it is either a point or the empty set.

Proposition 2.3. Let M ⊂ R
n be a semialgebraic set and p a prime ideal of S�(M). Then the set Z := {x ∈ M:

f (x) = 0 ∀ f ∈ p} is either empty or a singleton.

Proof. Suppose by contradiction that Z contains two distinct points p, q. Let r > 0 be the Euclidean
distance between p and q and B1 and B2 the open balls centered at p of respective radii r1 := r/3 and
r2 := 2r/3. Consider the closed semialgebraic sets in R

n defined as C1 := R
n \ B1 and C2 := ClRn (B2).

By Lemma 2.2 there exist f1, f2 ∈ S∗(Rn) such that ZRn ( f i) = Ci . Clearly, the product f1 f2 vanishes
identically on R

n , hence, on M . Thus, if we write gi := f i |M for i = 1,2, we have g1 g2 ∈ p and
therefore either g1 or g2 belongs to p. But g1 does not vanish at p and g2 does not vanish at q,
which is a contradiction. �

This result suggests to introduce some classical definitions.

Definitions and notations 2.4. An ideal a of S�(M) is said to be fixed if all functions in a vanish
simultaneously at some point of M . Otherwise the ideal a is free.

Given a point p ∈ M , we denote the fixed ideal of S(M) (resp. S∗(M)) consisting of those functions
vanishing at p with mp (resp. m∗

p). Distinct points produce distinct maximal ideals and {mp}p∈M (resp.
{m∗

p}p∈M ) constitutes the collection of all fixed maximal ideals of S(M) (resp. S∗(M)).
We denote the collection of all maximal ideals of S∗(M) with β∗

s M. Given a function f ∈ S∗(M),
we write

Zβ∗M( f ) := {
m ∈ β∗

s M: f ∈m
}

and Dβ∗M( f ) := β∗
s M \Zβ∗M( f ).
s s s



J.F. Fernando, J.M. Gamboa / Journal of Algebra 399 (2014) 475–488 479
Notice that the map φ : M → β∗
s M, p 
→ m∗

p is injective; thus, we identify M with φ(M). This provides
the equalities DM( f ) =Dβ∗

s M( f ) ∩ M and Z M( f ) =Zβ∗
s M( f ) ∩ M .

2.2. Maximal ideals associated to semialgebraic paths

Concerning free maximal ideals of S∗(M), which are deeply studied in [9] and [8], we are mainly
interested in the simplest class of them: those associated to semialgebraic paths. Let M ⊂ R

n be
a semialgebraic set. Consider a semialgebraic path α : (0,1] → M , that is, a continuous map whose
components are semialgebraic functions. We claim:

(2.2.1) The set m∗
α = { f ∈ S∗(M): limt→0( f ◦ α)(t) = 0} is a maximal ideal of S∗(M).

Of course, the ideal m∗
α is free if and only if α cannot be extended to a (continuous) semialgebraic

path [0,1] → M .

Before proving (2.2.1), we need the following preliminary result. Recall that given an open semial-
gebraic set U ⊂ R

n , a function f ∈ S(U ) is said to be a Nash function on U if it is moreover analytic
(see [2, 8.1.6–8]).

Lemma 2.5. Let I := (a,b) ⊂ R be an open interval with −∞ � a < b � +∞ and let f ∈ S(I) be a semial-
gebraic function. Then

(i) There exists a finite subset F ⊂ I such that the restriction h = f |I\F is a Nash function.
(ii) There exists c ∈ I such that the restriction f |[c,b) is a monotone function.

(iii) If f is moreover bounded, there exist limx→a f (x) and limx→b f (x).

Proof. (i) As the graph of f is a 1-dimensional semialgebraic subset of R2, it is a finite union of sin-
gletons {p1, . . . , pn} and 1-dimensional Nash manifolds (see [2, 2.9.10]). Let π1 : R2 → R, (x, y) 
→ x
be the projection onto the first coordinate. Then the set F = {π1(p1), . . . ,π1(pn)} satisfies the state-
ment.

(ii) If f is constant on a subinterval (c,b) of I , the result is evident. Otherwise the zero set Z I\F ( f ′)
of the derivative f ′ of f is a union of singletons and intervals where none of them is of the form
(c,b) because it is semialgebraic. In other words, Z I\F ( f ′) ⊂ (a, c0) for some c0 < b, and it is enough
to choose c = c0. Note that in this case f |[c,b) is either increasing or decreasing, according to the sign
of f ′ in [c,b).

(iii) It is enough to prove that the limit of f at b exists. This is obvious if f is constant on
a subinterval J = [c,b) ⊂ I . Hence, we can suppose without loss of generality that f is decreasing
on J . Since f is a bounded function, f ( J ) is a bounded interval and as f is decreasing on J , there
exists λ ∈ R such that f ( J ) = (λ, f (c)]. Note that ClR( f ( J )) \ f ( J ) = {λ} and so limx→b f (x) = λ. �

Now the claim in (2.2.1) follows straightforwardly from Lemma 2.5:

Proof of Statement (2.2.1). It follows from Lemma 2.5 that limt→0( f ◦ α)(t) ∈ R exists for each func-
tion f ∈ S∗(M). Once this is done, note that m∗

α is the kernel of the ring epimorphism S∗(M) → R,
f 
→ limt→0( f ◦ α)(t). �
Remark 2.6. With the notation above, suppose there exists limt→0 α(t) = p ∈ M . This includes the
case in which the path α is locally constant around 0. Then m∗

α = m∗
p .

We next study some properties about local compactness of semialgebraic sets.

2.3. Local compactness

Locally compact Hausdorff spaces are characterized as spaces, which admit a Hausdorff compact-
ification by a single point [14, 3.29.1]. On the other hand, locally closed semialgebraic subsets of R

n
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are those that can be embedded as closed semialgebraic subsets of some R
m . Local closedness has

revealed to be an important property in the semialgebraic setting for the validity of results, which are
in the core of semialgebraic geometry, such as Łojasiewicz’s inequality. But as it is well-known, locally
closed subsets of Rn coincide with the locally compact ones (see [3, §9.7, Propositions 12–13]). In fact,
if M ⊂R

n is locally compact, then M = U ∩ ClRn (M) where U := R
n \ (ClRn (M) \ M) is an open subset

of Rn . Of course, if M ⊂ R
n is a semialgebraic set, both ClRn (M) and U are semialgebraic; hence, each

locally compact semialgebraic set M ⊂ R
n is the intersection of a closed and an open semialgebraic

subset of Rn .
We will see in Section 3 that only locally compact semialgebraic sets satisfy a Łojasiewicz inequal-

ity or a Nullstellensatz for its ring of semialgebraic functions. The clue result to prove this is the
following:

Lemma 2.7. Let M ⊂ R
n be a semialgebraic set, which is not locally compact. Then M contains a semialgebraic

set C that is closed in M and semialgebraically homeomorphic to the triangle T := {(x, y) ∈ R
2: 0 < y �

x � 1} ∪ {(0,0)}.

The proof of this lemma requires a certain analysis of the set of points of M that have a compact
neighborhood in M . Its construction is the main goal of [5, 9.14–9.21].

Lemma 2.8. Let M ⊂R
n be a semialgebraic set. Define

ρ0(M) = ClRn (M) \ M and ρ1(M) = ρ0
(
ρ0(M)

) = ClRn
(
ρ0(M)

) ∩ M.

Then Mlc = M \ ρ1(M) is a locally compact semialgebraic set, which coincides with the set of points of M that
have a compact neighborhood in M.

Assume we have already proved Lemma 2.8 and let us show Lemma 2.7.

Proof of Lemma 2.7. We may assume 0 ∈ ρ1(M). By Lemma 2.8 the origin is not an isolated point
of M . By [2, 9.3.6] there exist a positive real number ε > 0 and a semialgebraic homeomorphism
ϕ : Bn(0, ε) → Bn(0, ε) such that

(i) ‖ϕ(x)‖ = ‖x‖ for every x ∈ Bn(0, ε),
(ii) ϕ|Sn−1(0,ε) is the identity map,

(iii) ϕ−1(M ∩Bn(0, ε)) is the cone with vertex 0 and basis M ∩ S
n−1(0, ε).

Consider the semialgebraic homeomorphism ψ :Rn →R
n given by

ψ(x) :=
{

x if x ∈R
n \Bn(0, ε),

ϕ(x) if x ∈ Bn(0, ε).

In the following we identify M with ψ−1(M). Since 0 ∈ ρ1(M), this point has no compact neigh-
borhood in M (see Lemma 2.8). In particular M ∩Bn(0, ε), which is the cone with vertex 0 and basis
N := S

n−1(0, ε) ∩ M , is not compact. This implies that the basis N is not compact and so it is not
closed in R

n . Choose a point q ∈ ClRn (N) \ N . By the Curve Selection Lemma [2, 2.5.5] there exists
a semialgebraic path α : [0,1] → R

n such that α(0) = q and α((0,1]) ⊂ N . After shrinking the domain
of α if necessary, we may assume that α|(0,1] is a homeomorphism onto its image K := α((0,1]) ⊂ N .
Thus, K is a closed subset of N and it is homeomorphic to the interval (0,1].

Let C be the cone with vertex 0 and basis K . A straightforward computation shows that C , which
is a closed semialgebraic subset of M , is homeomorphic to T via the semialgebraic homeomorphism

T → C, (s, t) 
→
{

sα(t/s) if s �= 0,
0 if s = 0
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whose inverse map is defined by

C → T , x 
→
{

(‖x‖/ε)(1,α−1(εx/‖x‖)) if x �= 0,

0 if x = 0.

This finishes the proof. �
We proceed to prove the remaining result Lemma 2.8.

Proof of Lemma 2.8. We check first M \ρ1(M) = ClRn (M)\ClRn (ρ0(M)). Observe ClRn (M) = M �ρ0(M)

and ClRn (ρ0(M)) = ρ0(M) � ρ1(M). Thus,

ClRn(M) \ ClRn
(
ρ0(M)

) = (
M � ρ0(M)

) \ (
ρ0(M) � ρ1(M)

) = M \ ρ1(M).

Consequently, Mlc = M \ ρ1(M) = ClRn (M) \ ClRn (ρ0(M)) is a locally closed set and so it is by Sec-
tion 2.3 locally compact. Note that

ρ1(M) = ClRn
(
ClRn (M) \ M

) ∩ M

is a closed subset of M . If N denotes the set of points of M having a compact neighborhood in M , we
deduce that Mlc = M \ ρ1(M) is contained in N since Mlc is locally compact and open in M .

Conversely, let x ∈ N and K be a compact neighborhood of x in M . Let W be an open subset of Rn

such that x ∈ W and M ∩ W ⊂ K . Thus,

x ∈ ClRn (M) ∩ W = ClRn(M ∩ W ) ∩ W ⊂ K ⊂ M

or equivalently W is a neighborhood of x in R
n such that W ∩ (ClRn (M) \ M) = ∅. Hence, x /∈

ClRn (ClRn (M) \ M) ∩ M = ρ1(M), that is, x ∈ Mlc = M \ ρ1(M), as wanted. �
3. Łojasiewicz’s inequalities and Nullstellensätze

We introduce several preliminary notions and remarks, which allow us to state the Nullstellensatz
for the ring of semialgebraic functions on a semialgebraic set properly. Whenever we consider an ideal
of S�(M), we refer to a proper ideal of S�(M).

3.1. Filters in rings of semialgebraic functions and z-ideals

Let ZM be the collection of all closed semialgebraic subsets of M , which coincides by Lemma 2.2
with the family of zero sets of semialgebraic functions on M . Let P(ZM) be the set of all subsets
of ZM . Recall that a subset F of P(ZM) is a z-filter on M if it satisfies the following properties:

(i) ∅ /∈ F.
(ii) Given Z1, Z2 ∈ F, then Z1 ∩ Z2 ∈ F.

(iii) Given Z ∈ F and Z ′ ∈ ZM such that Z ⊂ Z ′ , then Z ′ ∈ F.

Let a be an ideal of S(M). One can check straightforwardly that

(i) The family Z[a] := {Z M( f ): f ∈ a} is a z-filter on M .
(ii) If F is a z-filter, then J (F) := { f ∈ S(M): Z M( f ) ∈ F } is an ideal of S(M) satisfying Z[J (F)] = F.

Definition 3.1. An ideal a of S(M) is a z-ideal if J (Z[a]) = a. That is, whenever there exist f ∈ a and
g ∈ S(M) satisfying Z M( f ) ⊂ Z M(g), we have g ∈ a.
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Remark 3.2. Notice that the equality Z[J (F)] = F implies that J (F) is a z-ideal whenever F is
a z-filter. Observe that each z-ideal is a radical ideal because Z M( f ) = Z M( f k) for each f ∈ S(M) and
each k � 1.

3.2. Łojasiewicz’s inequality and Nullstellensatz

We are now ready to present the Nullstellensatz for the ring of semialgebraic functions on a semi-
algebraic set.

Corollary 3.3 (Nullstellensatz). Let M ⊂ R
n be a locally compact semialgebraic set and a an ideal of S(M).

Then J (Z[a]) = √
a and a is a z-ideal if and only if a is a radical ideal. In particular, each prime ideal of S(M)

is a z-ideal.

Proof. Let g ∈ S(M) be such that Z M(g) ∈ Z[a]. Then there exists f ∈ a such that Z M( f ) = Z M(g)

and by Theorem 1.1 there exist �� 1 and h ∈ S(M) such that g� = f h ∈ a, that is, g ∈ √
a. The rest of

the statement follows from Remark 3.2 and the fact that all prime ideals are radical ideals. �
Let us see that if M is not locally compact, Łojasiewicz’s inequality, stated in Theorem 1.1, does not

hold for M and in addition there exist prime ideals in S(M), which are not z-ideals. More precisely,

Proposition 3.4. Let M ⊂ R
n be a semialgebraic set, which is not locally compact. Then

(i) Łojasiewicz’s inequality does not hold for M.
(ii) The ring S(M) has fixed prime ideals that are not z-ideals.

We need some preliminary results for the proof. Namely,

Lemma 3.5. Let N ⊂ M ⊂ R
m be semialgebraic sets. Write Y = M \ N and take b ∈ S∗(N). Let h ∈ S�(M) be

such that Y ⊂ Z M(h). Then the product (h|N )b can be extended continuously by 0 to a semialgebraic function
that belongs to S�(M).

Proof. Since b is bounded on N and h vanishes identically on Y , we deduce

lim
x→p

(h|Nb)(x) = 0

for all p ∈ Y ∩ ClM(N). Thus, (h|N)b can be extended continuously by 0 to entire M . The graph of such
an extension, which is the union graph(h|Nb) ∪ (Y × {0}), is a semialgebraic set. So such an extension
is an element of S�(M). �
Lemma 3.6. Let N ⊂ M ⊂ R

n be semialgebraic sets such that N is closed in M and let a be a radical ideal of
S(N), which is not a z-ideal. Let j : N ↪→ M be the inclusion map and φ : S(M) → S(N), f 
→ f |N = f ◦ j
the induced homomorphism. Then b := φ−1(a) is a radical ideal but not a z-ideal.

Proof. It is immediate to check that b is radical, so let us prove that it is not a z-ideal. Since N is
closed in M , the homomorphism φ is surjective by the semialgebraic version of the Tietze–Urysohn
Lemma [4]. Suppose now by contradiction that b is a z-ideal. Since a is not a z-ideal, there exist f ∈ a

and g ∈ S(N) \ a such that Z N( f ) ⊂ Z N(g). Let F , G ∈ S(M) be such that φ(F ) = f and φ(G) = g .
By Lemma 2.2 there exists H ∈ S(M) such that Z M(H) = N . Consider the semialgebraic functions
F1 := F 2 + H2 and G1 := G2 + H2. Then

F1|N = f 2, G1|N = g2 and Z M(F1) = Z N( f ) ⊂ Z N(g) = Z M(G1).
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Moreover, F1 ∈ b because φ(F1) = f 2 ∈ a. Thus, G1 ∈ b and therefore g2 = φ(G1) ∈ a. Since a is
radical, we conclude g ∈ a, which is a contradiction. �

Now we are ready to prove Proposition 3.4.

Proof of Proposition 3.4. By Lemma 2.7 there exists a semialgebraic subset C ⊂ M , which is closed
in M , and a semialgebraic homeomorphism

ψ : C → T := {
(x, y) ∈R

2: 0 < y � x � 1
} ∪ {

p = (0,0)
}
.

By Lemma 2.2 there exists c ∈ S∗(M) such that Z M(c) = C .
(i) Consider the semialgebraic functions g(x, y) = y and h(x, y) = x2 + y2 on T . Let g1 := g ◦ ψ ,

h1 := h ◦ ψ ∈ S(C). Let G1, H1 ∈ S(M) be semialgebraic functions, which extend1 g1, h1 respectively.
The semialgebraic functions G := G2

1 + c2 and H := H2
1 + c2 satisfy Z M(G) = Z M(H) = {ψ−1(p)}. Sup-

pose by contradiction that there exist � � 2 and F ∈ S(M) such that H� = G F and so (H |C )� =
(G|C )(F |C ). After composition with ψ−1, we deduce the existence of f ∈ S(T ) such that h2� = g2 f ,
that is, the quotient

f = h2�

g2
= (x2 + y2)2�

y2

is continuous on T , which is a contradiction. Therefore Łojasiewicz’s inequality does not hold for M .
(ii) Since C is closed, it is by Lemma 3.6 enough to find a fixed prime ideal in S(C), which is

not a z-ideal. Even more, the semialgebraic homeomorphism ψ : C → T induces a ring isomorphism
ψ∗ : S(T ) → S(C), f 
→ f ◦ ψ and ZT ( f ) = ψ(ZC (ψ∗( f ))) for every f ∈ S(T ). Thus, we only have to
prove the existence of a fixed prime ideal in S(T ), which is not a z-ideal.

(3.4.1) We claim:

p := {
f ∈ S(T ): ∃ε > 0

∣∣ f is continuously extended by 0 to T ∪ (
(0, ε] × {0})}

is a fixed prime ideal of S(T ), which is not a z-ideal.

Indeed, it is clear that p is closed under addition. Let f ∈ p and g ∈ S(T ). Since the origin p
belongs to T , there exists a neighborhood W of p in T on which g is bounded. Thus, by Lemma 3.5
there exists ε > 0 such that f g can be extended continuously by 0 to T ∪ ([0, ε] × {0}), that is,
f g ∈ p and so p ⊂ mp is a fixed ideal of S(T ). Moreover, p is not a z-ideal because the semialgebraic
functions g1 := x2 + y2 and g2 := y satisfy ZT (g1) = ZT (g2) = {p} and g2 ∈ p while g1 /∈ p.

We check now that p is prime. Let h1,h2 ∈ S(T ) be such that h1h2 ∈ p. Since 1/(1 + |h1|) and
1/(1+|h2|) are units in S(T ), it is enough to check that either f1 := h1/(1+|h1|) or f2 := h2/(1+|h2|)
lies in p. Note that both f1 and f2 are bounded functions.

Let X1 := ClR3 (graph( f1)) and X2 := ClR3 (graph( f2)), which are compact bidimensional semialge-
braic sets. By [2, 2.8.13] each Ci := Xi \ graph( f i) is a semialgebraic curve whose projection onto the
plane {z = 0} is the segment (0,1] × {0}.

By [2, 2.9.10] each curve Ci ⊂ R × {0} × R is the disjoint union of finitely many points pi� and
a finite number of Nash curves Mik and each of them is Nash diffeomorphic to an open interval
(0,1). Note that each curve Mik is either contained in a vertical line {(a,0)}×R or it has only finitely
many points with vertical tangent. Thus, there exist only finitely many values a ∈ (0,1] such that
the line {(a,0)} × R either passes through one of the points pi� or it contains some curve Mik or it

1 Recall the already mentioned semialgebraic version of the Tietze–Urysohn Lemma [4].
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is the tangent line to some Mik at one of its points. Denote the set of such values with J and let
b ∈ (0,1] \ J . Let us see that both functions f1, f2 can be extended continuously to the point (b,0).
Fix i = 1,2 and observe that the line {(b,0)} × R meets the curve Ci in finitely many points. Let
π : R3 →R

2 be the projection onto the first two coordinates.
Let δ > 0 be such that the closure B of the open ball B of center (b,0) and radius δ has the

following properties

(1) B1 = B ∩ {y � 0} ⊂ ClR2 (T ) \ {p}.
(2) There exists an index k such that the closed interval [b − δ,b + δ] is Nash diffeomorphic via the

projection onto the first coordinate to a closed subset of the Nash curve Mik .

One can check that the restriction

ϕ := π |Z : Z := ClR3

(
π−1(B ∩ T )

) → π(Z) = B1

is a semialgebraic bijection and ϕ is a semialgebraic homeomorphism as Z is compact. Let q :=
(b,0, s) = ϕ−1(b,0). It is clear that f i can be extended continuously to the point (b,0) by setting
f i(b,0) = s.

Therefore there exists a finite set J ⊂ (0,1] such that both f1 and f2 can be extended continuously
to T ∪ ((0,1] \ J ) × {0}. Thus, they can be extended continuously to T ∪ I1 for some interval I1 =
(0, ε1] × {0} with ε1 > 0. Since f1 f2 ∈ p, we may assume that f1 f2 can be extended continuously
by 0 to T ∪ I1. By the semialgebraicity of f1 and f2 we can assume the existence of ε2 ∈ (0, ε1) such
that the continuous extension of f1 to T ∪ ((0, ε2] × {0}) vanishes identically on (0, ε2] × {0}, that is,
f1 ∈ p. Consequently, p is a fixed prime ideal of S(T ), which is not a z-ideal. �

Our next aim is to develop a similar theory to approach the case of bounded semialgebraic func-
tions. The existence of non-units in S∗(M) with empty zero set requires a generalization of the
z-filters used above to obtain a similar Łojasiewicz’s inequality. It is worthwhile to mention that in
contrast to the ring S(M), this can be done without the local compactness assumption on M .

3.3. Filters in rings of bounded semialgebraic functions and z∗-ideals

Recall that a function f ∈ S(M) is a unit if and only if Z M( f ) = ∅. However, this is no longer
true in the bounded case: Given a bounded semialgebraic function with empty zero set, its inverse in
S(M) could be unbounded. Recall that in a general commutative ring with unity an element is a unit
if and only if it does not belong to any maximal ideal. This leads us to handle all maximal ideals
in S∗(M) and not only the ones corresponding to points in M . Observe that with the notations in
Section 2.4 a function f ∈ S∗(M) is a unit if and only if Zβ∗

s M( f ) = ∅. The family of all sets Zβ∗
s M( f )

for f ∈ S∗(M) is denoted with Zβ∗
s M . Recall that a subset F of P(Zβ∗

s M) is a z∗-filter on M if it
satisfies the following properties:

(i) ∅ /∈ F.
(ii) Given Z1, Z2 ∈ F, then Z1 ∩ Z2 ∈ F.

(iii) Given Z ∈ F and Z ′ ∈Zβ∗
s M such that Z ⊂ Z ′ , then Z ′ ∈ F.

Let a be an ideal of S∗(M). One can check almost straightforwardly that

(i) The family Zβ∗
s M[a] := {Zβ∗

s M( f ): f ∈ a} is a z∗-filter on M .
(ii) If F is a z∗-filter, then J (F) := { f ∈ S∗(M): Zβ∗

s M( f ) ∈ F } is an ideal of S∗(M) such that
Zβ∗

s M[J (F)] = F.

Definition 3.7. An ideal a of the ring S∗(M) is a z∗-ideal if J (Zβ∗
s M[a]) = a, that is, whenever there

exist f ∈ a and g ∈ S∗(M) satisfying Zβ∗
s M( f ) ⊂Zβ∗

s M(g), we have g ∈ a.
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Remark 3.8. Notice that the equality Zβ∗
s M[J (F)] = F implies that J (F) is a z∗-ideal whenever F

is a z∗-filter. Note also that each z∗-ideal is a radical ideal because Zβ∗
s M( f ) = Zβ∗

s M( f k) for all f ∈
S∗(M) and all k � 1.

3.4. Łojasiewicz’s inequality for bounded semialgebraic functions

The analogous result to Corollary 3.3 for bounded semialgebraic functions is the following Null-
stellensatz whose proof requires some preliminary results.

Corollary 3.9 (Nullstellensatz). Let M ⊂ R
n be a semialgebraic set and a an ideal of S∗(M). Then

J (Zβ∗
s M[a]) = √

a and a is a z∗-ideal if and only if a is a radical ideal. In particular, each prime ideal of
S∗(M) is a z∗-ideal.

The crucial tool to prove the Nullstellensatz is again a Łojasiewicz inequality that takes the follow-
ing formulation (equivalent to the one already stated in Theorem 1.3).

Theorem 3.10 (Łojasiewicz’s inequality). Let M ⊂ R
n be a semialgebraic set and f , g ∈ S∗(M) be such that

Zβ∗
s M( f ) ⊂ Zβ∗

s M(g). Then there exist h ∈ S∗(M) and a positive integer � such that g� = f h. In particular,

|g|� � (supM(|h|))| f | on M.

Remarks 3.11. (i) As we have already observed in Remark 1.2(ii), the existence of an integer �� 1 and
a constant c > 0 such that |g|� � cf on M guarantees in our context the existence of h ∈ S∗(M) such
that g2�+1 = hf .

(ii) The previous result plays an important role in the study of non-refinable chains of prime ideals
in rings of bounded semialgebraic functions (see [6] for further details). In fact, Theorem 3.10 is crucial
to prove a useful criterion of primality of ideals of S(M) (see [6, 5.4]) that is strongly inspired by the
corresponding result in [10, 2.9] concerning rings of continuous functions.

On the other hand, it follows from [2, 7.1.23] that given a free maximal ideal m of S(M), the family
of prime ideals of S∗(M) containing the prime ideal m ∩ S∗(M) constitutes a chain. Theorem 3.10 is
an essential tool to describe the immediate successor of m∩S∗(M), that is, the smallest prime ideal of
S∗(M) that contains m∩ S∗(M) properly. For further details see [6, §6]. It is strongly inspired by the
corresponding result for rings of continuous functions developed in [13, 6] and [10, 14.25–27].

Assume for a while that Theorem 3.10 is proved and let us use it to prove the Nullstellensatz,
stated in Corollary 3.9, as its straightforward consequence.

Proof of Corollary 3.9. Let g ∈ S∗(M) be such that Zβ∗
s M(g) ∈ Zβ∗

s M[a]. Then there exists f ∈ a such
that Zβ∗

s M( f ) = Zβ∗
s M(g). By Theorem 3.10 there exist a positive integer � and h ∈ S∗(M) such that

g� = f h ∈ a, that is, g ∈ √
a. The rest of the statement follows from Remark 3.8 and the fact that all

prime ideals are radical ideals. �
We are led to prove Theorem 3.10. Our proof is inspired by [2, 2.6.4].

Proof of Theorem 3.10. As observed in Remark 2.1, we may assume M ⊂ Bn(0,1). For each u ∈ R we
define the semialgebraic subset Mu := {y ∈ M: u|g(y)| = 1}. Let us see

(3.10.1) If Mu �= ∅, then sup{1/| f (y)|: y ∈ Mu} < +∞.

Otherwise there exists a sequence {ym}m�1 ⊂ Mu such that limm→+∞ f (ym) = 0. Consider the
graph Γ of the restriction h := f |Mu : Mu → R. Since Mu ⊂ Bn(0,1) is a bounded subset of R

n , its
closure ClRn (Mu) is compact. So we may assume after substituting {ym}m�1 by one of its subse-
quences if necessary that limm→+∞ ym = y ∈ ClRn (Mu) exists. Note that the point (y,0) ∈ ClRn (Γ ).
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Hence, by the Curve Selection Lemma [2, 2.5.5] there exists a semialgebraic path γ : [0,1] → R
n+1

such that γ (0) = (y,0) and γ ((0,1]) ⊂ Γ . For each t ∈ [0,1] we write γ (t) := (α(t), ν(t)) ∈ R
n × R.

Then α : [0,1] → R
n is a semialgebraic path such that α(0) = y, α((0,1]) ⊂ Mu and ν(t) = ( f ◦ α)(t)

for all t ∈ (0,1]. Hence, limt→0( f ◦ α)(t) = 0, that is, f ∈ m∗
α . This implies that also g ∈ m∗

α or equiv-
alently limt→0(g ◦ α)(t) = 0 since Zβ∗

s M( f ) ⊂Zβ∗
s M(g). But this is impossible because |g|Mu | ≡ 1

u ∈R.
This proves (3.10.1).

Consider now the non-necessarily continuous function

v :R → [0,+∞), u 
→ v(u) =
{

0 if Mu = ∅,

sup{1/| f (y)|: y ∈ Mu} otherwise

whose graph is semialgebraic. Note that the function v is identically 0 on (−∞,0]. We claim:

(3.10.2) The restriction vr = v|[0,r] is bounded for every r > 0.

Indeed, assume by contradiction the existence of r > 0 and of a sequence {um}m�1 ⊂ [0, r] such
that v(um) > m for all m � 1. Thus, by definition of the function v there exists a sequence {ym}m�1

such that 1
| f (ym)| > m and ym ∈ Mum for all m � 1. Since ClRn (M) is compact, we may assume that the

sequence {ym}m�1 converges to a point z ∈ ClRn (M) and so the sequence {(ym, f (ym))}m�1 converges
to the point (z,0). On the other hand, as [0, r] is compact, we may assume that {um}m�1 converges
to a point a ∈ [0, r] and |g(ym)|um = 1 because ym ∈ Mum . Therefore

lim
m→+∞

∣∣g(ym)
∣∣ = lim

m→+∞
1

um
= 1

a
.

Since g is bounded, a cannot be 0 and so the previous limit is well-defined. Consider next the semi-
algebraic set

T := {(
u, y, f (y)

) ∈ [0, r] × M ×R: u
∣∣g(y)

∣∣ = 1
}
.

The points (um, ym, f (ym)) ∈ T and so (a, z,0) ∈ ClRn (T ). By the Curve Selection Lemma [2, 2.5.5]
there exists a semialgebraic path ϕ := (ρ,η,μ) : [0,1] → R × R

n × R such that ϕ(0) = (ρ(0), η(0),

μ(0)) = (a, z,0) and

ϕ|(0,1] =
(

1

|(g ◦ η)|(0,1]| , η|(0,1], ( f ◦ η)|(0,1]
)

.

Therefore limt→0( f ◦η)(t) = 0, that is, f ∈m∗
η and so g ∈m∗

η because Zβ∗
s M( f ) ⊂Zβ∗

s M(g). This means
limt→0(g ◦ η)(t) = 0, which is impossible, because

lim
t→0

1

|(g ◦ η)(t)|(0,1]| = a ∈R.

This proves (3.10.2).

(3.10.3) On the other hand, by [2, 2.6.1] there exist c, s ∈ R and a positive integer p � 1 such that
v(u) � cup for every u such that |u| � s. Additionally, as we have just seen, there exists L > 0 such
that 0 � v|[−s,s] � L. Now let us prove that the function

h1 : M →R, y 
→ h1(y) :=
{

g p(y)/ f (y) if y ∈ D M( f ),
0 if y ∈ Z ( f )
M
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is bounded. Of course, it is enough to check that h1 is bounded on D M( f ). Let y0 ∈ D M( f ). If
g(y0) = 0, then h1(y0) = 0. Thus, we may assume g(y0) �= 0 and denote u0 := 1

|g(y0)| . Suppose first

that |g(y0)| � 1
s or equivalently u0 � s. Then

∣∣∣∣ g p(y0)

f (y0)

∣∣∣∣ � 1

up
0

sup
{

1/
∣∣ f (y)

∣∣: y ∈ Mu0

} = v(u0)

up
0

� c.

Suppose now |g(y0)| > 1
s , that is, u0 < s. Then

∣∣∣∣ g p(y0)

f (y0)

∣∣∣∣ � ∣∣g(y0)
∣∣p

sup

{
1

| f (y)| : y ∈ Mu0

}
= ∣∣g(y0)

∣∣p
v(u0) � sup

{∣∣g(y)
∣∣p

: y ∈ M
} · L.

Since g is bounded, we conclude that also h1 is bounded. Therefore we obtain by Lemma 3.5 that
h = gh1 ∈ S∗(M) because Z M( f ) ⊂ Z M(g) as Zβ∗

s M( f ) ⊂ Zβ∗
s M(g). If � := p + 1, we get g� = f gh1 =

f h. �
Remark 3.12. The proof above shows that in order to obtain an equality of the form g� = f h, it is
sufficient to require g ∈ m∗

α for each semialgebraic path α : (0,1] → M such that f ∈m∗
α .

We finish this work with an alternative proof of Theorem 1.1 obtained as an almost straightforward
consequence of Theorem 3.10 and Remark 3.12. Namely,

Alternative proof of Theorem 1.1. Since M is locally compact, it is locally closed (see Section 2.3) and
by [2, 2.2.9] M can be embedded in some R

m as a closed semialgebraic subset. Thus, we assume
in the following that M ⊂ R

n is a closed semialgebraic subset of R
n . Let f , g ∈ S(M) be such that

Z M( f ) ⊂ Z M(g) and consider the bounded semialgebraic functions on M

f1 := f

(1 + ‖x‖)(1 + | f |) ∈ S∗(M) and g1 := g

(1 + ‖x‖)(1 + |g|) ∈ S∗(M).

Taking Remark 3.12 into account, it is enough to check that g1 ∈ m∗
α for each semialgebraic

path α : (0,1] → M such that f1 ∈ m∗
α in order to apply Theorem 3.10 to f1 and g1. Indeed, let

α : (0,1] → M be a semialgebraic path such that f1 ∈ m∗
α . If m∗

α is a fixed maximal ideal of S∗(M),
there exists a point p ∈ M such that m∗

α =m∗
p and

0 = f1(p) = f (p)

(1 + ‖p‖)(1 + | f (p)|)
because f1 ∈ m∗

p . Hence, f (p) = 0 and so g(p) = 0 because Z M( f ) ⊂ Z M(g). Thus,

g1(p) = g(p)

(1 + ‖p‖)(1 + |g(p)|) = 0,

that is, g1 ∈m∗
p = m∗

α .
If m∗

α is a free ideal, the semialgebraic path α : (0,1] 
→ M cannot be extended to a continu-
ous semialgebraic path [0,1] 
→ M (see (2.2.1)). Since M is closed in R

n , this implies that α cannot
be extended to a semialgebraic path [0,1] 
→ R

n . Thus, by Lemma 2.5 the semialgebraic function
‖α‖ : (0,1] → R is unbounded. On the other hand, as the semialgebraic function 1

1+‖α‖ : (0,1] → R is

bounded, the limit limt→0
1

1+‖α‖ = c ∈ R exists by Lemma 2.5. In fact, c = 0 because ‖α‖ : (0,1] → R

is unbounded. Thus, using Lemma 2.5 once more,
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lim
t→0

(g1 ◦ α)(t) = lim
t→0

(
1

1 + ‖α(t)‖
)(

g(α(t))

1 + |g(α(t))|
)

= 0.

Therefore, also g1 ∈ m∗
α and by Theorem 3.10 and Remark 3.12 there exist h1 ∈ S∗(M) and a positive

integer �� 1 such that g�
1 = f1h1. Hence, g� = f h where

h := h1
(1 + ‖x‖)�−1

(
1 + |g|)�

1 + | f | ∈ S(M)

and we are done. �
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