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Abstract. We study here several finiteness problems concerning affine Nash manifoldsM and Nash
subsetsX. Three main results are: (i) A Nash function on a semialgebraic subset Z ofM has a Nash
extension to an open semialgebraic neighborhood of Z inM . (ii) A Nash setX that has only normal
crossings in M can be covered by finitely many open semialgebraic sets U equipped with Nash
diffeomorphisms (u1, . . . , um) : U → Rm such that U ∩ X = {u1 · · · ur = 0}. (iii) Every affine
Nash manifold N with corners is a closed subset of an affine Nash manifold M where the Nash
closure of the boundary ∂N ofN has only normal crossings andN can be covered with finitely many
open semialgebraic sets U such that each intersection N ∩ U is of the form {u1 ≥ 0, . . . , ur ≥ 0}
for a Nash diffeomorphism (u1, . . . , um) : U → Rm.

Keywords. Finiteness, Nash functions and Nash sets, semialgebraic sets, Nash manifolds with
corners, extension, normal crossings at a point, normal crossings divisor

1. Introduction and statements of the main results

This work is devoted to several questions concerning semialgebraic and Nash sets, Nash
manifolds and Nash functions. In a way those questions always refer to the comparison
of the Euclidean and the semialgebraic topology ([DK2], [K]). The latter is not a true
topology, and as we will explain soon the word that always appears in this connection
is finiteness. Here we present the framework within which the problems arise, formulate
them rigorously and state our main results. The proofs will be developed in the following
sections.

A subset Z ⊂ Rn is semialgebraic when it has a description by a finite boolean com-
bination of polynomial equations and inequalities, which we will call a semialgebraic
description. A (not necessarily continuous) function f : S → T is semialgebraic if its
graph is a semialgebraic set (in particular S and T are semialgebraic). Among semial-
gebraic objects, we will focus on affine Nash manifolds and Nash functions. We present
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Universidad Complutense de Madrid, 28040 Madrid, Spain;
e-mail: josefer@mat.ucm.es, jmgamboa@mat.ucm.es
J. M. Ruiz: Departamento de Geometrı́a y Topologı́a, Facultad de Ciencias Matemáticas,
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a careful and detailed study of these types of objects and their main properties in Sec-
tion 2; however, we anticipate here some definitions to make clearer the statements of our
main results.

Definition 1.1. An affine Nash manifold is a pure dimensional semialgebraic subset M
of some affine space Rn that is a smooth submanifold of an open subset of Rn. A Nash
function on an open semialgebraic set U ⊂ M is a semialgebraic smooth function on U .
A Nash subset of U is the zero set of a Nash function on U .

It is relevant to remark here the following. A smooth submanifoldM of Rn is a locally
compact set, hence M is open in its closure M . Thus, when M is semialgebraic, the
set C = M \ M is a closed semialgebraic subset of Rn. Consequently, M is a closed
submanifold of the open semialgebraic set Rn \ C.

We can determine which semialgebraic sets are contained in affine Nash manifolds of
the same dimension. First, recall that a point x of a semialgebraic set Z of dimension m
is regular if the germ Zx is the germ of an affine Nash manifold of dimensionm. We start
Section 3 with the proof of the following fact:

Proposition 1.2. Let Z ⊂ Rn be a locally compact semialgebraic set such that for each
point x ∈ Z the analytic closure Z

an
x of the germ Zx is regular of constant dimension m.

Then Z is a closed subset of an affine Nash manifold M ⊂ Rn of dimension m.

Let M be an affine Nash manifold. Since open semialgebraic sets form a basis of the
Euclidean topology, we have the sheaf of germs of Nash functions NM on M . The ring
N (M) of global Nash functions on M is then the ring of global cross-sections of NM .

Note that we actually have Nash functions on open not necessarily semialgebraic
subsets of M , and most problems require understanding which data associated to NM

are in fact semialgebraic. In particular, if Z is a semialgebraic subset of M , then a Nash
function onZ is a cross-section of NM overZ, which according to general sheaf theory, is
given by a Nash function f : U → R defined on some open not necessarily semialgebraic
neighborhood of Z. In Section 3 we will prove that this U can be chosen semialgebraic:

Theorem 1.3. Let M be an affine Nash manifold and let Z be a semialgebraic subset
of M . Let f : Z → R be a Nash function. Then f has a Nash extension defined on an
open semialgebraic neighborhood U of Z.

In this vein, we see how the study of Nash functions depends heavily on the so-called
semialgebraic topology, defined by choosing as open sets the open semialgebraic sets.
Although it is a fake topology, because unions of open semialgebraic sets may not be
semialgebraic, it is the source of a deeper and better understanding of many questions. As
mentioned before, the problem here is finiteness, that is, the possibility of finite descrip-
tions for properties of local nature in the Euclidean topology. We will come back to this
in several places.

In this paper we also pay special attention to Nash normal crossings. This has two
different aspects. First, the local notion:
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Definition 1.4. Let X be a Nash subset of an affine Nash manifold M . We say that X
has only normal crossings at a point x ∈ X if there are analytic local coordinates u =
(u1, . . . , um) of M at x such that Xx = {u1 · · · ur = 0} for some r . The number r is the
multiplicity of X at x, denoted mult(X, x). We say that X has only normal crossings in
U ⊂ M if it has only normal crossings at all x ∈ U .

The first result of Section 4 will be that the points at which a Nash set has only normal
crossings form a semialgebraic set:

Proposition 1.5. Let X be a Nash subset of an affine Nash manifold M . Then

U = {x ∈ M : either x /∈ X or X has only normal crossings at x}

is an open semialgebraic subset of M .

This is a natural statement, but a delicate matter that involves deep results like M. Artin’s
approximation [Ar] and semialgebraic triviality. Next, also in Section 4, we prove a finite-
ness result for this local normal crossings notion:

Theorem 1.6. LetX be a Nash subset of an affine Nash manifoldM . Suppose thatX has
only normal crossings in M . Then X can be covered by finitely many open semialgebraic
subsets U of M equipped with Nash diffeomorphisms (u1, . . . , um) : U → Rm such that
U ∩X = {u1 · · · ur = 0}.

In fact we will prove a version of this for a larger class of semialgebraic sets. We need
that version to deduce:

Theorem 1.7. Let Z ⊂ M be a locally compact semialgebraic subset of an affine Nash
manifold M . Suppose that for every point x ∈ Z there is an integer r and a coordinate
system (u1, . . . , um) of M at x such that Z

an
y = {u1 · · · ur = 0}y for every y ∈ Z close

enough to x. Then there is an open semialgebraic neighborhood Ω of Z in M and a
Nash subset X of Ω which has only normal crossings in Ω such that Xx = Z

an
x for every

x ∈ Z. In particular, the Nash closure X of Z in Ω satisfies the desired conditions.

Proposition 1.2 for m = n− 1 is a particular case of this result, as non-singular hypersur-
faces can be seen as the simplest non-singular normal crossings. Next, we have the global
concept of normal crossings:

Definition 1.8. A Nash normal crossings divisor of M is a Nash subset X ⊂ M whose
irreducible components are non-singular hypersurfacesX1, . . . , Xp ofM in general posi-
tion. This means that at every point x ∈ Xi1 , . . . , Xir with x /∈ Xi for i 6= ik , the tangent
hyperplanes TxXi1 , . . . , TxXir are linearly independent in the tangent space TxM .

Examples 1.9. It is important to compare this global notion and the preceding local one.
The following examples might be clarifying.

(1) The algebraic set X = {(x, y) ∈ R2
: y2

= x2(1 + x)} ⊂ M = R2 is an
irreducible Nash set. Since it is singular at the origin, it is not a normal crossings divisor
of R2. However, X has only normal crossings at all points of R2.
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(2) Let a = (−1, 0) and Y = X \ {a} ⊂ M1 = {x > −1}. The Nash irreducible
components of Y in M1 are the non-singular hypersurfaces

Y1 = {(x, y) ∈ M1 : y = x
√

1+ x} and Y2 = {(x, y) ∈ M2 : y = −x
√

1+ x},

which meet transversally at the origin; hence, Y is a Nash normal crossings divisor of the
Nash manifold M1.

Of course, it is clear that a normal crossing divisor has only normal crossings, but it is
also clear that there is something more to it. In Section 5 we will prove a result concerning
regular systems of parameters in the ring of global Nash functions, and then deduce which
Nash sets with only normal crossings are normal crossings divisors.

The last section, Section 6, is devoted to affine Nash manifolds with corners, which are
closely related to normal crossings. The basic definitions run as in the case of affine Nash
manifolds. Our general reference for the smooth theory is [MO], where a comprehensive
presentation is offered.

Definition 1.10. An affine Nash manifold with corners is a pure dimensional semialge-
braic subset N of some affine space Rn that is a smooth submanifold with corners of an
open subset of Rn. A Nash function on an open semialgebraic set U ⊂ N is a semialge-
braic smooth function on U . The boundary ∂N of N is the set of points x ∈ N at which
the germ Nx is not regular.

As remarked after Definition 1.1, an affine Nash manifold with corners is also a closed
submanifold with corners of an open semialgebraic subset of Rn.

Taking into acount that for each point x of an affine Nash manifold N with corners
the germ N

an
x is regular of dimension m, we can apply Proposition 1.2 and embed N in

an affine Nash manifold. However, we are able to prove more, including finiteness:

Theorem 1.11. LetN ⊂ Rn be an affine Nash manifold with corners. ThenN is a closed
subset of an affine Nash manifold M ⊂ Rn of the same dimension, say m, in such a way
that:

(i) The Nash closure X of ∂N inM has only normal crossings inM and N ∩X = ∂N .
(ii) For every x ∈ ∂N the analytic closure of the germ ∂Nx is Xx .

(iii) M can be covered with finitely many open semialgebraic subsets U equipped with
Nash diffeomorphisms (u1, . . . , um) : U → Rm such that{
U ⊂ N or U ∩N = ∅ if U does not meet ∂N ,
U ∩N = {u1 ≥ 0, . . . , ur ≥ 0} for a suitable r ≥ 1 if U meets ∂N .

Then, we will characterize affine Nash manifolds with corners for which there is an em-
bedding as above where X is a Nash normal crossings divisor. For this we need another
definition: a face of an affine Nash manifold N with corners is the closure in N of a
connected component of Reg(∂N), dim(N) = m. Since ∂N is semialgebraic, the faces
are semialgebraic and finitely many. We also remark that the Nash closure of each face
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is irreducible, hence the Nash closures of the faces are the irreducible components of the
Nash closure of the boundary. Note also the corresponding local fact. Since every pair of
germs Nx ⊂ N

an
x is like a pair {x1 ≥ 0, . . . , xr ≥ 0}0 ⊂ Rm0 , the irreducible components

of ∂N
an
x are the analytic closures of the connected components of Reg(∂N)x , which are

all different. After this preparation, the result we will prove is the following:

Theorem 1.12. Let N ⊂ Rn be an affine Nash manifold with corners, dim(N) = m. The
following assertions are equivalent:

(i) N is contained in an affine Nash manifoldM ⊂ Rn where the Nash closure of ∂N is
a Nash normal crossings divisor.

(ii) Every face D of N is contained in an affine Nash manifold X ⊂ Rn of dimension
m− 1.

(iii) The number of faces of N that contain every given point x ∈ ∂N coincides with the
number of connected components of the germ Reg(∂N)x .

(iv) Every face of N is an affine Nash manifold with corners.

If that is the case, the manifoldM in (i) can be chosen such that the Nash closure inM of
every face D meets N exactly along D.

The proofs of Theorems 1.11 and 1.12 depend heavily on all our previous results. We also
prove in Section 6 that if the faces of an affine Nash manifold with corners are again affine
Nash manifolds with corners, then so are the faces of the faces, the faces of the faces of
the faces, and so on.

2. Preliminaries

The purpose of this section is to provide a careful analysis of the objects that we study
along this work. Our main reference for all that follows is [BCR]. We also introduce
set germs into our discussion. For analytic and semianalytic sets germs we refer to [N]
and [Ł]. And to complete now general references, let us mention [Mt] for commutative
algebra.

(2.1) Generalities on semialgebraic sets and affine Nash manifolds. By elimination
of quantifiers, a subset Z ⊂ Rn is semialgebraic if it has a description by a first order
formula possibly with quantifiers. Such freedom gives easy semialgebraic descriptions
for topological operations: the interiors, closures and borders of semialgebraic sets are
again semialgebraic. Recall that semialgebraicity is preserved by linear maps and even
by semialgebraic maps; in fact, elimination of quantifiers is equivalent to the fact that
linear projections of semialgebraic sets are again semialgebraic. Concerning topological
conditions, we recall that Z ⊂ Rn is locally compact if and only if it is open in its
closure, or equivalently, when it is the intersection of a closed set F and an open set
U ; if Z is semialgebraic, F and U can be chosen semialgebraic, namely F = Z and
U = Rn \ (Z \ Z). In what follows, Z stands for the closure of Z and Int(Z) for the
interior of Z (in the space we are working in). In case we must clarify the space where
closures or interiors are taken, we will use a subscript to specify that space.
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(2.1.1) As is well known, by means of the semialgebraic version of the Tietze–Urysohn
extension lemma (see [DK1]), two disjoint closed semialgebraic subsetsC1, C2 of a semi-
algebraic set Z ⊂ Rn can be separated by disjoint open semialgebraic subsets U1, U2
of Z. This fact will be used freely along this work and it is useful, for instance, to sepa-
rate the connected components of a semialgebraic set or to prove the following statement
concerning refinements:

(2.1.2) Let Z ⊂ Rn be a semialgebraic set and let Z =
⋃p

i=1 Zi be an open semialge-
braic covering of Z. Then for each ` = 1, . . . , p there is an open semialgebraic subset
Z′i ⊂ Zi of Z such that Z′i ⊂ Zi and Z =

⋃p

i=1 Z
′

i .

Indeed, suppose we have already constructed open semialgebraic subsets Z′1, . . . , Z
′

r−1

of Z (maybe none) such that Z′i ⊂ Zi and
⋃r−1
j=1 Z

′

j ∪
⋃p
k=r Zk = Z. Consider the closed

semialgebraic subset Cr = Z \ (
⋃r−1
j=1 Z

′

j ∪
⋃p

k=r+1 Zk) of Z which is contained in the
open semialgebraic subset Zr of Z. By (2.1.1), there is an open semialgebraic subset Z′r
of Z such that Cr ⊂ Z′r ⊂ Z′r ⊂ Zr . Proceeding in this way up to r = p, we are done.

(2.1.3) The dimension dim(Z) of a semialgebraic set Z is the dimension of its algebraic
Zariski closure; set d = dim(Z). The local dimension dim(Zx) of Z at a point x ∈ Z is
the dimension dim(U) of a small enough open semialgebraic neighborhood U of x in Z.
The dimension d of Z coincides with the maximum of those local dimensions. For any
fixed k, the set of points x ∈ Z such that dim(Zx) = k is semialgebraic.

(2.1.4) Next, recall that a semialgebraic subset M ⊂ Rn is an affine Nash manifold
(of dimension m) if and only if every point x ∈ M has an open neighborhood U in
Rn equipped with a Nash diffeomorphism (u1, . . . , un) : U → Rn that maps x to the
origin and such that V = U ∩ M = {um+1 = 0, . . . , un = 0}. The restriction map
(u1, . . . , um)|V : V → Rm is a Nash diffeomorphism, and we say that (u1, . . . , um) are
coordinates of M at x. In fact, as is well known, M can be covered with finitely many
semialgebraic domains V ⊂ M of such Nash diffeomorphisms (u1, . . . , un) : V → Rm;
this is a typical finiteness result that will be used freely along this work and that we include
in Lemma 2.2 to illustrate the type of “tricks” and techniques we use in this paper. As
is well known, semialgebraic smooth functions are in fact analytic, so that affine Nash
manifolds are analytic manifolds. Again we refer here to [BCR, §8].

(2.1.5) As we have already pointed out, a point x of a d-dimensional semialgebraic set
Z ⊂ Rn is regular if the germ Zx is the germ of an affine Nash manifold of dimension d.
The set Reg(Z) of regular poins of Z is a non-empty open semialgebraic subset of Z,
whose complementZ\Reg(Z) is a closed semialgebraic subset ofZ of dimension≤ d−1.
If the local dimension of Z at x is d, then x is the limit of a sequence of regular points
of Z.

(2.1.6) Moreover, a semialgebraic set N ⊂ Rn is an affine Nash manifold with corners
(of dimension m) if and only if every point x ∈ N has an open neighborhood U in Rn
equipped with a Nash diffeomorphism (u1, . . . , un) : U → Rn that maps x to the origin
such that U ∩ N = {u1 ≥ 0, . . . , ur ≥ 0, um+1 = 0, . . . , un = 0} for some 0 ≤ r ≤ m.
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Since (u1, . . . , un) are coordinates at x ∈ N , the germ N
an
x = {um+1 = 0, . . . , un = 0}x

is regular of dimension m. The boundary ∂N of N is the set of points with r ≥ 1, that
is, the set of those points of N for which the germ Nx is not regular. Properly speaking,
corners are the points with r > 1; if there are no corners, N is an affine Nash manifold
with boundary. Clearly, N \ ∂N = Reg(N), which is semialgebraic, and so the boundary
is semialgebraic too. Of course, affine Nash manifolds with corners are analytic manifolds
with corners.

Lemma 2.2. Let M ⊂ Rn be an affine Nash manifold of dimension m. Then there is a
finite open (semialgebraic) covering M =

⋃
iMi by affine Nash manifolds Mi ⊂ M ,

each Nash diffeomorphic to Rm.

Proof. First we may assume, by [BCR, 9.3.10], that M is an open subset of Rm. Since,
M is, by [BCR, 2.9.10], a finite disjoint union of Nash submanifolds, each Nash diffeo-
morphic to some Euclidean space, it is enough to prove the following statement and to
proceed recursively afterwards.

(2.2.1) Let S ⊂ M be a semialgebraic set. Then there exist finitely many open semi-
algebraic sets Uj ⊂ M , each Nash diffeomorphic to Rm, such that dim(S \

⋃
j Uj ) <

dim S = d .

Indeed, since dim(S\Reg(S)) < dim S, we may assume that S is an affine Nash manifold.
Moreover, by [BCR, 9.3.10] once more, we may assume that there are Nash functions
hd+1, . . . , hm : V → R defined on an open semialgebraic neighborhood V of S in M
such that S = {hd+1 = 0, . . . , hm = 0} and rk(hd+1, . . . , hm) = m − d everywhere.
In fact, again by [BCR, 2.9.10], we may assume that S is Nash diffeomorphic to Rd via
a Nash diffeomorphism ψ : S → Rd . Next, by [BCR, 8.9.2–4], there exist an open
(tubular) semialgebraic neighborhood U ⊂ V of S and a strictly positive semialgebraic
function α : S → R, which we may assume morever Nash after approximation, such that
the map

8 : W = {(x, z) ∈ S×Rm−d : ‖z‖ < α(x)} → U, (x, z) 7→ x+

m∑
j=d+1

zj grad(hj )(x),

is a Nash diffeomorphism. Finally W is Nash diffeomorphic to Rm via the Nash diffeo-
morphism

9 : W → Rm, (x, z) 7→

(
ψ(x),

z√
α(x)2 − ‖z‖2

)
,

and we are done. ut

A basic topological fact is that semialgebraic sets can always be triangulated. It enters in
an essential way in the proofs of Proposition 1.2 and Theorem 1.3. We summarize here
the notation. Once again, we refer to [BCR, §9]. One fundamental consequence of the
existence of triangulations is the so-called triviality of semialgebraic functions, which we
will use in Section 4. As usual, we refer to [BCR, 9.3.1].
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(2.3) Triangulations of semialgebraic sets. Let Z ⊂ Rn be a semialgebraic set and let
T1, . . . , Tq be semialgebraic subsets of Z.

Suppose first that Z is compact. Then there is a finite simplicial complex K and a
semialgebraic homeomorphism 8 : K → Z such that each preimage 8−1(Ti) is the
union of some open simplices ofK; furthermore, we may assume that the restriction of8
to every open simplex of K is a Nash embedding [BCR, 9.2.3]. We say that (K,8) is a
triangulation of Z compatible with T1, . . . , Tq .

If Z is not compact, we can consider any semialgebraic compactification Z∗ of Z,
that is, Z∗ is a compact semialgebraic set and Z is a dense subset of Z∗. Then choose
a triangulation of Z∗ compatible with T1, . . . , Tq and with the remainder Z∗ \ Z; then
we obtain a “triangulation” of Z compatible with T1, . . . , Tq by dropping the simplices
contained in the remainder. In this case, if Z is locally compact, we can consider its one-
point compactification, so that the remainder reduces to the “infinite point”, which is a
vertex of the triangulation, and the only thing we drop when returning to Z. For this
reason, whenever we stress Z to be locally compact, it is to recall triangulations are made
via the one-point compactification.

The closed simplices of K are denoted as usual by σ , and the corresponding open
simplices by σ 0. Recall that if τ, σ are two simplices of K , then the corresponding open
simplices τ 0, σ 0 are either disjoint or they coincide. Since the restrictions 8|σ 0 are Nash
embeddings, their images Γ = 8(σ 0) are affine Nash manifolds, Nash diffeomorphic to
Rd with d = dim(σ ). Actually, we will mainly deal with these Γ ’s, which we call strata.
These strata form a partition G of Z called a stratification compatible with T1, . . . , Tq .
In particular, every semialgebraic set splits into a finite pairwise disjoint union of affine
Nash manifolds.

(2.3.1) Moreover, since the closure in Z of a stratum of G is a finite union of strata of G,
one deduces that if Σ,Γ are strata of G, then either Σ ⊂ Γ or Σ ∩ Γ = ∅. Therefore, if
GΣ = {Γ ∈ G : Σ ⊂ Γ }, then the semialgebraic set

⋃
Γ ∈GΣ Γ is an open semialgebraic

neighborhood of Σ in Z; this fact will be used throughout.

(2.3.2) We write down for further reference a few connectedness properties.
(1) Every stratum Γ is connected at every point x ∈ Γ , that is, x has a basis of

neighborhoods V in Z with connected intersection V ∩ Γ . This, together with the fact
that Γ is an affine Nash manifold, implies that the analytic closure Γ an

x of the germ Γx is
an irreducible analytic germ of dimension dim(Γ ).

(2) Suppose the stratum Γ is adherent to another stratum Σ , that is, Σ ⊂ Γ . Then
Σ has a basis of neighborhoods V in Z with connected intersection V ∩ Γ . This is clear
if we think that topologically Σ is included in Γ as an open face of an open simplex.
Following the terminology in (1), we say that Γ is connected at Σ .

(3) Suppose that Z is locally compact and it is triangulated via the one-point com-
pactification. Then, for any two strata Σ,Γ the intersection Σ ∩ Γ is connected. Indeed,
this just says that in a triangulation a non-empty intersection of two simplices is a face of
both, hence connected. Even if we must drop the remainder, this is just a vertex, and it
causes no trouble. ut
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(2.4) Piecewise Nash functions. Semialgebraic functions, even if not necessarily contin-
uous, are not far from being Nash functions; in fact, they are Nash after subdivision. We
make this idea rigorous through two statements that will be needed later.

(2.4.1) Let f : M → R be a semialgebraic function defined on an affine Nash man-
ifold M . Then the set U of points x ∈ M at which f is Nash is open semialgebraic.
Furthermore, M \ U has codimension ≥ 1.

That U is open is clear. Now, letG ⊂ M ×R be the graph of f , which is a semialgebraic
set, and consider R = Reg(G), which is an affine Nash manifold of the same dimension
asM . Let T ⊂ M denote the set of critical values of the Nash map π |R : R→ M , which
is a semialgebraic set by the semialgebraic Sard theorem [BCR, 9.6.2]. The function f is
Nash at the point x ∈ M if and only if (x, f (x)) ∈ R and x is a regular value of the Nash
map π |R : R → M . Consequently, U = π(R) \ T is a semialgebraic set. We also get
the assertion on the codimension of the non-Nash points. Indeed, since π |G : G→ M is
bijective, (π |G)−1(U) = R \ (π |G)

−1(T ) andM \U = M \ (π(R)\T ) = π(G\R)∪T ;
now {

dim(π(G \ R)) = dim(G \ R) < dim(G) = dim(M) (by (2.1.3)),

dim(T ) < dim(M) (by the Sard theorem),

and so dim(M \ U) < dim(M).
From the preceding result and the fact that every semialgebraic set is a finite union of

affine Nash manifolds, we readily deduce:

(2.4.2) Let f : S → R be a semialgebraic function. Then there is a finite partition
S =

⋃
i Si into affine Nash manifolds Si such that all restrictions f |Si : Si → R are

Nash functions. ut

One main feature of Nash functions is how close they are to polynomials.

(2.5) Algebraicity of Nash functions. First of all, Nash functions are algebraic over the
polynomials. An analytic function f : U → R defined on an open connected subset U
of a connected affine Nash manifold M ⊂ Rn is Nash if and only if there is a polynomial
P(x,t) ∈ R[x,t] = R[x1, . . . ,xn,t] which is not identically zero on M such that
P(x, f (x)) = 0 for all x ∈ U . This describes f (x) as one of the real roots of the polyno-
mial P(x,t) for x off the set Π ⊂ M where all coefficients of P vanish simultaneously.
This set Π is semialgebraic of dimension < dim(M).

But on the other hand, we have the so-called Artin–Mazur description [BCR, 8.4.4],
which we formulate as follows: Given an affine Nash manifoldM and finitely many Nash
functions f1, . . . , fr : M → R, there are a non-singular real algebraic set V ⊂ Rp and
a Nash diffeomorphism ϕ : M ′ → M from an open and closed semialgebraic subset M ′

of V such that f1 ◦ϕ, . . . , fr ◦ϕ are the restrictions toM ′ of polynomial functions on V .

Let us next turn to Nash sets (see [BCR, §8]).

(2.6) Nash sets. Let M be an affine Nash manifold, and N (M) its ring of global Nash
functions. This ring is noetherian, and there is a satisfactory theory for its ideals and the
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associated zero sets. The zero set Z(I ) of an ideal I ⊂ N (M) is the set X ⊂ M of points
at which all functions in I vanish; we say that X is a Nash subset of M . As I is finitely
generated, X is the zero set of finitely many global Nash functions f1, . . . , fr and in fact
X is the zero set of one Nash function f = f 2

1 + · · · + f
2
r in M (see Definition 1.1). Of

course, every Nash set X is a semialgebraic set. The first examples of Nash subsets are
(closed) Nash submanifolds of M [Sh, II.5.4].

The Nash ideal of a set Z ⊂ M is the ideal JN (Z) of all Nash functions vanishing
on Z; the Nash set X = Z(JN (Z)) is the Nash closure of Z in M , and is the smallest
Nash subset of M containing Z. If Z is a semialgebraic set, both X and Z have the
same dimension, which coincides with the Krull dimension of the ring N (M)/JN (Z) =
N (M)/JN (X). The ideal of a point x ∈ M is a maximal ideal of N (M), usually denoted
by mx .

Of course, Nash subsets of M have finite decompositions into Nash irreducible com-
ponents, which are the zero sets of the associated primes of their ideals in the ring N (M).

The theory of Nash sets relies on the properties of the so-called finite Nash sheaves,
which is related to the finiteness previously mentioned. These sheaves have a good coher-
ence behavior [CRSh2].

There is an algebraic notion of regularity for Nash sets that be considered. Namely,
a point x of a Nash set X is regular in the algebraic sense if the localization of the
quotient N (M)/JN (X) at the maximal ideal of x is a regular ring. We remark for the
record that this notion only depends onX. The set of algebraically regular points is a non-
empty open semialgebraic subset of X, dense in the set of points of maximum dimension
of X (the Artin–Mazur description reduces this to the corresponding well known fact for
real algebraic varieties). An algebraically regular point is regular (of dimension dim(X))
as defined in (2.1.5). The converse is not true, and it is a difficult matter (see [G]). To
illustrate this fact, consider for instance the Nash set X = {xz(x2

+ y2) − y4
= 0} and

pick a point x = (0, 0, a) with a 6= 0. Then the ring (N (M)/JN (X))mx is not regular,
while the germ Xx is regular. To check this last fact, consider the parametrizations

ϕε : {t > 0} → X ∩ {εz > 0}, (s, t) 7→ ε((s2
+ t2)s2, (s2

+ t2)st, t4),

for ε = ±1, whose images cover X \ {0}.
Let us mention here this: if X is an affine Nash manifold, then all points of X are

algebraically regular [Sh, II.5.6]. We will prove a more general version of this, for X
coherent (see Remark 5.3).

Now we turn to the analytic underlying structure of affine Nash manifolds.

(2.7) Analytic structure. Let M be an affine Nash manifold. Then M is also an analytic
manifold, and we consider the sheaf OM of germs of analytic functions onM , and the ring
O(M) of global analytic functions on M . Of course, NM ⊂ OM and N (M) ⊂ O(M).

We recall that O(M) need not be noetherian (unlessM is compact). A global analytic
set X ⊂ M is the zero set of finitely many global analytic functions, and its analytic
ideal JO(X) is the ideal of all global analytic functions vanishing on X. More generally,
we have the analytic ideal JO(Z) of any given set Z ⊂ M; the global analytic subset
X = Z(JO(Z)) of M is the global analytic closure of Z, and it is the smallest global
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analytic set containing Z. There are also decompositions into global analytic irreducible
components, but they are not finite in general; we do not enter into any details here. The
first reference for this is [WB].

These global analytic sets must be distinguished from local analytic sets, that is, sets
that are locally described by finitely many analytic equations. Local analytic sets are the
classical concern of analytic geometry, but in the real case they need not be global. A local
analytic set X is global when it is the real part of a complex analytic set. The classical
condition that implies this is coherence: X is coherent if the global analytic functions
in JO(X) generate all ideals JO(Xx) of germs of analytic functions vanishing on the
germ Xx (x ∈ M). For instance, locally finite unions of analytic manifolds are coherent.
The best reference is the classical article [Ca].

The interplay between Nash and analytic features is a recurrent theme, and often an-
alytic means make the understanding of Nash matters easier and better. From the local
viewpoint, that is, for germs, the comparison is perfect, due to M. Artin’s approximation
results [BCR, §8.3, §8.6]. The global compact case is more difficult but similar in the
use of approximation tools [CRSh1]. The global non-compact case has to be studied in a
different way, but there is a clear picture of the situation [CRSh2], [CSh]. We will need
the following facts, which were open problems in recent references like [BCR, 8.6.10],
then something surely known to the specialists, but as far as we know not in print till [FG,
2.10, 3.2]:

Proposition 2.8. Let M be an affine Nash manifold and let Z be a semialgebraic subset
of M . Then:

(i) The ideal JN (Z) of Nash functions vanishing on Z generates the ideal JO(Z) of
global analytic functions vanishing on Z. In particular, the Nash and the analytic
closures of Z coincide.

(ii) If Z is global analytic, then it is Nash, and its Nash irreducible components are also
its global analytic irreducible components.

Proof. Let d = dim(Z). Denote byX the Nash closure of Z and letX = X1∪· · ·∪Xr be
the decomposition of X into Nash irreducible components; set pi = JN (Xi). We claim
that for each i = 1, . . . , r ,

(2.8.1) piO(M) = JO(Xi) and Xi is an irreducible global analytic set.

Indeed, by [CSh, Corollary 2], qi = piO(M) is a prime ideal of O(M). Now suppose
f ∈ O(M) vanishes on Xi , that is, f ∈ JO(Xi). Then, pick a regular point x of Xi , in
the algebraic sense, and notice that fx ∈ JO(Xix) = qiOM,x , and the stalk at x of the
coherent sheaf F = (qi : f ) is Ox (we borrow this sheaf from [AL, proof of 3.1]). By
Cartan’s Theorem A, the coherent sheaf F is generated by its global sections, and so there
exist g1, . . . , gm ∈ (qi : f ) ⊂ O(M) such that 1 =

∑m
k=1 akgk,x for certain function

germs ak ∈ OM,x . This implies that g`(x) 6= 0 for some index `, hence g` 6∈ qi . Since
g`f ∈ qi and qi is a prime ideal, it follows that f ∈ qi . Thus qi = JO(Xi), as desired.
It follows that Xi is an irreducible global analytic set, because as remarked above, qi is a
prime ideal of O(M). The claim is proved.
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Now, let us prove that the global analytic closure Y of Z coincides with its Nash
closure X. Since Z ⊂ Y ⊂ X and d = dim(Z) = dim(X), the dimension of Y is also d.
By (2.8.1), all Xi’s are irreducible, so that every global analytic irreducible component
of dimension d of Y must coincide with one Xi of dimension d. Denote by X′ the union
of those Xi’s, which is the union of the global analytic irreducible components of Y of
dimension d , and by Y ′′ the union of the global analytic irreducible components of Y of
dimension < d. In this situation Y ′′ is the global analytic closure of the semialgebraic set
Z′ = Z \ X′ ⊂ Y ′′, which has dimension < d, and by induction on d we conclude that
Y ′′ is also the Nash closure of Z′, and in particular a Nash set. Thus Y = X′ ∪ Y ′′ is a
Nash set, and a fortiori the Nash closure X of Z.

Summing up, we have proved that the Nash closure and the analytic closure of Z
coincide, that their Nash and global analytic irreducible components are the same, namely
the Xi’s, and the claim (2.8.1). Consequently, from the properties of coherent sheaves we
get

JO(Z) = JO(X) =
⋂
i

JO(Xi) =
⋂
i

piO(M) =
(⋂
i

pi

)
O(M)

= JN (X)O(M) = JN (Z)O(M),

which completes the proof of (i) and provides half of (ii).
Finally, if Z is global analytic, then it is its own analytic closure, hence its own Nash

closure, as already seen. This means that Z is a Nash set. Thus we have the missing half
of (ii). ut

In fact, we will use (ii) above in Section 4 in the proof of Theorem 1.7, and in Section 5 to
compare semialgebraic and algebraic regularity for coherent Nash sets, improving what
is commented in (2.6).

3. Extensions of Nash functions and embeddings of semialgebraic sets

We start by proving that if all the germs of a locally compact semialgebraic set have
non-singular analytic closure of the same dimension, then the set is contained in an affine
Nash manifold of that dimension. The idea is that all those non-singular analytic closures
glue together into an analytic manifold, and the main difficulty is to guarantee the glueing
is semialgebraic. Roughly speaking, one considers a suitable stratification of the Zariski
closure of the given set and then drops enough strata to get rid of all spurious singularities.
This is the argument in full:

(3.1) Proof of Proposition 1.2. Let U ⊂ Rn be an open semialgebraic neighborhood
of Z in which Z is closed. Let Z

zar
stand for the Zariski closure of Z in Rn and set

X = U ∩Z
zar

. By the hypothesis, Z has pure dimension m and dim(X) = m. Let G be a
stratification ofX compatible with Z as in (2.3); note thatX is locally compact, hence we
use the one-point compactification. Henceforth all topological operations are inX, except
otherwise specified by a subscript. The set Z is a union of strata, from which we select
those of dimension m, say Γ1, . . . , Γr . Since Z is closed in X and has pure dimension m,
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we have Z = Γ1 ∪ · · · ∪ Γr , and Z
an
x = Γ

an
1x ∪ · · · ∪ Γ

an
rx for every x ∈ Z. Now, given

j = 1, . . . , r and x ∈ Γj , we deduce that Γ an
jx = Z

an
x because Γj ⊂ Z has dimension m

and Z
an
x is regular of dimension m.

(3.1.1) Fix j = 1, . . . , r . There is an affine Nash manifold Mj ⊂ U containing Γj such
that Z

an
x = Mjx for every point x ∈ Γj .

The key property to show this is the following remark.

(3.1.2) Consider a stratum Σ ∈ G. If Σx ⊂ Z
an
x for some x ∈ Σ ∩ Γj , then Σy ⊂ Z

an
y

for all y ∈ Σ ∩ Γj .

Indeed, consider the intersection Q = Σ ∩ Γj , which is connected by the properties of
stratifications ((2.3.2)(3)), and the subset B = {y ∈ Q : Σy ⊂ Z

an
y }. This set is non-

empty, because it contains x. We will conclude that B = Q by proving that B is an open
and closed subset of Q.

Let y ∈ Q and let Y ⊂ X be an analytic manifold such that Z
an
y = Yy ; in particular,

there is a neighborhood V of y such that Z∩V ⊂ Y . Then for every z ∈ Q∩V , Zz ⊂ Yz,
and since Yz is a non-singular analytic germ of dimension m, we have Z

an
z = Yz.

From this we deduce that B is open in Q. Suppose y ∈ B. Then Σy ⊂ Z
an
y and

so shrinking V we have Σ ∩ V ⊂ Y ; hence, for every z ∈ Q ∩ V we conclude that
Σz ⊂ Yz = Z

an
z .

Now, to see that B is closed in Q, let y ∈ Q be such that Σz ⊂ Z
an
z for z ∈ Q ∩ V

close enough to y. The above preparation gives the inequality

dim(Σy ∩ Z
an
y ) = dim(Σy ∩ Yy) ≥ dim(Σz ∩ Yz) = dim(Σz ∩ Z

an
z ),

so that

dim(Σy) ≥ dim(Σy ∩ Z
an
y ) ≥ dim(Σz ∩ Z

an
z ) = dim(Σz) = dim(Σy),

and dim(Σy ∩ Z
an
y ) = dim(Σy). Since Σ is an affine Nash manifold connected at y,

the analytic germ Σ
an
y is irreducible ((2.3.2)(1)). Hence, by the dimension condition just

shown, Σan
y is the analytic closure of Σy ∩ Z

an
y . Since the analytic germ Z

an
y contains

Σy ∩ Z
an
y , it also contains its analytic closure Σan

y . We conclude that Σy ⊂ Σ
an
y ⊂ Z

an
y ,

and so y ∈ B. The proof of (3.1.2) is finished.
Let us now prove (3.1.1). Consider the family of strata

F = {Σ ∈ G : Σx ⊂ Z
an
x for some x ∈ Σ ∩ Γj }.

We know that Γ an
jx = Z

an
x for all x ∈ Γj , hence Γj ∈ F . Next consider the closed

semialgebraic subsets of X:

Tj =
⋃
Σ∈F

Σ and Sj =
⋃
Σ /∈F

Σ.
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Note that X = Tj ∪ Sj . Let us check that Mj = Reg(Tj ) ⊂ Tj ⊂ X ⊂ U is the affine
Nash manifold (3.1.1) asks for. It suffices to see that

(3.1.3) Tjx = Z
an
x for every point x ∈ Γj .

Fix x ∈ Γj . First we see that Tjx ⊂ Z
an
x . It is enough to show that Σx ⊂ Z

an
x for each

Σ ∈ F . If x /∈ Σ there is nothing to prove; otherwise, x ∈ Σ ∩ Γj . Then, by definition
of F and (3.1.2), Σx ⊂ Z

an
x .

For the converse inclusion, observe first that dim(Z
an
x ∩Σx) < m forΣ /∈ F . Indeed,

since Z
an
x is regular of dimension m, if m were the dimension of Z

an
x ∩ Σx , then Z

an
x

would be the analytic closure of Z
an
x ∩ Σx , and so Z

an
x would be contained in Σan

x . But
then Σan

x would be irreducible of dimension m ((2.3)(1) again), and in fact Z
an
x = Σ

an
x .

Consequently, Σx ⊂ Z
an
x , and Σ ∈ F , a contradiction. Once we have proved this, we

deduce that dim(Z
an
x ∩ Sjx) < m, and so the germ Z

an
x \ Sjx is dense in the germ Z

an
x .

Since Z
an
x \ Sjx ⊂ Z

an
x ∩ Tjx , the latter germ is also dense in Z

an
x . But Tj is closed, so

that Z
an
x ∩ Tjx = Z

an
x . This finishes the proof of (3.1.3), and as remarked before, that of

(3.1.1).
Next we modify the affine Nash manifold Mj a little. Notice that, since Γj ⊂ Mj ∩Z

(see (3.1.3) and use the regularity of the m-dimensional analytic germs Z
an
x ), we have

Γj x ⊂ Mjx ∩ Zx = Z
an
x ∩ Zx = Zx

for each point x ∈ Γj . Hence,Mj ∩Z is a semialgebraic neighborhood of Γj in Z, that is,
IntZ(Mj ∩Z) is an open semialgebraic subset of Z containing Γj . Therefore, there exists
an open semialgebraic subset Uj of X such that Γj ⊂ Uj ∩Z = IntZ(Mj ∩Z). Replacing
Mj by Mj ∩ Uj , we may assume that Mj ⊂ Uj and Mj ∩ Z = Uj ∩ Z.

Moreover, by (2.1.1), there exists an open semialgebraic subset Vj of X such that
Γj ⊂ Vj ⊂ Vj ⊂ Uj . Now we define M ′j = Mj ∩ Vj , which is an affine Nash manifold of
dimension m and M = Reg(M ′1 ∪ · · · ∪M

′
r) ⊂ U , which is also an affine Nash manifold

of dimension m. Hence, all reduces to checking that Z ⊂ M , and this will follow from:

(3.1.4) M ′1x ∪ · · · ∪M
′
r x = Z

an
x for every point x ∈ Z.

Let us show this. Given a point x ∈ Z = Γ1 ∪ · · · ∪ Γr there exists an index ` such that
x ∈ Γ` ⊂ V`; hence, M ′`x = M`x = Z

an
x . On the other hand, for those indices j with

x 6∈ Vj we have M ′jx = ∅. Therefore, all reduces to checking that M ′jx ⊂ Z
an
x for those

indices j such that x ∈ Vj ⊂ Uj . Observe that if x ∈ Uj ∩ Z = Mj ∩ Z ⊂ Mj , we get

Zx = Ujx ∩ U`x ∩ Zx = Mjx ∩M`x ∩ Zx ⊂ Mjx ∩M`x,

and this implies Z
an
x ⊂ Mjx ∩ M`x ⊂ M`x = Z

an
x . Hence, M`x ∩ Mjx = M`x , that

is, M`x ⊂ Mjx . Since both are irreducible analytic germs of the same dimension m, it
follows that Mjx = M`x = Z

an
x and, in particular, M ′jx ⊂ Mjx = Z

an
x , as desired. ut
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Remark 3.2. Let Z ⊂ Rn be as in the preceding statement.
(1) One can rephrase the hypothesis on Z as follows: for each point x ∈ Z there is an

affine Nash manifoldM of dimensionm such thatMy = Z
an
y for any y ∈ Z close enough

to x. This means that {Z
an
y } defines a continuous section on Z of the sheaf of germs of

analytic subsets of Rn. By general sheaf theory, that section extends to a neighborhood
of Z, which gives an analytic manifold M of dimension m that contains Z. But this does
not give a semialgebraic neighborhood or a Nash manifold, as Proposition 1.2 does.

(2) The manifoldM we find is contained in the Nash closure ofZ (inX). Indeed, since
Z and M have the same dimension, every Nash function that vanishes on Z, vanishes
on M by the Identity Principle.

Now we are ready to prove that a Nash function on a semialgebraic set can always be
extended to an open semialgebraic neighborhood.

(3.3) Proof of Theorem 1.3. Our manifoldM is embedded in some affine space, and using
a tubular neighborhood of M there, we can suppose M is an open semialgebraic subset
of Rn or simply that M = Rn. Thus we have a semialgebraic subset Z of Rn and a Nash
function f in an open neighborhood A of Z in Rn, and we want to replace A by an open
semialgebraic neighborhood of Z in Rn.

First of all, let us construct a stratification G0 of Rn compatible with Z satisfying the
following property:

(3.3.1) For every stratum Γ ∈ G0 whose closure meets Z there is a polynomial P(x,t) ∈
R[x,t] = R[x1, . . . ,xn,t] which is identically zero at no x ∈ Γ , and every stra-
tum Σ ⊂ Γ ∩ Z has a (not necessarily semialgebraic) open neighborhood VΓ ⊂ A

(depending on Σ) with connected intersection VΓ ∩ Γ on which P(x, f (x)) ≡ 0.

To start with, we pick a stratification G of Rn compatible with Z (see (2.3)). Let Γ ∈ G be
a stratum of dimension n such that Γ ∩ Z 6= ∅. Since G is compatible with Z we deduce
that Γ ∩ Z = Σ1 ∪ · · · ∪ Σr for certain strata Σ` ∈ G. Choose an open neighborhood
V` ⊂ A of Σ` such that V` ∩ Γ is connected. This is possible because the stratum Σ` is
adherent to the stratum Γ (see (2.3.2)(2)). Then by (2.5) there is a polynomial P`(x,t) ∈
R[x,t] such that P`(x, f (x)) = 0 for all x ∈ V` ∩ Γ , and there is a semialgebraic set
Π` ⊂ Γ of dimension < n off which the polynomial P` does not vanish identically. Set
P =

∏
` P` andΠ =

⋃
`Π`. Then P(x, f (x)) = 0 for x ∈ V`∩Γ and ` = 1, . . . , r , and

P(x,t) does not vanish identically if x /∈ Π , which is a semialgebraic set of dimension
< n. Of course, all these data depend on Γ , but we omit this in the notation to make the
proof readable.

Next, we pick a new stratification G′ of Rn compatible with Z, with all strata in G,
and with the semialgebraic setsΠ associated as above to the strata Γ ∈ G of dimension n
whose closures meet Z. Let Γ ′ ∈ G′ be a stratum of dimension n whose closure meets Z.
Then Γ ′ ∩ Z = Σ ′1 ∪ · · · ∪ Σ

′
s for certain strata Σ ′k ∈ G′, and by the compatibility

assumptions on G′, there are a stratum Γ ∈ G of dimension n and for each k a stratum
Σ` ∈ G contained in Γ ∩ Z with Γ ′ ⊂ Γ and Σ ′k ⊂ Σ`. Also, for each k we find an
open neighborhood V ′k ⊂ V` ⊂ A of Σ ′k such that V ′k ∩ Γ

′ is connected. In this situation,
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for the polynomial P associated to Γ we have P(x, f (x)) = 0 for x ∈ V ′k ∩ Γ
′ and

k = 1, . . . , s, and what is the real goal, P(x,t) is identically zero at no x ∈ Γ ′. Indeed,
since G′ is compatible with the semialgebraic set Π where P vanishes identically, and
this set has dimension < n, Γ ′ cannot meet Π .

This shows that G′ satisfies (3.3.1) for strata of dimension n. Now, it is quite clear
how to proceed. We turn to strata of dimension n − 1 and can obtain (3.3.1) for them,
off some semialgebraic sets of dimension < n − 1. Then we stratify again Rn, this time
compatibly with Z, with all strata of the previous stratification, and with all semialgebraic
sets of dimension < n− 1 just found. By restricting to this new stratification the previous
polynomials, we keep (3.3.1) for strata of dimension n and gain it for strata of dimension
n− 1. And we continue inductively, till all dimensions have been taken into account.

Once we have the stratification G0 of (3.3.1), for every stratum Γ ∈ G0 whose closure
meets Z we prove the following:

(3.3.2) There is a partition of Γ into finitely many affine Nash manifolds T1, . . . , Tm
equipped with finitely many Nash functions αij : Ti → R, 1 ≤ j ≤ ri , such that αi1(x) <
· · · < αiri (x) are the real roots of Pi(x,t) ∈ R[t] for x ∈ Ti . Here we denote by Pi(x,t)
the polynomial assigned to Γ to stress we specialize it to x ∈ Ti; since Pi(x,t) is not
identically zero and Pi(x, f (x)) = 0, Pi(x,t) is not constant, so that ri ≥ 1.

To prove this, first apply [BCR, 2.3.1] to each polynomial asigned to Γ to obtain a parti-
tion of Γ into finitely many semialgebraic sets T ′i and semialgebraic roots αij : T ′i → R.
Then use (2.4.2) to split the T ′i ’s into affine Nash manifolds Tj on which the roots are in
addition Nash functions.

Having (3.3.2) we complete our preparation by stratifying once again: this time let
G be a stratification of Rn compatible with Z, with all strata of G0 and all semialgebraic
pieces T1, . . . , Tm associated to those strata. For the balance of the proof we only refer to
strata of this last stratification G.

The set Z is a union of strata of G, and for the time being, we fix one of them, say Σ .
Let GΣ be the collection of all strata of G adherent toΣ , and consider the open semialge-
braic neighborhood W =

⋃
Γ ∈GΣ Γ of Σ (see (2.3.1)). The key property of the strata in

GΣ is the following:

(3.3.3) Every Γ ∈ GΣ is contained in a (unique) Ti , and there is an open neighborhood
VΓ of Σ in A such that VΓ ∩ Γ is connected and f coincides with a root αij of Pi on
VΓ ∩ Γ . We denote that root by hΓ .

The first part follows from the compatibility of G with the Ti’s. For the second part,
choose an open neighborhood VΓ of Σ in A such that VΓ ∩ Γ is connected and where
Pi(x, f (x)) = 0. Now, the connected set VΓ ∩Γ is the disjoint union of the closed subsets
defined by {f = αi1}, . . . , {f = αiri }, and consequently coincides with one of them. In
other words, f = αij on VΓ ∩ Γ for a unique index j . We are done.

Next, the semialgebraic functions hΓ : Γ → R provided by (3.3.3) glue into a semi-
algebraic function h : W → R that coincides with f on AΣ =

⋃
Γ ∈GΣ Γ ∩ VΓ , which

is a neighborhood of Σ in A. Now we have to compare these functions h : W → R
for different strata Σ contained in Z. To that end we enumerate the strata involved as
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Σ1, . . . , Σp and write Z =
∑p

`=1Σ`. For each ` we have an open semialgebraic neigh-
borhood W` of Σ` and a semialgebraic function h` : W`→ R that coincides with f on a
neighborhood A` ⊂ W` ∩ A of Σ`. An important fact is this:

(3.3.4) Fix k and let ` be such that Σk ∩W` 6= ∅. Then Wk ⊂ W` and hk = h`|Wk .

Indeed, since Σk meets W`, it meets some stratum adherent to Σ`; but then Σk coincides
with that stratum and, in particular, Σk is adherent to Σ`. From this we see that any
stratum adherent to Σk is adherent to Σ` too, which gives the inclusion Wk ⊂ W`. Next,
let us prove that h` restricts to hk on Wk . To do that we pick a stratum Γ adherent to Σk ,
hence to Σ`, and show that hk and h` are defined on Γ by the same root of Pi(x,t).
Denote by Vk and V` the neighborhoods of Σk,Σ` in A with connected intersections
with Γ , where f = hk and f = h` respectively. As Σ` ⊂ Σk and Σk ⊂ Γ , the
intersection Vk` = Vk ∩ V` ∩ Γ is not empty. Notice that on Vk` the three Nash functions
f, hk, h` on Γ coincide. Thus, the Nash functions hk|Γ and h`|Γ coincide on the non-
empty open subset Vk` of the stratum Γ , hence on the whole of it. We are done.

Once we know (3.3.4), consider the open semialgebraic neighborhoodW ′=
⋃p

`=1W`

of Z, and for each ` = 1, . . . , p let W ′` ⊂ W` be an open semialgebraic set such that
W ′ ∩W ′` ⊂ W` and W ′ =

⋃
`W
′

` (see (2.1.2)). Then on the semialgebraic set

S = {x ∈ W ′ : if x ∈ W ′`1
∩W ′

`2
, then h`1(x) = h`2(x)} ⊂ W

′
=

⋃
`

W ′`

the semialgebraic function

h : S → R, x 7→ h`(x) if x ∈ W ′`,

is well defined. We claim that

(3.3.5) S contains an open neighborhood of Z on which h coincides with f .

To prove this, fix x ∈ Z. All we need is a neighborhood of x contained in S on which h
and f coincide. To find it, we enumerate the W ′`’s adherent to x, say

x ∈ W ′1, . . . ,W
′
q and x /∈ W ′q+1, . . . ,W

′
p .

Since Z is the union of the Σ`’s, one of them contains x, say x ∈ Σk . Then, by (3.3.4),

Wk ⊂ W1 ∩ · · · ∩Wq and h1|Wk = hk, . . . , hq |Wk = hk.

Then the neighborhood of x we seek is

Ux = Ak \ (W ′q+1 ∪ · · · ∪W
′
p) ⊂ Wk ∩ A.

First we see that Ux ⊂ S. Let y ∈ Ux . If y ∈ W ′`1
∩W ′`2

, then 1 ≤ `1, `2 ≤ q, and so
x ∈ Σk∩W`1∩W`2 . Thus, by (3.3.4), y ∈ Wk ⊂ W`1∩W`2 and h`1(y) = hk(y) = h`2(y).
Consequently, y ∈ S. Second, we see that h coincides on Ux with f . Indeed, as we have
just shown, h coincides there with hk , which on Ak coincides with f . Thus (3.3.5) is
proved.
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Finally, let U be the set of points of S at which h is Nash. This open set contains the
neighborhood of Z on which h and f coincide, and by (2.4.1), U is a semialgebraic set.
To conclude the proof of Theorem 1.3, just restrict h to U . ut

Remarks 3.4. (1) Let again Z be a semialgebraic subset of an affine Nash manifold M .
Suppose that every point in Z is adherent to IntM(Z). This is the proper situation to define
Nash functions through local extensions in the elementary way. Namely, f : Z→ R is a
Nash function if every point x ∈ Z has a neighborhood U in M on which there is a Nash
extension F : U → R of f |U∩Z .

The key fact is that any two such extensions Fi : Ui → R have the same germ at x.
Indeed, since x is adherent to IntM(Z), any neighborhood U of x meets IntM(Z); pick
U ⊂ U1∩U2 connected. Then f1 and f2 coincide on the non-empty open setU∩IntM(Z),
and by the Identity Principle, they coincide on U . As is well known from sheaf theory,
this guarantees that there is a Nash extension F of f to an open neighborhood of Z inM .
The extra information provided by Theorem 1.3 is that such a neighborhood can be taken
semialgebraic.

(2) This local definition of Nash functions need not work in general. Consider the
semialgebraic set Z ⊂ E = R2 consisting of the x-axis y = 0 and the closed disc
x2
+ y2

≤ 1/4. Then the function f : Z→ R defined by

f (x, y) =

{
0 if y = 0,
y/(x2

+ y2
− 1) if x2

+ y2
≤ 1/4,

has local but not global analytic extensions (see also [FG]).

4. Local Nash normal crossings in a Nash manifold

Let M be an affine Nash manifold of dimension m and N (M) its ring of Nash functions.
We recall (see Definition 1.4) that a Nash subset X of M has only normal crossings at
x ∈ X if there are coordinates (u1, . . . , um) ofM at x such that Xx = {u1 · · · ur = 0} for
some r . This number r , which depends only on the point x, is the multiplicity mult(X, x)
of X at x. In a formal way, we write mult(X, x) = 0 to mean x /∈ X. It is clear that
X has only normal crossings at x of multiplicity r ≥ 1 if and only if the germ Xx is
the union of r non-singular hypersurface germs in general position (this means that their
tangent hyperplanes are linearly independent). Note also that the function mult(X, ·) is
upper semicontinuous.

Lemma 4.1. Let X1, . . . , Xr be the irreducible components of a Nash subset X of M
which has only normal crossings in M . Then each finite union of irreducible compo-
nents Xi of X has only normal crossings in M .

Proof. Notice first that all reduces to checking that each Xi has only normal crossings
in M . Since X has only normal crossings in M , X is a coherent analytic space and, using
the normalization of X (see [T, §8]), one deduces that each Xi is pure dimensional of
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dimension m− 1. Now, since Xx = X1x ∪ · · · ∪Xrx for all x ∈ M , it is straightforward,
using again that X has only normal crossings in M , that the same happens for each Xi .

ut

Next, to prove Proposition 1.5, that is, to prove that the set

U = {x ∈ M : X has only normal crossings at x}

is semialgebraic, we need the following fact, interesting in its own right:

Proposition 4.2. Let Z be a semialgebraic subset of an affine Nash manifold M ⊂ Rn.
The set of points x ∈ Z such that the germ Zx has a fixed number s of connected compo-
nents is semialgebraic.

Proof. The proof exemplifies the use of semialgebraic triviality [BCR, 9.3.1]. Since the
germs Zx , x ∈ Z, are connected, we only care for points x ∈ X = Z \ Z. For such
an x, denote by B(x, ε) ⊂ Rn the open ball of center x and radius ε. By definition,
Zx has s connected components if and only if for all ε > 0 small enough the intersection
Z∩B(x, ε) has s connected components adherent to x. Since “for all ε > 0 small enough”
is a first order sentence (clearly it can be rewritten as “∃t > 0 such that ∀ε > 0 with
ε < t”), it is enough to see that the (x, ε)’s such that Z ∩ B(x, ε) has s connected
components adherent to x form a semialgebraic set.

Consider the semialgebraic sets

S = {(x, ε, z) ∈ X × (0,∞)×M : z ∈ (Z ∩ B(x, ε)) ∪ {x}},
P = {(x, ε, z) ∈ X × (0,∞)×M : z = x}

and the projection π : X × (0,∞) ×M → X × (0,∞). Semialgebraic triviality [BCR,
9.3.2] says that there is a finite semialgebraic partition X× (0,∞) =

⋃
` T` and for each

` two semialgebraic sets F` ⊃ G`, a point a` ∈ F` and a semialgebraic homeomorphism
θ` : T` × F`→ π−1(T`) such that π ◦ θ` is the projection T` × F`→ T` and

θ`(T` ×G`) = S ∩ π
−1(T`) and θ`(T` × {a`}) = P ∩ π

−1(T`);

notice that θ` is injective and P ⊂ S. In fact, we claim that a` ∈ G`.
Indeed, let (x, ε) ∈ T` and observe that

θ`(x, ε, a`) = (x, ε, x) ∈ P ∩ π
−1(T`) ⊂ S ∩ π

−1(T`) = θ`(T` ×G`).

Now, since θ` is injective we deduce that a` ∈ G`.
Thus, for each (x, ε) ∈ T`, θ` induces a homeomorphism G` → (Z ∩ B(x, ε)) ∪ {x}

that maps a` to x andG` \ {a`} onto Z∩B(x, ε). Consequently, the number of connected
components of Z ∩ B(x, ε) adherent to x is the number of connected components of
G` \ {a`} adherent to a`, which depends solely on T`. We conclude that the set of couples
(x, ε) we are interested in, which are those (x, ε) such that Z ∩ B(x, ε) has s connected
components adherent to x, equals the union of certain T`’s (maybe none), so that they
indeed form a semialgebraic set. ut
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Once we know this, we can proceed with:

(4.3) Proof of Proposition 1.5. The set U of points of M that either do not belong to X
or at which X has only normal crossings is clearly open (see Definition 1.4) and it is the
union of the sets U0 = M \X and

Ur = {x ∈ X : X has only normal crossings at x, of multiplicity r}, 1 ≤ r ≤ m.

We will prove the semialgebraicity of Ur for 1 ≤ r ≤ m. Consider the Nash ideal I =
JN (X) of X, which is finitely generated, by say f1, . . . , fp ∈ N (M). Clearly, x ∈ Ur if
and only if

(4.3.1) There is a regular system of parameters u1, . . . , um of the local regular ring NM,x

such that Xx = {f1 = 0, . . . , fp = 0}x = {u1 · · · ur = 0}x .

We must show that this condition is semialgebraic. Before proceeding, we apply the
Artin–Mazur Theorem (see 2.5) to assume that M is an open subset of a non-singular
algebraic set V ⊂ Rn and f1, . . . , fp are the restrictions to M of some polynomial
functions that we denote by the same letters. Let J be the ideal of V in the polyno-
mial ring R[x] = R[x1, . . . ,xn], and let b1, . . . , bq be generators of J . Then the stalk
NM,x at a point x ∈ M is the henselization of the localization of R[x]/J at the ideal
(x − x) = (x1 − x1, . . . ,xn − xn). We denote by R[[x − x]]alg the henselization of
the local ring R[x](x−x), and so NM,x = R[[x− x]]alg/(b1, . . . , bq). On the other hand,
Jx = JNM,x is generated by the polynomials bk , and the parameters ui are the classes
modulo Jx of some hi ∈ R[[x − x]]alg; let Bkx, Hix stand for the derivatives at x of
the bk, hi .

Suppose that condition (4.3.1) holds true for a point x ∈ M . We deduce that all fj ’s
belong to the ideal of NM,x generated by u1 · · · ur ; hence

(1) There are Nash function germs gj , ajk ∈ R[[x− x]]alg such that

fj = h1 · · ·hrgj +
∑

k
ajkbk. (?)

On the other hand, that the ui’s form a regular system of parameters of NM,x just means
that

(2) The hi’s vanish at x, and the linear formsHix are linearly independent over R modulo
the linear forms Bkx .

Let us now see how these new equivalent conditions are semialgebraic. We look at
(1) as a system of polynomial equations in the unknowns hi,gj ,ajk . Then we recall
M. Artin’s approximation theorem with bounds [Ar, 6.1]; it says that

(4.3.2) For any integer α there exists another integer β, which only depends on n, α, the
degrees of the fj ’s, the degrees of the bk’s and the number of variables hi,gj ,aij , such
that the polynomial equations

fj = h1 · · ·hrgj +
∑
k

ajkbk
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have an exact solution in the local ring R[[x−x]]alg if they have an approximate solution
modulo (x−x)β ; furthermore that exact solution coincides with the approximate solution
to order α.

Now, fix α = 2, so that the exact solution coincides with the approximate one to order 2,
and define S as the set of points x ∈ M such that:

(1∗) There are polynomials hi, gj , ajk ∈ R[x] of degree ≤ β such that

fj ≡ h1 · · · hrgj +
∑
k

ajkbk mod (x− x)β . (∗)

(2∗) The polynomials hi vanish at x and the derivatives Hi,x at x of the polynomials hi
are linearly independent linear forms over R modulo the linear forms Bkx .

Then, if that approximate solution hi satisfies (2∗), the exact one hi also satisfies (2).
Thus, if the equation (∗) in (1∗) has an approximate solution hi, gj , ajk ∈ R[x] of degree
≤ β modulo (x − x)β satisfying (2∗), then the equation (?) in (1) has an exact solution
hi, gj , ajk ∈ R[[x − x]]alg satisfying (2). Since the converse implication is trivial, both
assertions are equivalent. Now, the existence of approximate solutions of fixed order β
(described by conditions (1∗) and (2∗) above) is clearly a first order sentence, and we
conclude that the set S of points x ∈ M for which conditions (1) and (2) hold true (or
equivalently conditions (1∗) and (2∗) hold true) is a semialgebraic set.

Next we analyze the exact meaning of (1) and (2); let x ∈ S. From (1) we get

Xx = {f1 = 0, . . . , fp = 0}x ∩Mx = {u1 · · · ur = 0} ∪ ({g1 = 0, . . . , gp = 0} ∩Mx);

hence the irreducible decomposition of the germ Xx is

Xx = {u1 · · · ur = 0} ∪ (Y1 ∪ · · · ∪ Ys), (•)

where the Y`’s are irreducible Nash germs on which no ui vanishes identically. Thus we
must get rid of those Y`’s. To that end we use the topology of the germ Xx . The two
properties of interest here are that if X has only normal crossings at x of multiplicity r
then:

(a) Xx has pure dimension m− 1, and
(b) Reg(X)x has 2r connected components.

Now, by (2.1.3) and Proposition 4.2, the points in X satisfying (a) and (b) form a semial-
gebraic set T .

Next, we claim that Ur = S ∩ T . Indeed, it only remains to prove that for x ∈ T the
above decomposition (•) of Xx into irreducible components has no Y`. Indeed, suppose
by way of contradiction that Xx has one irreducible component Yk . Now, condition (a)
tells us that the Y`’s all have pure dimension m− 1, and we deduce

Reg(X)x =
(

Reg({u1 · · · ur = 0}) \
⋃
`

Y`

)
∪

(
Reg

(⋃
`

Y`

)
\ {u1 · · · ur = 0}

)
.



558 José F. Fernando et al.

On the right-hand side we see at least 2r+ 1 connected components: 2r coming from
Reg({u1 · · · ur = 0}) and another from

⋃
` Y`. But this contradicts (b), and we conclude

that the Y`’s cannot really be there. ut

Next, we discuss finiteness of local normal crossings (Theorem 1.6), that is, whether we
can formulate the definition of local normal crossings with finitely many open semialge-
braic coordinate systems. First, we prove:

Proposition 4.4. LetZ be a locally compact semialgebraic subset of an affine Nash man-
ifold M . Suppose that at every point x ∈ Z there is a coordinate system (v1, . . . , vm) of
M such that Z

an
x = {v1 · · · vr = 0}x for some r ≥ 1; we will call this r the multiplicity of

Z at x, and write r = mult(Z, x). Then:

(i) Every set Z(r) = {x ∈ Z : mult(Z, x) = r} is semialgebraic.
(ii) Every set Z(r) can be covered by finitely many open semialgebraic subsets U of M

equipped with Nash diffeomorphisms (u1, . . . , um) : U → Rm such that Z ∩ U ⊂
{u1 · · · ur = 0}.

Proof. Since Z is closed in some open semialgebraic subset of M , replacing M by that
subset we can suppose that Z is closed in M . On the other hand, we can cover M with
finitely many open semialgebraic subsets Nash diffeomorphic to Rm (see Lemma 2.2),
and so we may assume that M = Rm.

To start with, we choose a finite semialgebraic stratification G of Rm compatible
with Z. Note that every stratum Γ ∈ G is an affine Nash manifold. We will need the
following:

(4.4.1) Let Γ ∈ G be a stratum of dimension m− 1 contained in Z. Then for each point
x ∈ Γ ⊂ Z the germ Γ

an
x is non-singular of dimension m− 1.

Indeed, given x ∈ Γ and since Z has only normal crossings at x, there exist non-singular
hypersurface germs X1, . . . , Xs , s = mult(Z, x), such that

Γ
an
x ⊂ Z

an
x = X1 ∪ · · · ∪Xs .

Since all germs X1, . . . , Xs, Γ
an
x are irreducible of the same dimension, there exists an

index j = 1, . . . , s such that Γ an
x = Xj , which implies (4.4.1).

Next, we prove (i). We fix a stratum Σ ∈ G contained in Z and a point a ∈ Σ with
r = mult(Z, a) ≥ mult(Z, x) for every x ∈ Σ , and set GΣ = {Γ ∈ G : Σ ⊂ Γ ⊂ Z}.
We claim that

(4.4.2) There exist strata Γ1, . . . , Γr ∈ GΣ such that Z
an
x = Γ

an
1x ∪ · · · ∪ Γ

an
rx is the

decomposition of the analytic germ Z
an
x into irreducible components for every x ∈ Σ . In

particular, mult(Z, ·) ≡ r is constant on Σ .

Indeed, the union ∆ =
⋃
Γ ∈GΣ Γ is an open neighborhood of Σ in Z (see (2.3.1)), so

that ∆x = Zx for every x ∈ Σ . Now, observe that⋃
Γ ∈GΣ

Γ
an
a = ∆

an
a = Z

an
a = A1 ∪ · · · ∪ Ar ,



Finiteness problems on Nash manifolds and Nash sets 559

where A1, . . . , Ar are distinct, non-singular hypersurface germs; by (4.4.1) for each i =
1, . . . , r we have Ai = Γ

an
ia for some Γi ∈ GΣ of dimension m − 1. So far, the strata

Γ1, . . . , Γr already obtained depend on the chosen point a ∈ Σ , but we see readily that
they do not.

Indeed, for any other point x ∈ Σ we have, by the choice of a ∈ Σ ,

Γ
an
ix ⊂ Z

an
x = X1 ∪ · · · ∪Xs,

where s ≤ r and X1, . . . , Xs are distinct, non-singular hypersuface germs at x. Thus, by
(4.4.1) every Γ an

ix coincides with one of theXk’s, and what we must see is that Γ an
ix 6= Γ

an
jx

for i 6= j . Consider for i 6= j the set

Qij = {x ∈ Σ : Γ
an
ix 6= Γ

an
jx} = {x ∈ Σ : dim(Γ an

ix ∩ Γ
an
jx) < m− 1}.

The first description shows, by using (4.4.1), that Qij is closed in Σ (just observe that its
complement in Σ is open), while the second shows that Qij is open in Σ . Since a ∈ Qij

and Σ is connected we conclude that Qij = Σ , as desired. The claim (4.4.2) is proved.
Thus, for each Σ ∈ G contained in Z, the restriction mult(Z, ·)|Σ is constant and so

Σ is contained in some Z(r). Since G is compatible with Z, we deduce that each Z(r) is a
finite union of some (maybe none)Σ ∈ G; hence, in particular, each Z(r) is semialgebraic
and so statement (i) is proved.

Now, we show (ii). Of course, it is enough to prove that each Σ ⊂ Z(r) can be
covered by finitely many open semialgebraic subsets U of M equipped with Nash diffeo-
morphisms (u1, . . . , um) : U → Rm such that Z ∩ U ⊂ {u1 · · · ur = 0}. To that end,
consider (with the notation of (4.4.2)) Ti = Γi for i = 1, . . . , r . For each x ∈ Ti we have
T

an
ix = Γ

an
ix , which is a non-singular hypersurface germ by (4.4.1). Hence, by Proposition

1.2, there exists a Nash hypersurface Si ⊂ Rm containing Ti , with Six = T
an
ix for x ∈ Ti .

In particular, by (4.4.2),

Zx ⊂ Z
an
x = Γ

an
1x ∪ · · · ∪ Γ

an
rx = S1x ∪ · · · ∪ Srx (•)

for all x ∈ Σ . By means of [BCR, 9.3.10], we find a finite covering of Si by semialgebraic
open subsets Uij of Rm and Nash functions hij : Uij → R such that Si ∩Uij = {hij = 0}
and rk(hij ) = 1 everywhere. In fact, since any affine Nash manifold of dimension m− 1
can be covered by finitely many open semialgebraic subsets Nash diffeomorphic to Rm−1,
we may assume that the sets Vij = Si ∩ Uij are Nash diffeomorphic to Rm−1.

Back to Σ , note that it is contained in T1 ∩ · · · ∩ Tr ⊂ S1 ∩ · · · ∩ Sr , so that:

(4.4.3) The intersections U1j1 ∩ · · · ∩ Urjr form an open semialgebraic covering of Σ .
Therefore we work on every such intersection separately: On each U = U1j1 ∩ · · · ∩Urjr
we have r Nash functions hi = hiji |U : U → R of constant rank one such that Si ∩ U =
{hi = 0}.

In particular, Zx ⊂ S1x ∪ · · · ∪ Srx for all x ∈ U ∩ Σ (see (•) above), and so there
exists an open, not necessarily semialgebraic, neighborhood U ′ ⊂ U of Σ ∩ U such that
Z ∩ U ′ ⊂ S1 ∪ · · · ∪ Sr . Consequently,

Σ ∩ U ⊂ U ′ ⊂ U \ (Z ∩ U \ (S1 ∪ · · · ∪ Sr)),
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that is,
W = IntM(U \ (Z ∩ U \ (S1 ∪ · · · ∪ Sr)) ⊂ U

is an open semialgebraic neighborhood of Σ ∩ U such that

Σ ∩ U = Σ ∩W ⊂ Z ∩W ⊂ S1 ∪ · · · ∪ Sr .

Notice that:

(4.4.4) For each x ∈ Z ∩W with mult(Z, x) = r , the Six’s are the irreducible compo-
nents of Z

an
x . Moreover, since this last germ has a representative which has only normal

crossings at x, the Nash map h = (h1, . . . , hr) : W → Rr has rank r at x.

Now, for every choice of indices ν = (ν1, . . . , νm−r) ∈ {1, . . . , m}m−r with νi 6= νj if
i 6= j , consider the Nash map

ψν : W → Rm, x = (x1, . . . , xm) 7→ (h(x), xν1 , . . . , xνm−r ),

and the (possibly empty) open semialgebraic subset

Wν = {x ∈ W : rk(ψν)(x) = m} ⊂ Rm.

Since, by (4.4.2) and (4.4.4), rk(h) ≡ r on Σ ∩ W , we have Σ ∩ W ⊂
⋃
ν Wν ∩ W .

Consequently, we continue the argument on each Wν separately; we denote for the sake
of simplicity A = Wν and ψ = ψν for those ν such that Wν 6= ∅.

First, since the Nash map ψ |A : A→ Rm is a local diffeomorphism, there is a finite
open semialgebraic covering A1, . . . , Ap of A such that each restriction ψ |A` : A` →
ψ(A`) is a homeomorphism, hence a Nash diffeomorphism, onto its image, which is an
open semialgebraic subset of Rm (see [BCR, 9.3.9]). Since ψ |A` is a diffeomorphism,
(y1, . . . , ym) = ψ(x) is a system of coordinates in A`; moreover, ψ(Si ∩A`) ⊂ {yi = 0}
for i = 1, . . . , r . Thus,

ψ(Σ ∩ A`) ⊂ ψ(Z ∩ A`) ⊂ ψ((S1 ∪ · · · ∪ Sr) ∩ A`) ⊂ {y1 · · · yr = 0}

and
ψ(Z ∩ A`)

an
y = {y1 · · · yr = 0}

for all y = ψ(x) ∈ ψ(Z∩A`) with mult(Z, x) = r . In addition, we obtain ψ(Σ ∩A`) ⊂
{y1 = 0, . . . , yr = 0}, because Σ ⊂ S1 ∩ · · · ∩ Sr .

This proves (ii) of Proposition 4.4 except for the fact that Ω` = ψ(A`) need not
be Rm. But:

(4.4.5) Ω` contains a smaller neighborhood of ψ(Σ ∩ A`), which is a finite union of
open semialgebraic sets Nash diffeomorphic to Rm, by diffeomorphisms that preserve the
coordinate hyperplanes y1 = 0, . . . , yr = 0.

Indeed, cover

∆` = {y1 = 0, . . . , yr = 0} ∩Ω` ⊂ {0} × Rm−r ≡ Rm−r

with finitely many semialgebraic sets ∆k` Nash diffeomorphic to Rm−r , say via Nash
diffeomorphisms vk : ∆k` → Rm−r . Then choose a tubular neighborhood of ∆k` in Ω` as



Finiteness problems on Nash manifolds and Nash sets 561

follows. Approximate the distance to the closed semialgebraic set Rm \ Ω` by a strictly
positive Nash function α : ∆`→ R so that

{(y′, y′′) ∈ Rr × Rm−r : y′′ ∈ ∆`, ‖y′‖ < α(y′′)} ⊂ Ω`.

Then consider

Ωk
` = {(y

′, y′′) ∈ Rr × Rm−r : y′′ ∈ ∆k`, ‖y
′
‖ < α(y′′)}

and the Nash diffeomorphism

u : Ωk
` → Rr × Rm−r , (y′, y′′) 7→

(
1√

α(y′′)2 − ‖y′‖2
y′, vk(y′′)

)
,

which preserves the hyperplanes y1 = 0, . . . , yr = 0. We are done. ut

Remark 4.5. Before we progress further, we notice a crucial difference between the de-
ceivingly similar conditions

Xx = {u1 · · · ur = 0} in Definition 1.4, and

Z
an
x = {v1 · · · vr = 0} in Proposition 4.4.

In the first case X is a Nash set, which implies Xy = {u1 · · · ur = 0}y for y close enough
to x, while in the second we may have Z

an
y 6= {v1 · · · vr = 0}y for y arbitrarily close to x.

For instance, look at the semialgebraic setZ = {z = 0}∪{x = 0, y2
+(z−1)2 ≤ 1} ⊂ R3

close enough to the origin. This “lack of continuity” of the correspondence y 7→ Z
an
y must

be taken into account.

With this in mind, we obtain the following finiteness result concerning local normal
crossings, which includes Theorem 1.6 as a particular case.

Proposition 4.6. Let Z ⊂ M be a locally compact semialgebraic subset. Suppose that
at every point x ∈ Z there is an integer r ≥ 1 and a coordinate system (v1, . . . , vm)

of M such that Z
an
y = {v1 · · · vr = 0}y for every y ∈ Z close enough to x. Then Z

can be covered by finitely many open semialgebraic subsets U of M equipped with Nash
diffeomorphisms (u1, . . . , um) : U → Rm such that Z

an
x = {u1 · · · ur = 0}x for all

x ∈ Z ∩ U .

Proof. By Proposition 4.4, we can cover Z by finitely many open semialgebraic sets U ,
for each of which there is a Nash diffeomorphism (u1, . . . , um) : U → Rm such that

Z ∩ U ⊂ {u1 · · · ur = 0}

(where r depends on U ). Furthermore, every point x ∈ Z belongs to some U with r =
mult(Z, x). We will modify these U ’s to get the condition closing the statement.

First of all:

(4.6.1) Let x ∈ Z have mult(Z, x) = r . Then Z
an
y = {u1 · · · ur = 0}y for all y ∈ Z close

enough to x.
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Indeed, clearly Z
an
x = {u1 · · · ur = 0}x and by the continuity hypothesis, there is a coor-

dinate system (v1, . . . , vm) of M at x such that Z
an
y = {v1 · · · vr = 0}y for y ∈ Z close

enough to x. Of course the vi’s need not coincide with the ui’s, but it follows from the
equality

Z
an
x = {u1 · · · ur = 0}x = {v1 · · · vr = 0}x

that, up to reordering, {ui = 0} and {vi = 0} have the same germ at x, hence they have it
at all y close enough, so that

Z
an
y = {u1 · · · ur = 0}y = {v1 · · · vr = 0}y

for y close enough to x. This is (4.6.1).
From (4.6.1) we deduce that the set S = {x ∈ U : Z

an
x = {u1 · · · ur = 0}xbig} is a

neighborhood in U of T (r) = {x ∈ Z ∩ U : mult(Z, x) = r} and we claim that

(4.6.2) The set S is semialgebraic.

For, Z ∩ U ⊂ {u1 · · · ur = 0}, and so Z
an
x ⊂ {u1 · · · ur = 0}x for all x ∈ Z ∩ U .

Consequently, x ∈ S if and only if mult(Z, x) coincides with the number s(x) of the
hypersurfaces {u1 = 0}, . . . , {ur = 0} that contain x. Now note that mult(Z, x) is a
semialgebraic function by Proposition 4.4(i) and s(x) is a semialgebraic function too
because it is defined through the semialgebraic functions ui . We conclude that the set S,
defined through the equality mult(Z, x) = s(x), is a semialgebraic set, as desired.

Once this is shown, the interior U ′ of S in U is an open semialgebraic neighborhood
of T (r), and replacing U by U ′ we can suppose Z

an
x = {u1 · · · ur = 0}x for all x ∈ Z∩U .

However in doing this the diffeomorphism u = (u1, . . . , um) : U → Rm may not be onto
anymore. Thus we have to split it again to complete the proof. This is done as in (4.4.5);
we do not repeat the details. ut

Finally, we show how (under some conditions) a semialgebraic set can be embedded into
a Nash set which has only normal crossings.

(4.7) Proof of Theorem 1.7. Since Z is locally compact, we can replace M by an open
semialgebraic neighborhood of Z so that Z is closed in M . Then, by Proposition 4.6,
M can be covered with finitely many open semialgebraic subsets U` (1 ≤ ` ≤ p)
equipped with Nash diffeomorphisms u` = (u`1, . . . , u

`
m) : U` → Rm such that either

Z ∩ U` = ∅ or
Z

an
x = {u

`
1 · · · u

`
r = 0}x

for all x ∈ Z ∩ U` and some 1 ≤ r ≤ m. We denote by Y` the Nash subset of U` defined
by the equation u`1 · · · u

`
r = 0.

Now we shrink {U`} to a covering M =
⋃
` V` with open semialgebraic sets V` such

that V` ⊂ U` (see (2.1.2)). Also, we pick a stratification G of M compatible with Z, the
sets Z(r), the U`’s, the V`’s and their closures V` and the hypersurfaces {u`i = 0}.

In this situation, let F be the collection of all strata Γ ∈ G whose closures meet Z.
Then the set Ω =

⋃
Γ ∈F Γ is an open semialgebraic neighborhood of Z in M (see

(2.3.1)). Consider the sets

Ω` = Ω ∩ V` and X` = Y` ∩Ω` for 1 ≤ ` ≤ p,

and the union X =
⋃
`X`. We claim that the pair X ⊂ Ω solves our problem.
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First of all we see that:

(4.7.1) X` ∩Ωk = Xk ∩Ω` for any two indices `, k.

Indeed,X`∩Ωk is a union of some strata Γ in F , that is, those with Γ ∩Z 6= ∅. Fix such
a Γ and pick a point x ∈ Γ ∩ Z. Since Γ ⊂ V` ∩ V k ⊂ U` ∩ Uk , we have

Γx ⊂ X`x ⊂ Y`x = Z
an
x = Ykx .

This implies Γ ⊂ Yk , because Γ ⊂ Uk is a connected affine Nash manifold, and Yk a
Nash subset of Uk .

We have thus proved the inclusion X` ∩ Ωk ⊂ Yk ∩ Ωk ⊂ Xk , which gives one
inclusion in (4.7.1). The other follows by symmetry.

From (4.7.1) we deduce that Xx = Y`x = {u`1 · · · u
`
r = 0} for x ∈ Ω` (1 ≤ ` ≤ p).

Hence X is a coherent local analytic subset of Ω , and this implies that X is a global
analytic subset of Ω . As X is semialgebraic, from Proposition 2.8(ii) we conclude that X
is a Nash subset of Ω .

Finally, since the Nash closure X′ of Z in Ω is a union of irreducible components
of X, we deduce that X′ has only normal crossings in Ω (see Lemma 4.1) and we are
done. ut

5. Nash normal crossings divisors of a Nash manifold

Here we complete the results of the previous section with a quick review of the global
notion of normal crossings. As usual, let M be an affine Nash manifold of dimension
m and let N (M) denote its ring of Nash functions. Recall that a Nash normal crossings
divisor of M is a Nash subset X ⊂ M whose irreducible components are non-singular
hypersurfaces X1, . . . , Xp of M in general position (see Definition 1.8). We understand
locally the notion of Nash normal crossings divisor as follows:

Proposition 5.1. Let X ⊂ M be a Nash subset and let J = JN (X) be its ideal in
N (M). Let x ∈ X and suppose that all irreducible components X1, . . . , Xr of X through
the point x are hypersurfaces of M . Denote by m = mx the maximal ideal of x in N (M).
The following assertions are equivalent:

(i) The point x is regular in the algebraic sense in all Xi , i = 1, . . . , r , and there exist
local coordinates {v1, . . . , vm} of M at x such that Xx = {v1 · · · vr = 0}x .

(ii) There exists a regular system of parameters {u1, . . . , um} of the local regular ring
N (M)m such that JN (M)m is generated by the product u1 · · · ur .

Proof. Set Ji = JN (Xi) ⊂ m, i = 1, . . . , r , so that J = J1 ∩ · · · ∩ Jr ; each Ji is a
height one prime ideal of N (M). Therefore, each extension Ji N (M)m is a height one
prime ideal, and since N (M)m is regular, Ji N (M)m is principal. Hence, Ji N (M)m =
fi N (M)m for some fi ∈ m, and JN (M)m is generated by the product f1 · · · fr . This
last fact holds because fi, fj with i 6= j are relatively prime in the unique factorization
domain N (M)m.
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Now, suppose (i) holds true. Then, the germs {vi = 0}x are the irreducible components
of Xx , and consequently, up to reordering, Xix = {vi = 0}x . Moreover, each irreducible
component Xi,x is a non-singular hypersurface germ, and the ideal JN (Xix) ⊂ NM,x

is generated by vi . Since the ideal J (Xix) contains Ji , vi divides fi . On the other hand,
the regularity condition says that each ring N (M)m/Ji N (M)m is regular of dimension
m − 1, and so we can add to each ui = fi another m − 1 parameters to get a regular
system of N (M)m. Then for a fixed i that regular system is a regular system of NM,x

too because the completions of both rings coincide; hence, ui is irreducible in NM,x . We
conclude that ui = wivi for some unit wi ∈ NM,x .

Since v1, . . . , vm is a regular system of NM,x , we deduce that u1, . . . , ur , vr+1, . . . ,

vm is a regular system of parameters of NM,x too. This implies (using Jacobian criteria,
for instance) that there are ur+1, . . . , um ∈ m such that u1, . . . , ur , ur+1, . . . , um is a
regular system of parameters of N (M)m. We have obtained (ii).

Conversely, suppose we have (ii). Then {u1, . . . , um} are local analytic coordinates
and Xx = {u1 · · · ur = 0}x . To prove the regularity of x as a point of Xi in the al-
gebraic sense, notice that since JN (M)m is generated by the element u1 · · · ur , the
associated primes Ji N (M)m are generated each by one ui ; and we may assume that
Xi,x = {ui = 0}x for i = 1, . . . , r . Thus, the local ring N (M)m/JiN (M)m =
N (M)m/ui N (M)m is regular. ut

From the previous result we immediately deduce:

Corollary 5.2. A Nash subsetX which has only normal crossings inM is a Nash normal
crossings divisor ofM if and only if its Nash irreducible components are all non-singular
hypersurfaces of M .

Proof. The only thing to remark here is that in a closed Nash submanifold Y of M , all
points are regular in the algebraic sense (see 2.6). ut

Remark 5.3. The last proof points to the importance of algebraic regularity. This is
stronger than regularity as defined in (2.1.5) for arbitrary semalgebraic sets. In Section 1
we quoted the comparison result 2.6, and advanced the following improvement:

Let X be a Nash subset of an affine Nash manifold M which is a coherent analytic
set. Then a point x ∈ X is regular in the algebraic sense if and only if it is regular in the
sense of (2.1.5).

Indeed, if a point x ∈ X is regular in the sense of (2.1.5), then analytic germ Xx is
non-singular, and the ring OM,x/JO(Xx) is a local regular ring. But X is coherent, that
is, JO(X) generates JO(Xx). From this and Proposition 2.8 we deduce that also JN (X)
generates JO(Xx). Thus

OM,x/JN (X)OM,x = OM,x/JN (Xx).

This local regular ring has the same adic completion as N (M)m/JN (X)N (M)m. Conse-
quently, this last local ring is regular too, and we conclude that x is regular in the algebraic
sense.

As said before, the simplest example of coherent analytic sets are analytic manifolds,
and in particular Nash manifolds, a case mentioned in (2.6).
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6. Affine Nash manifolds with corners

In this last section we apply the previous results to affine Nash manifolds with corners.
Let N ⊂ Rn be an affine Nash manifold with corners, ∂N its boundary andm = dim(N).
First we see how N embeds into an affine Nash manifold where the Nash closure of ∂N
has only normal crossings.

(6.1) Proof of Theorem 1.11. Recall that for each point x ∈ N there is a Nash diffeo-
morphism (v1, . . . , vn) : V

x
→ Rn defined in an open neighborhood V x ⊂ Rn of x that

maps x to the origin and such that

V x ∩N = {v1 ≥ 0, . . . , vr ≥ 0, vm+1 = 0, . . . , vn = 0}

(r depends on x). As mentioned in the Introduction, the analytic set germ N
an
x = {vm+1

= 0, . . . , vn = 0}x is regular of dimensionm and by Proposition 1.2, N is a closed subset
of an affine Nash manifold M ⊂ Rn of dimension m; notice that N \ ∂N is open in M .
On the other hand, (v1, . . . , vm) : V

x
∩M → Rm are coordinates of M at x, and

∂N
an
y = {v1 · · · vr = 0, vm+1 = 0, . . . , vn = 0}y

for all y ∈ V x ∩ N . Consequently, Theorem 1.7 applies with Z = ∂N , and replacing M
by an open semialgebraic neighborhood of ∂N we can suppose that the Nash closure Y
of ∂N in M has only normal crossings in M and that Yx = ∂N

an
x for all x ∈ ∂N .

Now, by Theorem 1.6, we can cover Y with finitely many open semialgebraic sub-
sets U of M equipped with Nash diffeomorphisms (u1, . . . , um) : U → Rm such that
U ∩ Y = {u1 · · · ur = 0}. In particular, ∂N

an
x = {u1 · · · ur = 0}x for all x ∈ U ∩ ∂N .

We keep only those U ’s that meet ∂N , and denote by Ω their union. Then Ω ∪ (N \ ∂N)
is an open semialgebraic neighborhood of N in M , and we can merely suppose M =
Ω ∪ (N \ ∂N). Since N \ ∂N is an affine Nash manifold of dimension m, it can be cov-
ered with open semialgebraic sets Nash diffeomorphic to Rm. Set X′ = Y ∩Ω . We claim
that, substituting where needed −ui for ui ,

(6.1.1) U ∩ N = {u1 ≥ 0, . . . , um ≥ 0} and U ∩ N ∩ X′ = U ∩ ∂N for all U in the
semialgebraic covering of ∂N constructed above.

To prove this, let us look at the sets U ∩ N \ X′ ⊂ U ∩ N \ ∂N . Since the larger one
is open and closed in U \ ∂N and ∂N ⊂ X′, the smaller one is open and closed in
U \ X′ = {u1 · · · ur 6= 0}. Hence U ∩ N contains a union of connected components of
{u1 · · · ur 6= 0}. Let x ∈ U be the point with u1(x) = 0, . . . , um(x) = 0. This point is
adherent to all connected components of {u1 · · · ur 6= 0}; hence x ∈ N . If x /∈ ∂N , then
N is a neighborhood of x in U and touches all connected components of {u1 · · · ur 6= 0},
which means that N contains all of them. But N is closed in M , so that U ⊂ N . From
this we see that U ∩ ∂N = ∅, a contradiction. So x ∈ ∂N and we have ∂N

an
x = X

′
x =

{u1 · · · ur = 0}x . Consequently, Nx = {u1 ≥ 0, . . . , ur ≥ 0}x (substituting where needed
−ui for ui) and U ∩ N cannot contain but the component of {u1 > 0, . . . , ur > 0}. This
implies (6.1.1).
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We deduce readily from (6.1.1) that N ∩X′ = ∂N , and what remains is to prove that
X′ is a Nash subset ofM = Ω∪(N \∂N). To show this, we notice thatX′ is closed inM ,
because X′ = Y ∩Ω is closed in Ω and X′ does not meet the open set N \ ∂N . Hence,
sinceX′ is also Nash inΩ , [Sh, II.5.3] tells us thatX′ is a Nash subset ofM . Finally, since
the Nash closure X of ∂N in M is a union of some (maybe all) irreducible components
of X′, we deduce that X satifies all the conditions in the statement (see Lemma 4.1). ut

Next, we characterize when an affine Nash manifold with corners N is contained in
an affine Nash manifold M where the Nash closure of ∂N is a Nash normal crossings
divisor. We separate our argument into several implications. First we recall the notation:
the facesDi of N are the closures in N of the connected components Ci of Reg(∂N). We
have

∂N =
⋃

i
Di, Di ∩ Cj = ∅ for j 6= i, and Di \ Ci ⊂

⋃
j 6=i

Dj .

(6.2) Proof of Theorem 1.12, (i)⇒(ii)⇒(iii)⇒(iv). LetN be embedded inM as in (i). The
Nash closure Xi of a face Di is that of the connected affine Nash manifold Ci , and so it
is irreducible. Since ∂N =

⋃
i Di , the Xi’s are the irreducible components of the Nash

closureX of ∂N , which by hypothesis are non-singular. This is condition (ii), from which
we now deduce (iii).

Fix a point x ∈ ∂N . The number r of connected components of the germ Reg(∂N)x
is at least the number of components Ci adherent to x, which is the number s of faces
Di = Ci through x. Thus, r ≥ s and let us see now that s ≥ r .

By hypothesis, each face Di is contained in an affine Nash manifold Xi . Since ev-
ery Xi is non-singular, every germ Xix is irreducible. Assume D1, . . . , Ds are the faces
through x. Then

∂Nx = D1x ∪ · · · ∪Dsx and ∂N
an
x ⊂ X1x ∪ · · · ∪Xsx .

Thus ∂N
an
x has no more than s irreducible components, that is, s ≥ r and (iii) is proved.

Finally, let us deduce (iv) from (iii). Fix x ∈ ∂N =
⋃
i Di and sayD1, . . . , Dk are the

faces through x. There is an open neighborhood U of x in Rn and a Nash diffeomorphism
(u1, . . . , un) : U → Rn that maps x to the origin such that

U ∩N = {u1 ≥ 0, . . . , ur ≥ 0, um+1 = 0, . . . , un = 0}.

Consequently, the connected components of Reg(∂N)x are these:

C′jx = {u1 > 0, . . . , uj = 0, . . . , ur > 0, um+1 = 0, . . . , un = 0}, 1 ≤ j ≤ r.

Using now (iii) we deduce that the germs Cix for i = 1, . . . , r are also the connected
components of Reg(∂N)x . Therefore k = r and, up to the order, Cix = C′ix . Thus

Dix = Cix = {u1 ≥ 0, . . . , ui = 0, . . . , ur ≥ 0, um+1 = 0, . . . , un = 0}.

This shows that close enough to x the face Di is an affine Nash manifold with corners.
Thus, since the Di’s are semialgebraic, we conclude that they are affine Nash manifolds
with corners, as wanted. ut
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(6.3) Proof of Theorem 1.12, (iv)⇒(i). By Theorem 1.11 there exists an affine Nash man-
ifold M ⊂ Rn containing N as a closed subset, with dim(M) = dim(N) = m, such that
the Nash closure X of ∂N in M has only normal crossings in M and N ∩ X = ∂N . We
must find an open semialgebraic neighborhood U of N in M where the Nash closure of
∂N is a Nash normal crossings divisor. We proceed as follows.

By (iv) each faceDi is an affine Nash manifold with corners, with dim(Di) = m− 1.
By Theorem 1.11,Di is a closed subset of an affine Nash manifold Yi of dimensionm−1.
SinceDi ⊂ M is connected, we can choose Yi ⊂ M also connected. Then Yi is contained
in X because so is Di ; consequently, N ∩ Yi ⊂ ∂N .

Now, Yi is locally compact, so that Yi \ Yi is closed in M . Since Di is also closed in
M and does not meet Yi \Yi , there is an open semialgebraic neighborhood Ui ofDi inM
whose closure Ui does not meet Yi \ Yi . We will need a further shrinking of Ui .

First, if Dj ∩Di = ∅, we take Ui smaller to have Ui ∩Dj = ∅, but if Dj ∩Di 6= ∅
with i 6= j , we need a more delicate discussion. First, we claim that

(6.3.1) The open semialgebraic set Vij = {x ∈ M : Yix ∩Djx ⊂ Dix} contains Di .

Indeed, if x ∈ Di , then Yix is an irreducible component of ∂N
an
x , and Yix ∩ ∂Nx = Dix .

Since Djx ⊂ ∂Nx we have

Yix ∩Djx ⊂ Yix ∩ ∂Nx = Dix .

Thus x ∈ Vij as desired.
Now, (6.3.1) says that Di does not meet the closed semialgebraic set Dj \ Vij , and so

we can reduce Ui so that Ui ∩Dj ⊂ Vij . By the definition of Vij we deduce that

(6.3.2) Ui ∩ Yi ∩Dj ⊂ Di .

After all these shrinkings, write Y ′i = Ui ∩ Yi . We have

(6.3.3) (Y ′i \ Y
′

i ) ∩N = ∅.

Indeed, since Ui ∩ (Yi \ Yi) = ∅, we have Y ′i ⊂ Yi ⊂ X, and so

Y ′i ∩N ⊂ Y
′

i ∩N ∩X = Y
′

i ∩ ∂N =
⋃

j
Y ′i ∩Dj .

On the other hand, Y ′i ∩Dj ⊂ Ui ∩ Yi ∩Dj and (6.3.2) gives

(6.3.4) Y ′i ∩Dj ⊂ Di ⊂ Yi ∩ Ui = Y
′

i .

From this and the previous inclusion we deduce Y ′i ∩N ⊂ Y
′

i , and consequently (6.3.3).
Now, by (6.3.3), the open semialgebraic set U = M \

⋃
i(Y
′

i \ Y
′

i ) contains N . More-
over, by the definition itself, all the intersections Y ′i ∩ U are closed in U . Let Y ′′i denote
the connected component of Y ′i ∩U that containsDi , which is again a closed submanifold
of U , and consequently a Nash subset of U . Since the Y ′′i ’s are connected, they are the
Nash closures in U of the Di’s, and they are irreducible; hence Y =

⋃
i Y
′′

i is the Nash
closure in U of ∂N . Now, for every x ∈ U the germ Yx is a union of irreducible compo-
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nents ofXx , and sinceX has only normal crossings at x, also Y has only normal crossings
at x (see Lemma 4.1). Finally, the irreducible components Y ′′i of Y are all non-singular
hypersurfaces of U . Altogether, we conclude that Y ⊂ U is a Nash normal crossings
divisor. Thus, condition (i) follows. ut

(6.4) Proof of the additional assertion of Theorem 1.12. Let N ⊂ Rn be an affine Nash
manifold with corners, and let M ⊂ Rn be an affine Nash manifold containing N of the
same dimension, say m. We write the boundary of N as the union of its faces, ∂N =⋃
i Di , and denote by Xi the Nash closure of Di in M . Clearly X =

⋃
i Xi is the Nash

closure of ∂N in M , and each Xi is an irreducible Nash set (being the Nash closure
of some connected component Ci of the affine Nash manifold Reg(∂N)). Consequently,
X =

⋃
i Xi is a decomposition into irreducible components, except for the fact that there

may be redundancies. We are to see that if the conditions of Theorem 1.12 hold true, then
M can be chosen so that all Xi’s are distinct and Xi ∩N = Di for each i.

First, by Theorem 1.12(i) we choose M such that X is a normal crossings divisor.
Second, by Theorem 1.11 we can assume that X ∩ N = ∂N and Xx = ∂N

an
x for all

x ∈ ∂N . Then, suppose Xi ∩ N 6= Di and pick x ∈ Xi ∩ N \Di ⊂ ∂N \Di . It follows
that Xix is an irreducible component of ∂N

an
x . Since the irreducible components of ∂N

an
x

are the analytic closures of the germs at x of the Cj ’s adherent to x, and x is not adherent
to Ci , we conclude that Xix = C

an
jx ⊂ Xjx for some j 6= i; since Xj and Xi are non-

singular hypersurfaces, they coincide. Thus we see that the redundanciesXi = Xj are the
only obstruction we must take care of. We show now how to do it.

Suppose that X1 is the Nash closure of the faces D1, . . . , Dp and does not meet the
others: X1 ∩ N = D1 ∪ · · · ∪Dp. We claim that those Di’s are disjoint. Indeed, if there
were y ∈ Di ∩ Dj , then X1y ⊃ C

an
iy ∩ C

an
jy , and, since the two last germs are distinct of

dimension m− 1, X1y would be reducible, a contradiction.
Now, since the Di’s are connected, closed and disjoint, they have connected open

semialgebraic neighborhoods Yi in X1 with disjoint closures, and we consider the affine
Nash manifold M ′ = M \

⋃
i(Y i \ Yi). Observe that

N ∩ (Y i \ Yi) = N ∩X1 ∩ (Y i \ Yi) =

p⋃
j=1

Dj ∩ (Y i \ Yi) = Di \ Yi = ∅,

and soN ⊂ M ′; now, a little computation shows that each Yi is an open and closed subset
of X1 ∩M

′. Thus, the connected component Y ′i of Yi that containsDi is the Nash closure
of Di in M ′ and now Y ′i ∩ Y

′

j = ∅ if i 6= j . Thus we have replaced the common Nash
closure X1 of the faces Di by different Nash closures for every one of them. ut

From Theorem 1.12 we get:

Corollary 6.5. Let N be an affine Nash manifold with corners whose faces are affine
Nash manifolds with corners. Then the faces of the faces of N are again affine Nash
manifolds with corners.

Proof. Let C be a connected component of Reg(∂N) and letD = C be the corresponding
face of N . By Theorem 1.12 there exists an affine Nash manifold M containing N as a
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closed subset where the Nash closure X of ∂N in M is a Nash normal crossings divisor
whose irreducible componentsXi are the Nash closures of the facesDi andN∩Xi = Di ;
say D = D1. Then

∂D = D \ C = D ∩
⋃
i 6=1

Di ⊂ D ∩
⋃
i 6=1

Xi ⊂ X1 ∩
⋃
i 6=1

Xi .

We see that the Nash closure Y of ∂D in X1 is contained in X1 ∩
⋃
i 6=1Xi , which is a

Nash normal crossings divisor of X1. By Corollary 5.2, Y is a Nash normal crossings
divisor of the affine Nash manifold X1 and, from Theorem 1.12, it follows that every face
of D is an affine Nash manifold with corners. ut
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