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Abstract
In this work, we study some algebraic and topological properties of the ring O(Xν) of
global analytic functions on the normalization (Xν,OXν ) of a reduced complex ana-
lytic space (X ,OX ). If (X ,OX ) is a Stein space, we characterize O(Xν) in terms of
the (topological) completion of the integral closure O(X)

ν
of the ring O(X) of global

holomorphic functions on X (inside its total ring of fractions) with respect to the usual
Fréchet topology ofO(X)

ν
. This shows that not only the Stein space (X ,OX ) but also

its normalization is completely determined by the ring O(X) of global analytic func-
tions on X . This result was already proved in 1988 by Hayes–Pourcin when (X ,OX )

is an irreducible Stein space, whereas in this paper we afford the general case. We
also analyze the real underlying structures (XR,OR

X ) and (Xν R,OR

Xν ) of a reduced
complex analytic space (X ,OX ) and its normalization (Xν,OXν ). We prove that the
complexification of (Xν R,OR

Xν ) provides the normalization of the complexification of
(XR,OR

X ) if and only if (XR,OR

X ) is a coherent real analytic space. Roughly speaking,
coherence of the real underlying structure is equivalent to the equality of the following
two combined operations: (1) normalization + real underlying structure + complexi-
fication, and (2) real underlying structure + complexification + normalization.
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1 Introduction

In this paper, we analyze the algebraic and topological relation between the Fréchet
algebras O(X) and O(Xν) of global analytic functions on a reduced complex ana-
lytic space (X ,OX ) and on its normalization ((Xν,OXν ), π). Algebraic operations as
integral closure and topological operations as completion will have significant roles.
Given a commutative ring A we denote A

ν
the integral closure of A in its total ring of

fractions Q(A).
Assume first that X ⊂ C

n carries an algebraic structure and let (Xμ ⊂ C
n+m, ρ)

denote its algebraic normalization. The ring P(Xμ) of polynomial functions on Xμ is
(isomorphic to) the integral closure P(X)

ν
of the ring P(X) of polynomial functions

on X (in the ring of rational functions on X ). The ring P(X)
ν
is in addition a finitely

generated P(X)-module and a reduced C-algebra. We endow X and Xμ with their
natural analytic structures, that is, we consider the reduced complex analytic spaces
(X ,OX := OCn |X ) and (Xμ,OXμ := OCn+m |Xμ). ZariskiMain Theorem is equivalent
to the following statement: OXμ,y is an integrally closed domain for each y ∈ Xμ

(see [24, §V.6]). As a consequence of the latter fact, one can prove that O(Xμ) is
(isomorphic to) the integral closure O(X)

ν
of O(X) in its total ring of fractions. More

precisely, one has the following result.

Theorem 1.1 (Zariski Theorem) Let X ⊂ C
n be an algebraic set. Then theC-algebras

O(X)
ν
and O(Xμ) are isomorphic, the tuple (Xμ,OXμ, ρ) is isomorphic to the (ana-

lytic) normalization ((Xν,OXν ), π) of (X ,OX ), and O(Xν) is a finitely generated
O(X)-module.

This fact is no longer true in general when (X ,OX ) is a reduced complex analytic
space, even if (X ,OX ) is a 1-dimensional Stein space, as it is shown in [18, §1]
exhibiting an explicit counterexample. Alternatively, in Example 3.10 we provide a
2-dimensional Stein space (X ,OX ) such that O(X)

ν �= O(Xν).
In this paper, we prove that if (X ,OX ) is a reduced Stein space, the C-algebra

O(Xν) is the completion as a metric space of the integral closure O(X)
ν
of O(X) in

its total ring of fractions. The latter coincides with the ring M(X) of meromorphic
functions on X because (X ,OX ) is a Stein space [22, 52.17, 53.1]. The space O(Xν)

is endowed with the natural metric topology of uniform convergence on compact sets
[14, 8.3]. As the sheafOXν is coherent and Xν is separable,O(Xν)with such topology
is a Fréchet space [17, VIII.A.Thm. 8]. The inclusionO(X)

ν
↪→ O(Xν) (see Theorem

2.1) endows O(X)
ν
with the induced (metric) topology. If S ⊂ O(Xν), the closure

Cl(S) coincides with the completion of S as a metric space, so we can recover Cl(S)

from S without referring to the ambient space O(Xν). In general, O(X)
ν
need not be

complete [18, §1] and if such is the case O(X)
ν �= O(Xν). However, as announced

above, we show in Sect. 3 the following result.

Theorem 1.2 (Density of the integral closure) Let (X ,OX ) be a reduced Stein space.
Then O(Xν) is the completion of the (metric) space O(X)

ν
, or equivalently, O(X)

ν
is

a dense subset of O(Xν).
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The result above was proved in [18] only for irreducible Stein spaces. Our proof
for the general case is quite different and is obtained as a consequence of a user-
friendly description (as an inverse limit) of the closure of an O(X)-submodule N of
the O(X)-module of global sections H0(X ,F) of a coherent sheaf of OX -modules
F (the O(X)-module H0(X ,F) is endowed with its natural Fréchet topology [17,
VIII.A.Thm. 8]). More precisely, let K ⊂ X be a compact set and let SK be the
set of holomorphic functions on X whose zero sets do not meet K . The set SK is a
multiplicatively closed set, which may contain zero divisors if X is not irreducible.
We call S−1

K N the module of fractions of N associated with K . If K1 ⊂ K2 ⊂ X are
compact sets, then SK2 ⊂ SK1 and

ρK1,K2 : S−1
K2
N → S−1

K1
N,

F

H
�→ F

H

is a homomorphism of O(X)-modules, which may be non-injective if X is not irre-
ducible. Obviously if K , K ′ ⊂ X are compact sets, their union K ′′ := K ∪ K ′ is
a compact subset of X that contains both. Thus, the multiplicatively closed sets SK
allow us to represent Cl(N) as the following inverse limit.

Proposition 1.3 The closure Cl(N) is (isomorphic to) the inverse limit lim←−
K⊂X

compact

S−1
K N of

the inverse system

S :=
{
{S−1

K N} K⊂X
compact

, {ρK1,K2}K1⊂K2⊂X
compact

}
.

In addition, if {K�}�≥1 is an exhaustion of X by compact sets, thenCl(N) ∼= lim←−
�≥1

S−1
K�
N.

As a straightforward application of Proposition 1.3 (makingN = O(X)), we write
the ringO(X) as the inverse limit of the rings of fractions S−1

K O(X)where each K ⊂ X
is a compact set.

Corollary 1.4 The ring O(X) is (isomorphic to) the inverse limit lim←−
K⊂X

compact

S−1
K O(X) of

the directed system

S :=
{
{S−1

K O(X)} K⊂X
compact

, {ρK1,K2}K1⊂K2⊂X
compact

}
.

In addition, if {K�}�≥1 is an exhaustion of X by compact sets, then O(X) ∼=
lim←−
�≥1

S−1
K�
O(X).

We call S−1
K O(X) the ring of fractions of O(X) associated to K . Corollary 1.4

generalizes the fact that
O(X) =

⋂
K⊂X

compact

S−1
K O(X) (1.1)
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if X is irreducible. To prove (1.1) fromCorollary 1.4 one uses that each ring of fractions
S−1
K O(X) is a subring of M(X), that each homomorphism ρK1,K2 : S−1

K2
O(X) →

S−1
K1
O(X) is injective if K1 ⊂ K2 ⊂ X and the following well-known remark.

Remark 1.5 Let {Ai }i∈I be a family of subgroups of a group A such that for each pair
i, j ∈ I there exists k ∈ I such that Ak ⊂ Ai ∩ A j . We consider the partial order≤ on
I given by: i ≤ k if and only if Ak ⊂ Ai , and the family of inclusion homomorphisms
jik : Ak ↪→ Ai if i ≤ k. Observe that ji i = idAi and jik = ji� ◦j�k : Ak ↪→ A� ↪→
Ai if i ≤ � ≤ k. Thus, the pair ({Ai }i∈I , {jik}i≤k) is an inverse system of groups and
inclusion homomorphisms. The inverse limit lim←−

i∈I
Ai is the intersection A :=⋂i∈I Ai

together with the inclusion homomorphisms ji : A ↪→ Ai for each i ∈ I . ��
If X is not irreducible, the homomorphisms ρK1,K2 : S−1

K2
O(X) → S−1

K1
O(X) may

not be injective and the rings of fractions S−1
K O(X) may not be subrings of M(X),

because themultiplicatively closed setSK maycontain zerodivisors, so the intersection
works no longer and inverse limit is required for the description of O(X).

The customary description of Stein spaces as being those complex spaces that
have “sufficiently many” global holomorphic functions [17, VII] attains precision
from a theorem of Forster/Igusa/Iwahashi/Remmert [13,20,21,30] stating: (X ,OX )

is Stein if and only if the map χ : X → Specc(O(X)), x �→ χx , that maps a
point x ∈ X to the evaluation homomorphism χx : O(X) → C, f �→ f (x) at
such point, is a homeomorphism. Recall that Specc(O(X)) is the set of continuous
C-algebra homomorphisms ϕ : O(X) → C. Consequently, a complex analytic space
(X ,OX ) is Stein if and only if there exist enough global holomorphic functions on
X to enable X to be regained topologically from the continuous spectrum of these
functions, that is, (X ,OX ) is completely determined by its C-algebra O(X) of global
holomorphic functions. In addition, a reduced complex analytic space is Stein if and
only if its normalization is Stein [27]. Thus, we conclude that if (X ,OX ) is a reduced
Stein space, its C-algebra O(X) of global analytic functions determines both spaces
(X ,OX ) and (Xν,OXν ).

We include in 3.4 for the sake of completeness a proof of Zariski Theorem 1.1 that
follows the ideas developed in this work. Such result compares the algebraic structure
of an algebraic set and its underlying complex analytic structure. In a similar way we
may compare the real underlying structures of a complex analytic space and its normal-
ization. A celebrated approach to complex algebraic curves (which can be understood
as particular cases of Stein spaces) is the study of their real underlying structures from
which the concept of Riemannian surface arises. There are certain properties that are
preserved when considering the real underlying structure of a complex analytic space:
local regularity, local irreducibility, local normality, etc.

We analyze the behavior of the normalization of a reduced complex analytic space
(X ,OX )when considering the real underlying structure (XR,OR

X ). By2.5 and2.7 there

exists a complexification of (XR,OR

X ), that is, a complex analytic space (XR
∼

,OX
∼
R)

endowed with an anti-involution σ : XR
∼ → XR

∼
such that XR is the set of fixed

points of σ . If (Xν,OXν , π) is the normalization of (X ,OX ) and (Xν R,OR

Xν ) is its
real analytic structure, we complexify the real analytic morphism πR : Xν R → XR
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2892 F. Acquistapace et al.

to obtain a complex analytic morphism πR
∼ : Xν R

∼ → XR
∼

, where (Xν R
∼

,OXν∼
R)

is a complexification of (Xν,OXν ), see 2.7.1. We have the following commutative
diagram.

Xν

π

Xν R

πR

Xν R
∼

πR
∼

X XR XR
∼

Our next result determines when the tuple (Xν R
∼

,O
Xν R
∼ , πR

∼
) is the normalization of

(XR
∼

,O
XR
∼ ) in terms of the coherence of the real analytic space (XR,OXR).

Theorem 1.6 (Real underlying structure of the normalization). The following asser-
tions are equivalent:

(i) The real analytic space (XR,OXR) is coherent.
(ii) For each point a ∈ X , the irreducible components of the germ Xa remain irre-

ducible in a neighborhood of a.

(iii) The triple (Xν R
∼

,O
Xν R
∼ , πR

∼
) is the normalization of (XR

∼
,O

XR
∼ ) after shrinking

Xν R
∼

and XR
∼

if necessary.

Roughly speaking, the previous result determines under what extent the operations
of normalization and complexification commute via considering the real underlying
structure (in the proper place), that is,

⎧⎨
⎩

real structure
+ complexification
+ normalization

⎫⎬
⎭ =

⎧⎨
⎩

normalization
+ real structure
+ complexification

⎫⎬
⎭ ⇐⇒

{
real structure
is coherent

}

or in other words

(
XR
∼ )ν = (Xν)R

∼ ⇐⇒ XR is coherent.

Structure of the article The article is organized as follows. In Sect. 2 we present
all basic terminology and notations used in this article as well as some basic results
concerning holomorphic and anti-holomorphic functions on complex analytic spaces.
The reading can be started directly in Sect. 3 and referred to the Sect. 2 of ‘Basic facts’
only when needed. In Sect. 3 we prove Theorems 1.1 and 1.2 and Proposition 1.3. To
that end, given a Stein space (X ,OX ),we represent the ringO(X) as an inverse limit of
excellent rings (Corollary 1.4 and Theorem 3.5) and the ringO(Xν) as an inverse limit
of normal excellent rings (Corollary 1.4 and Theorem 3.9). In addition, we provide
an explicit 2-dimensional Stein space (X ,OX ) such that O(X)

ν �= O(Xν) (Example
3.10). In Sect. 5, we analyze the real underlying structure of the normalization of a
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complex analytic space in order to prove Theorem 1.6. The proof of this result requires
a deep knowledge of some local properties of the real underlying structure of a complex
analytic set explored in Sect. 4.

2 Basic facts on real and complex analytic spaces

We collect next notations and basic facts that are recurrent in the article.

2.1 Notations and general terminology

In the following, holomorphic refers to the complex case, whereas it is analytic to
the real case. For a further reading about complex analytic spaces we refer to [17]
while we remit the reader to [16] for the theory of real analytic spaces. We denote
the elements of O(X) with capital letters if (X ,OX ) is a complex analytic space and
with small letters if (X ,OX ) is a real analytic space. We will use freely Remmert’s
Theorem [28, VII.§2.Thm. 2] that states: The image of a proper holomorphic map
between complex analytic spaces is a complex analytic set.

Denote the coordinates in C
n with z := (z1, . . . , zn) where zi := xi + √−1yi .

Consider the conjugation · : C
n → C

n, z �→ z := (z1, . . . , zn) of C
n , whose set

of fixed points is R
n . A subset S ⊂ C

n is invariant if S = S. Let 
 ⊂ C
n be an

invariant open set and F : 
 → C a holomorphic function. We say that F is invariant
if F(z) = F(z) for each z ∈ 
. This implies that F restricts to a real analytic function
on 
 ∩ R

n . Conversely, if f is analytic on R
n , it can be extended to an invariant

holomorphic function F on some invariant open neighborhood 
 ⊂ C
n of R

n .

2.2 Real and imaginary parts

Write the tuple z := (z1, . . . , zn) ∈ C
n as z = x + √−1y where x := (x1, . . . , xn)

and y := (y1, . . . , yn), so we identify C
n with R

2n . If F : 
 → C is a holomorphic
function, F(x + √−1y) := �∗(F)(x, y) + √−1�∗(F)(x, y) where

�∗(F)(x, y) := F(z) + F(z)

2
and �∗(F)(x, y) := F(z) − F(z)

2
√−1

are real analytic functions on 
 ≡ 
R understood as an open subset of R
2n . Assume

in addition that 
 is invariant. Then

�(F) : 
 → C, z �→ F(z) + F(z)

2
and �(F) : 
 → C, z �→ F(z) − F(z)

2
√−1

are invariant holomorphic functions that satisfy F = �(F) + √−1�(F). We have

�∗(F) = �∗(�(F)) − �∗(�(F)) and �∗(F) = �∗(�(F)) + �∗(�(F)),
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2894 F. Acquistapace et al.

so it is convenient not to confuse the pair of real analytic functions (�∗(F),�∗(F))

on 
R with the pair of invariant holomorphic functions (�(F),�(F)) on 
.

2.3 Reduced analytic spaces [16, I.1]

Let K = R or C and let (X ,OX ) be an either complex or real analytic space. Let FX

be the sheaf of K-valued functions on X and let ϑ : OX → FX be the morphism of
sheaves defined for each open set U ⊂ X by ϑU (s) : U → K, x �→ s(x) where
s(x) is the class of s modulo the maximal ideal mX ,x of OX ,x . Recall that (X ,OX ) is
reduced if ϑ is injective. Denote the image of OX under ϑ with Or

X . The pair (X ,Or
X )

is called the reduction of (X ,OX ) and (X ,OX ) is reduced if and only if OX = Or
X .

The reduction is a covariant functor from the category of K-analytic spaces to that of
reduced K-analytic spaces.

2.4 Normalization of reduced complex analytic spaces

A reduced complex analytic space (X ,OX ) is normal if for each point x ∈ X , the
local analytic ring OX ,x is a normal ring, that is, it is reduced and integrally closed
(in its total ring of fractions). Riemann’s extension theorem holds for normal complex
analytic spaces, that is, if X is a normal complex analytic space and Y ⊂ X is a closed
analytic subset of codimension greater than or equal to one, each function F on X
that is holomorphic outside Y and locally bounded at the points of Y can be extended
holomorphically to the whole X . Functions on an arbitrary complex analytic space
that are holomorphic outside some closed analytic subset of codimension at least one
and are locally bounded at the points of such closed analytic subset are usually called
weakly holomorphic. We can restate Riemann’s extension theorem as follows: Each
weakly holomorphic function on a normal complex analytic space is holomorphic.

We consider for each reduced complex analytic space (X ,OX ) the following two
sheaves of OX -modules.

• The sheaf Hw of germs of weakly holomorphic functions.
• The normalization sheafOν

X , whose fiber at each point x ∈ X is the integral closure

OX ,x
ν
of OX ,x in its total ring of fractions Q(OX ,x ).

Recall that if p1, . . . , ps are the minimal prime ideals of the ring OX ,x , the total ring
of fractions Q(OX ,x ) of OX ,x is (isomorphic to) the product of the fields of fractions
Q(OX ,x/p j ) of the integral domains OX ,x/p j . In addition, the integral closure of the
local ringOX ,x in its total ring of fractions is (isomorphic to) the product of the integral
closures of the rings OX ,x/pi in their respective fields of fractions.

According to [14,29] both sheaves of OX -modules Hw and Oν
X are coherent. We

summarize the main results concerning the normalization of reduced complex analytic
spaces in the following theorem.

Theorem 2.1 (Normalization).Let (X ,OX )bea reduced complex analytic space. Then
there exists a normal complex analytic space (Xν,OXν ) together with a proper (sur-
jective) holomorphic map π : Xν → X that is a 1-sheeted analytic ramified cover,
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whose critical set is the set of singular pointsSing(X) of X. The couple ((Xν,OXν ), π)

is unique up to biholomorphic diffeomorphism. In addition,

(i) If Xx = X1,x ∪ · · · ∪ Xs,x is the decomposition into irreducible components
of the germ Xx of X at a point x ∈ X, the fiber π−1(x) has cardinality s and
(after reordering the indices) π maps a neighborhood of the point y j ∈ π−1(x)
in Xν onto a neighborhood of x in a representative of X j,x for j = 1, . . . , s.
Additionally, if p1, . . . , ps are the minimal prime ideals of the ring OX ,x , then
(after reordering the indices) OXν ,y j

∼= OX ,x/p j
ν
for j = 1, . . . , s.

(ii) The homomorphism of rings π∗ : M(X) → M(Xν), ξ �→ ξ ◦ π induced by π

is an isomorphism between the rings of meromorphic functions of X and Xν . We
say that (X ,OX ) and (Xν,OXν ) are birational.

(iii) The coherent sheaves of OX -modules Hw, Oν
X and π∗(OXν ) are isomorphic.

(iv) We have the following chain of inclusions and isomorphisms

O(X) ↪→ O(X)
ν

↪→ H0(X ,Hw) ∼= H0(X ,Oν
X ) ∼= H0(X , π∗(OXν )) = O(Xν).

For the proof of the previous theorem, we refer the reader to [14, §6 and §8] or [29,
Lemme fondamental]. The space (Xν,OXν ) is called the normalization of (X ,OX ).
We recall next how to show elementarily that An integral element ξ ∈ Q(O(X)) over
O(X) is a weakly holomorphic function, that is, O(X)

ν ⊂ H0(X ,Hw).

Proof Let F,G, A0, . . . , Ap−1 ∈ O(X) be holomorphic functions such that G is
a non-zero divisor of O(X) and ξ := F

G satisfies the monic polynomial equation

tp + ∑p−1
k=0 Aktk . Observe that ξ is holomorphic on X \ {G = 0} and, as G is a

non-zero divisor of O(X), the analytic set Y := {G = 0} has codimension ≥ 1. Let
us show that ξ is locally bounded at the points of Y . Pick a point x ∈ X \ Y , where ξ

is defined and ξ(x) �= 0. We have

ξ(x)p +
p−1∑
k=0

Ak(x)ξ(x)k = 0 � ξ(x)p = −
p−1∑
k=0

Ak(x)ξ(x)k

� |ξ(x)| ≤
p−1∑
k=0

|Ak(x)||ξ(x)|k−p+1 � |ξ(x)| ≤ max

⎧⎨
⎩1,

p−1∑
k=0

|Ak(x)|
⎫⎬
⎭ .

As the function max{1,∑p−1
k=0 |Ak |} : X → R is continuous, ξ is locally bounded at

the points of Y , as required. ��

Using Cartan’s Theorem B and [22, 52.17, 53.1], one shows that if (X ,OX ) is a
reduced Stein space, the total ring of fractions Q(O(X)) coincides with the ringM(X)
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of meromorphic functions on X . Thus, we have the following diagram

O(X) O(X)
ν

O(Xν)

Q(O(X)) = M(X)
∼=
π∗ M(Xν) = Q(O(Xν))

that is, O(X) ↪→ O(X)
ν

↪→ O(Xν) ↪→ M(X).

2.5 Underlying real analytic structure [16, II.4]

Let (Z ,OZ ) be a local model for a complex analytic space defined by a coherent sheaf
of ideals I ⊂ OCn |
, that is, Z := supp(OCn |
/I) and OZ := (OCn |
/I)|Z . Suppose
that I is generated by finitely many holomorphic functions F1, . . . , Fr on
. Let IR be
the coherent sheaf of ideals ofOR2n |
R generated by�∗(Fi ),�∗(Fi ) for i = 1, . . . , r .
Let (ZR,OR

Z := OR2n/IR|ZR) be the local model for a real analytic space defined by
the coherent sheaf of ideals IR. For each complex analytic space (X ,OX ), there exists
a structure of real analytic space on X that we denote (XR,OR

X ) and it is called the
real underlying structure of (X ,OX ). The previous construction provides a covariant
functor from the category of complex analytic spaces to that of real analytic spaces
[16, I.3.3]. If (X ,OX ) is a reduced complex analytic space, it may fail that (XR,OR

X )

is coherent or reduced [16, III.2.15].

2.6 Holomorphic and anti-holomorphic sections

The conjugation in C induces readily a conjugation in the sheaf OR

X ⊗R C as follows.
First, if (Z ,OZ ) is a local model for complex analytic spaces, we define the conjugate
germof Fx := �∗(Fx )+

√−1�∗(Fx ) ∈ OR

Z ,x⊗RC as Fx := �∗(Fx )−
√−1�∗(Fx ) ∈

OR

Z ,x ⊗R C. We define the conjugation in the sheafOR

X ⊗R C by considering neighbor-
hoods at each point x ∈ X that are isomorphic to some local model. The conjugation
ω : OR

X ⊗R C → OR

X ⊗R C is the morphism of sheaves such that ωx (Fx ) = Fx for
each x ∈ X and Fx ∈ OR

X ,x ⊗R C.

A germ Gx ∈ OR

X ,x ⊗R C is called anti-holomorphic (resp. holomorphic) if there
exists an isomorphism of a neighborhood of x onto a local model such that Gx is
the image of an anti-holomorphic (resp. holomorphic) germ. Of course Gx is anti-
holomorphic if and only if Gx is holomorphic. We denote by OX the sheaf of anti-
holomorphic sections that we define as a subsheaf of OR

X ⊗R C. For each open set
U ⊂ X we have

H0(U ,OX ) := {G ∈ H0(U ,OR

X ⊗R C) : Gx is anti-holomorphic ∀x ∈ U }.

The sheaf OX of holomorphic sections may be regarded analogously as a subsheaf
of OR

X ⊗R C. The conjugation of OR

X ⊗R C turns holomorphic sections into anti-
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holomorphic ones and vice versa. If a germGx ∈ OX ,x ∩OX ,x , there exists Hx ∈ OX ,x

such that Gx = Hx . Thus, |G|2x = GxGx = Gx Hx ∈ OX ,x , so |G|2x is by Remmert’s
Theorem constant and by the maximum modulus principle Gx ∈ C. This means that
if U ⊂ X is an open subset, H0(U ,OX ) ∩ H0(U ,OX ) = C.

2.6.1 Anti-involutions

Let (X ,OX ) be a complex analytic space and let (XR,OR

X ) be its real underly-
ing structure. An anti-involution on (X ,OX ) is a morphism of R-ringed spaces
σ : (XR,OR

X ⊗R C) → (XR,OR

X ⊗R C) such that σ 2 = id and it interchanges
the subsheaf of holomorphic sections OX with the subsheaf of anti-holomorphic ones
OX . For simplicity anti-involutions shall be denoted as σ : (X ,OX ) → (X ,OX ).

2.6.2 Fixed part space

Let (X ,OX ) be a complex analytic space endowed with an anti-involution σ :
(X ,OX ) → (X ,OX ). Let Xσ := {x ∈ X : σ(x) = x} and define a sheaf OXσ

on Xσ in the following way: for each open subsetU ⊂ Xσ , we define H0(U ,OXσ ) as
the subset of H0(U ,OX |Xσ ) of invariant sections. The R-ringed space (Xσ ,OXσ ) is
called the fixed part space of (X ,OX ) with respect to σ . By [16, II.4.10] it holds that
(Xσ ,OXσ ) is a real analytic space if Xσ �= ∅ and it is a closed subspace of (XR,OR

X ).

2.7 Complexification and C-analytic spaces [16, III.3]

A real analytic space (X ,OX ) is a C-analytic space if it satisfies one of the following
two equivalent conditions:

(1) Each local model of (X ,OX ) is defined by a coherent sheaf of ideals.
(2) There exist a complex analytic space (X

∼
,OX

∼ ) endowed with an anti-involution
σ whose fixed part space is (X ,OX ).

We call the complex analytic space (X
∼

,OX
∼ ) a complexification of X . As (X ,OX ) is a

coherent real analytic space (because the local models are defined by coherent sheaves
of ideals), the complexification (X

∼
,OX

∼ ) satisfies the following properties:

(i) OX
∼

,x = OX ,x ⊗R C for each x ∈ X .

(ii) The germ of (X
∼

,OX
∼ ) at X is unique up to an isomorphism.

(iii) X has a fundamental system of invariant open Stein neighborhoods in X
∼
.

(iv) If X is reduced, then X
∼
is also reduced.

For further details see [8,16,32].

Remark 2.2 The above definition of complexification differs from Cartan’s classical
one. In [8] a complexification of a reduced real analytic space is a reduced complex
analytic space (X

∼
,OX

∼ ) satisfying conditions (i), (ii), and (iii) stated above.

123



2898 F. Acquistapace et al.

2.7.1 Complexification of morphisms [16, III.3.11]

Let ϕ : (X ,OX ) → (Y ,OY ) be a morphism of C-analytic spaces. Let (X
∼

,OX
∼ ) and

(Y
∼
,OY

∼ ) be respective complexifications of (X ,OX ) and (Y ,OY ). There exist:

(i) a Stein open neighborhood
 ⊂ X
∼
of X and an anti-involution σ : (
,OX

∼ |
) →
(
,OX

∼ |
) whose fixed part space is (X ,OX ),
(ii) a Stein open neighborhood� ⊂ Y

∼
of Y and an anti-involution τ : (�,OY

∼ |�) →
(�,OY

∼ |�) whose fixed part space is (Y ,OY ),
(iii) a morphism of Stein spaces ϕ∼ : (
,OX

∼ |
) → (�,OY
∼ |�) such that ϕ∼|X = ϕ

and ϕ∼R ◦ σ = τ ◦ ϕ∼R.

In addition, if ϕ is an isomorphism (resp. embedding), shrinking
 and�, also ϕ∼ is an
isomorphism (resp. embedding). We show next that if ϕ∼−1(Y ) = X and ϕ is proper
and surjective, shrinking 
 and �, also ϕ∼ is proper and surjective.

Lemma 2.3 Let (X ,OX ) and (Y ,OY ) be C-analytic spaces. Let ϕ : X → Y be
a proper surjective analytic map and let ϕ∼ : X

∼ → Y
∼
be a complexification of ϕ.

Suppose that ϕ∼−1(Y ) = X. Then there exist open neighborhoods 
 ⊂ X
∼
of X and

� ⊂ Y
∼
of Y such that ϕ∼ : 
 → � is proper and surjective.

Proof Let {Lk}k≥1 be an exhaustion of Y by compact sets. As ϕ is proper, {Kk :=
ϕ−1(Lk)}k≥1 is an exhaustion of X by compact sets. As Y

∼
is paracompact and locally

compact, there exists a locally finite covering {Vi }i∈I of Y
∼
by open subsets with

compact closures. For each x ∈ X , let Wx ⊂ X
∼
be an open neighborhood of x with

compact closure such that there exists i(x) ∈ I satisfying ϕ∼(Cl(Wx )) ⊂ Ux := Vi(x).
As ϕ is surjective, Y ⊂⋃x∈X Ux .

Consider the family of compact sets {Kk \ Int(Kk−1)}k≥1 where K0 = ∅. For each
k ≥ 1 we choose a finite set Jk such that

Jk ⊂ Kk \ Int(Kk−1) ⊂
⋃
x∈Jk

W x .

2.7.1.1 Define J := ⋃
k≥1 Jk and let us check: For each y ∈ Y

∼
there exists an

open neighborhood V y ⊂ Y
∼
and � ≥ 1 such that V y ∩ ϕ∼(Cl(Wx )) = ∅ if x ∈

J \⋃1≤k≤� Jk . Consequently, the family F := {ϕ∼(Cl(Wx ))}x∈J is locally finite and

the set S :=⋃x∈J ϕ∼(Cl(Wx )) is closed in Y
∼
.

If y ∈ Y
∼ \ Cl(S), the result is clear. Pick a point y ∈ Cl(S) and let V y ⊂ Y

∼
be an

open neighborhood of y with compact closure. As the family {Vi }i∈I is locally finite,
there exists a finite set F ⊂ I such that Vi ∩ Cl(V y) = ∅ if i ∈ I \ F . Consider
the compact set

⋃
i∈F Cl(Vi ) and let � ≥ 1 be such that

⋃
i∈F Cl(Vi ) ⊂ Int(L�). Let

x ∈ J be such that V y ∩ ϕ∼(Cl(Wx )) �= ∅. Then V y ∩Ux �= ∅, so there exists i ∈ F
such that Ux = Vi . Thus, ϕ(x) ∈ Vi ⊂ Int(L�), so x ∈⋃1≤k≤� Jk .
2.7.1.2 Define T := ⋃

x∈J Cl(W
x ). We claim: the map ϕ∼|T : T → S is proper and

surjective.
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Let L ⊂ S be a compact set and let us check that (ϕ∼|T )−1(L) is also compact. By
2.G.1.1 there exists � ≥ 1 such that

L ∩
⋃

x∈Jk ,k≥�+1

ϕ∼(Cl(Wx )) = ∅.

Consequently, (ϕ∼|T )−1(L)∩⋃x∈Jk ,k≥�+1 W
y = ∅. Thus, (ϕ∼|T )−1(L) ⊂⋃x∈Jk ,1≤k≤�

Cl(Wx ) is compact because it is a closed subset of a finite union of compact sets.
2.7.1.3 Let 
0 := ⋃

x∈J Int(Cl(W
x )), which is an open neighborhood of X in X

∼
,

and let C := T \ 
0, which is a closed subset of T that does not meet X . As ϕ∼|T
is proper and ϕ∼−1(Y ) = X , the image ϕ∼(C) is a closed subset of Y

∼
that does not

meet Y . Let �1 := Y
∼ \ ϕ∼(C), which is an open neighborhood of Y in Y

∼
. Then 
1 :=

(ϕ∼|T )−1(�1) ⊂ 
0 is an open neighborhood of X in X
∼
and the map ϕ∼|
1 : 
1 → �1

is proper. Consequently, ϕ∼(
1) is by Remmert’s Theorem an analytic subset of �1
that contains Y . Thus, ϕ∼(
1) is a neighborhood of Y in Y

∼
. Let � := Int(ϕ∼(
1)) and


 := (ϕ∼|
1)
−1(�). The restriction ϕ∼|
 : 
 → � is proper and surjective, as required.

��
3 Normalization of Stein spaces

In the first part of this section, we prove Theorem 1.2 and Proposition 1.3. We will
show that the ring of fractions S−1

K O(X) is an excellent ring (Theorem 3.5) and the
integral closure of S−1

K O(X) in M(X) is T−1
K ∗O(Xν) (Theorem 3.9) where TK ∗ is the

multiplicatively closed set of all holomorphic functions on Xν that do not vanish at
K ∗ := π−1(K ) and (Xν,OXν , π) denotes the normalization of (X ,OX ). Recall that,
as (X ,OX ) is a Stein space, the total ring of fractions Q(O(X)) coincides with the ring
of meromorphic functionM(X) on X . In the second part of this section, we include a
proof of Zariski Theorem 1.1 and an example of a 2-dimensional Stein space (X ,OX )

for which O(X)
ν
is different from O(Xν).

Proof of Theorem 1.2 By Theorem 2.1 (iv) the inclusion O(X)
ν

↪→ O(Xν) holds. We
will show in Theorem 3.9 that

S−1
K O(X)

ν ∼= T−1
K ∗O(Xν) (3.1)

for each compact set K ⊂ X , where K ∗ := π−1(K ). By Proposition 1.3 and (its
straightforward application) Corollary 1.4, we conclude

Cl(O(X)
ν
) ∼= lim←−

K⊂X
compact

S−1
K O(X)

ν ∼= lim←−
K⊂X

compact

T−1
K ∗O(Xν) ∼= lim←−

L⊂Xν

compact

T−1
L O(Xν) ∼= O(Xν).

The first isomorphism in the previous row follows from Proposition 1.3 applied to
O(X)

ν
and the second isomorphism follows from (3.1). The third is true because the

family of compact sets K ∗ for K ⊂ X compact is cofinal inside the family of compact
subsets of Xν , whereas the last isomorphism is a consequence of Corollary 1.4. ��

Thus, in order to have Theorem 1.2 proved we are only left to show that Proposition
1.3 and Theorem 3.9 hold.

123



2900 F. Acquistapace et al.

3.1 Fréchet closure of anO(X)-submodule

Let (X ,OX ) be a Stein space and let F be a coherent sheaf ofOX -modules. Recall that
we endow H0(X ,F) with its natural Fréchet topology [17, VIII.A.Thm. 8]. LetN be
an O(X)-submodule of H0(X ,F). In what follows K will always denote a compact
set. Consider

C1(N) := {A ∈ H0(X ,F) : ∀K ⊂ X ∃H ∈ O(X) such that {H = 0} ∩ K = ∅ and

H A ∈ N},
C2(N) := {A ∈ H0(X ,F) : ∀x ∈ X ∃G ∈ O(X) such that G(x) �= 0 and GA ∈ N}.

Lemma 3.1 The closure of N in H0(X ,F) is Cl(N) = C1(N) = C2(N).

Proof As the chain of inclusions C1(N) ⊂ C2(N) ⊂ Cl(N) holds by [7, VIII.Thm.
4], we only check: Cl(N) ⊂ C1(N).

Let K ⊂ X be a compact set. As (X ,OX ) is a Stein space, we may assume that
K is holomorphically convex [17, VII.A]. Since NOX is a coherent sheaf of OX -
modules, there exists by Cartan’s Theorem A an open neighborhood 
 ⊂ X of K
and A1, . . . , Ar ∈ H0(X ,F) such that NOX ,x is generated as an OX ,x -module by
A1,x , . . . , Ar ,x for each x ∈ 
. By [7, VIII.Thm. 11] the finitely generated O(X)-
submodule M := (A1, . . . , Ar )O(X) of H0(X ,F) is closed and by [13, §2.Satz 3]
the ideal

(M : Cl(N)) := {H ∈ O(X) : H Cl(N) ⊂ M}

is closed. By [7, VIII.Lem. 6] NOX ,x = Cl(N)OX ,x for each x ∈ X . Thus,
(M : Cl(N))OX ,x = OX ,x for each x ∈ 
, that is, it is generated by 1 at each
point of 
. After shrinking 
, we may assume that it is a holomorphically convex
neighborhood of K and H0(
, (M : Cl(N))OX ) = H0(
,OX ) (see [17, VII.A.Prop.
3 and VIII.A.Thm. 15]). By [17, VIII.A.Thm. 11] there exist holomorphic functions
H ∈ H0(X , (M : Cl(N))OX ) = (M : Cl(N)) that are arbitrarily close to 1 on K .
Thus, there exists H ∈ O(X) such that {H = 0} ∩ K = ∅ and H Cl(N) ⊂ M ⊂ N.
Consequently, Cl(N) ⊂ C1(N), as required. ��

We are ready to prove Proposition 1.3.

Proof of Proposition 1.3 For each compact set K ⊂ X , consider the homomorphism

φK : Cl(N) → S−1
K N, F �→ FH

H
,

where H ∈ SK satisfies FH ∈ N (recall that by Lemma 3.1 Cl(N) = C2(N)). It
is straightforward to show that φK is well defined. As Cl(N) = C2(N), it holds that
Cl(N) together with the homomorphisms {φK } K⊂X

compact
is isomorphic to the inverse

limit of the inverse system S. For the second part of the statement, observe that the
collection {K�}� is cofinal inside the family of compact subsets of X . ��
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Remark 3.2 An analogous result holds if we consider only finite subsets of X (that are
obviously compact sets) instead of all compact subsets of X . To that end use the letter
F ⊂ X to denote a finite set and consider

C3(N) := {A ∈ H0(X ,F) : ∀F ⊂ X ∃H ∈ O(X) such that {H = 0}
∩F = ∅ and H A ∈ N}.

As C2(N) ⊂ C3(N) ⊂ C1(N) and C1(N) = C2(N) = Cl(N), we have Cl(N) =
C3(N). Once this equality holds, the alternative description

Cl(N) = lim←−
F⊂X
finite

S−1
F N,

which involves only finite sets, follows similarly to the one in Proposition 1.3.

We denote an arbitrary maximal ideal of O(X) with m, whereas mx refers to the
maximal ideal associated with a point x ∈ X .

Corollary 3.3 Assume in addition that X is irreducible andN is a torsion-free O(X)-
module. We have:

(i) N =⋂mNm.
(ii) Cl(N) = C2(N) = ⋂

x∈X Nmx . Consequently, C2(N) = N if and only if
C2(N) ⊂ Nm for each (free) maximal ideal m not associated with a point
x ∈ X.

(iii) Cl(N) = C1(N) =⋂ K⊂X
compact

S−1
K N.

(iv) If {K�}�≥1 is an exhaustion of X by compact sets, then C1(N) =⋂�≥1 S
−1
K�
N.

(v) If K ⊂ X is a holomorphically convex compact set, then m ∩ SK = ∅ if and
only if m = mx for some x ∈ K. In addition, S−1

K N =⋂x∈K Nmx .

Proof Statements (ii) and (iv) are clear once the remaining ones are proved. Consider
the multiplicatively closed set S := O(X) \ {0}.
(i) Observe that N ↪→ Nm ↪→ S−1N for each maximal ideal m of O(X). Conse-

quently, N ↪→ ⋂
mNm. Let ξ ∈ ⋂mNm and define a := {H ∈ O(X) : Hξ ∈

N}. We claim: a = O(X).

Otherwise, there exists a maximal idealm0 ofO(X) such that a ⊂ m0. As ξ ∈ Nm0 ,
there exists A ∈ N and H ∈ O(X) \ m0 such that ξ = A

H . As O(X) is an integral
domain, Hξ = A ∈ N, so H ∈ a ⊂ m0, a contradiction. Consequently, a = O(X)

and ξ = 1 · ξ ∈ N.

(iii) As SK ⊂ S, the ring O(X) is an integral domain and N is torsion-free, the
homomorphism S−1

K N ↪→ S−1N is an inclusion. In addition, ρK1,K2 : S−1
K2
N →

S−1
K1
N is injective if K1 ⊂ K2 ⊂ X are compact sets. The statement follows from

Proposition 1.3 and Remark 1.5.
(v) Let m be a maximal ideal of O(X).
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3.A.4. We prove first:m∩SK = ∅ if and only if there exists x ∈ K such thatm = mx .
Let m be a maximal ideal such that m ∩ SK = ∅ and assume that m �= mx for

each x ∈ K . Thus, for each x ∈ K there exists Fx ∈ m such that Fx (x) �= 0. As K is
compact, we find F1, . . . , Fr ∈ m such that {F1 = 0, . . . , Fr = 0} ∩ K = ∅. By [7,
VIII.Thm. 11] the finitely generated ideal a := (F1, . . . , Fr )O(X) ⊂ m is closed. We
have aOX ,x = OX ,x for each x ∈ 
 = X \ {F1 = 0, . . . , Fr = 0}.
3.A.5. We claim: There exists H ∈ a that is close to 1 on K , so {H = 0} ∩ K = ∅.

After shrinking
, wemay assume that it is a holomorphically convex neighborhood
of K and H0(
, aOX ) = H0(
,OX ) (see [17, VII.A.Prop. 3 and VIII.A.Thm. 15]).
By [17, VIII.A.Thm. 11] there exists a holomorphic function H ∈ H0(X , aOX ) = a
that is close to 1 on K , so {H = 0} ∩ K = ∅.

Thus, H ∈ m ∩ SK , which is a contradiction. Consequently, m = mx for some
x ∈ K . The converse is clear.
3.A.6 We check now: S−1

K N = ⋂
x∈K Nmx . By (i) the torsion-free O(X)-module

S−1
K N satisfies

S−1
K N =

⋂
m

(S−1
K N)m ⊂

⋂
x∈K

(S−1
K N)mx =

⋂
x∈K

Nmx ⊂ M(X).

Pick now a fraction A
F ∈ ⋂

x∈K Nmx . For each x ∈ K there exists Ax ∈ N and

Fx /∈ mx such that Ax
Fx

= A
F . As K is compact, we find x1, . . . , xr ∈ K such that

{Fx1 = 0, . . . , Fxr = 0} ∩ K = ∅. Proceeding as in the proof of 3.A.5 there exist
G1, . . . ,Gr ∈ O(X) such that the zero set of H := Fx1G1 + · · · + Fxr Gr does not
meet K . Define B := Ax1G1 + · · · + Axr Gr ∈ N and observe that A

F = B
H ∈ S−1

K N

(because
Axi
Fxi

= A
F ) for each i . Thus,

⋂
x∈K Nmx ⊂ S−1

K N, as required. ��

Remarks 3.4 (i) By Remark 3.2, we have O(X) = lim←−
F⊂X
finite

S−1
F O(X).

(ii) If X is irreducible, we have by Corollary 3.3

O(X) =
⋂
K⊂X

compact

S−1
K O(X) =

⋂
F⊂X
finite

S−1
F O(X) =

⋂
x∈X

O(X)mx .

(iii) If X has finitely many irreducible components and a compact set K ⊂ X meets
all of them, SK does not contain zero divisors and S−1

K O(X) ⊂ M(X). In this
case, we consider an exhaustion {K�}�≥1 of X by compact sets such that K1
meets all the irreducible components of X . Then the homomorphisms ρK�,K j :
S−1
K j
O(X) → S−1

K�
O(X) are injective and O(X) =⋂�≥1 S

−1
K�
O(X).

(iv) If X has infinitely many connected components, SK meets the set of (non-trivial)
zero divisors of O(X) because K does not meet all the irreducible components
of X .
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3.2 Excellence of rings of fractions associated with compact sets

Let (X ,OX ) be a Stein space and let K ⊂ X be a compact set.

Theorem 3.5 The ring of fractions S−1
K O(X) is excellent.

To lighten the proof of the previous result, we do before some preliminary work.
Given a subset S ⊂ X , we denote J(S) the ideal of all holomorphic sections in O(X)

that vanishes identically on S. As X is a Stein space, J(S) generates by Cartan’s
Theorem A the coherent sheaf of ideals JS,x := { fx ∈ OX ,x : Sx ⊂ { fx = 0}}.

Lemma 3.6 Assume K is holomorphically convex and let Z be the union of the (finitely
many) irreducible components of X that meet K . Denote

SK := {F ∈ O(X) : {F = 0} ∩ K = ∅},
S′
K := {F ∈ O(Z) : {F = 0} ∩ K = ∅}.

Then S−1
K M(X) ∼= M(Z) and S−1

K O(X) ∼= S′−1
K O(Z). In addition, S−1

K M(X) is the
total ring of fractions of S−1

K O(X).

Proof Let {Xk}k≥1 be the collection of the irreducible components of X . We may
assume that Z = ⋃m

k=1 Xk . Let 
 be a holomorphically convex neighborhood of
K in X that does not meet Z ′ := ⋃

k≥m+1 Xk (see [17, VII.A.Prop. 3]). We have
J(Z ′)OX ,x = OX ,x for each x ∈ 
, that is, it is generated by 1 at each point of 
.
Thus, by [17, VIII.A.Prop. 6] H0(
, J(Z ′)OX ) = H0(
,OX ). By [17, VIII.A.Thm.
11] there exists a holomorphic function H ∈ H0(X , J(Z ′)OX ) = J(Z ′) that is close
to 1 on K , so {H = 0}∩K = ∅ and H ∈ SK . By [22, 53 A.5]M(X) ∼=∏k≥1M(Xk)

and M(Z) ∼=∏m
k=1M(Xk). Consider the surjective projection homomorphism

π :
∏
k≥1

M(Xk) →
m∏

k=1

M(Xk)

and let π ′ : M(X) → M(Z), F
G �→ F |Z

G|Z be the corresponding surjective homo-
morphism (induced by π and the isomorphisms above). Let us check that the
homomorphism

θ : S−1
K M(X) → M(Z),

A/B

C
�→ A|Z

B|ZC |Z

is an isomorphism. As π ′ is surjective, θ is surjective. Let us check that it is also
injective. If θ(

A/B
C ) = A|Z

B|ZC|Z = 0, then A|Z = 0, so H A = 0 on X (recall that

H ∈ J(Z ′) ∩ SK was constructed above). Thus, H A
B = 0, so the quotient A/B

C = 0 in

S−1
K M(X) (as H ∈ SK ). Therefore θ is injective.
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By Cartan’s Theorem B, the restriction homomorphism ϕ : O(X) → O(Z), F �→
F |Z is surjective. Consequently, the homomorphism

ϕ′ : S−1
K O(X) → S′−1

K O(Z),
F

G
�→ F |Z

G|Z
is surjective. Let us check that it is also injective. If ϕ′( F

G ) = F |Z
G|Z = 0, then F |Z = 0,

so HF = 0 on X and F
G = 0. Therefore ϕ′ is injective.

Finally, as M(Z) is the total ring of fractions of S′−1
K O(Z), we conclude that

S−1
K M(X) is the total ring of fractions of S−1

K O(X), as required. ��
Lemma 3.7 Assume K is holomorphically convex. Let F,G ∈ O(X) be such that G
is not a zero divisor and Fx

Gx
∈ OX ,x for each x ∈ K. Then there exist F1,G1 ∈ O(X)

such that G1 is not a zero divisor, {G1 = 0} ∩ K = ∅ and F
G = F1

G1
.

Proof Consider the sheaf of ideals I of OX whose stalks are Ix := {Hx ∈ OX ,x :
Hx

Fx
Gx

∈ OX ,x }. By [3, Lem. 3.2] I is coherent, so there exist by Cartan’s Theorem A

anopenneighborhood
 ⊂ X of K andholomorphic sections H1, . . . , Hr ∈ H0(X , I)

such that the ideal Ix is generated by H1,x , . . . , Hr ,x for each x ∈ 
. Let {Xk}k≥1 be
the collection of the irreducible components of X that do not meet K . As G is a non-
zero divisor ofO(X), there exists zk ∈ Xk such thatG(zk) �= 0 for each k ≥ 1.Wemay
assume that D := {zk}k≥1 is a discrete subset of X . Let Z := D ∪ supp(I), which is a
complex analytic subset of X that does not meet K . Shrinking 
 we may assume that
it is a holomorphically convex neighborhood of K in X and that it does not meet Z (see
[17, VII.A.Prop. 3]). Consider the coherent sheaf F := J(D)OX ∩ (H1, . . . , Hr )OX .
We have Fx = OX ,x for each x ∈ 
, that is, it is generated by 1 at each point of 
.
Thus, by [17,VIII.A.Prop. 6] H0(
,F) = H0(
,OX ). By [17,VIII.A.Thm. 11] there
exists H ∈ H0(X ,F) ⊂ H0(X , J(D)) ∩ H0(X , I) that is close to 1 on K . Let m > 0
be such thatG1 := mH +G does not vanish at any point of K . As H ∈ H0(X , J(D)),
we have H |D = 0, so G1 does not vanish at any point of D. Consequently, G1 is not
a zero divisor of O(X) because it is not identically zero at any of the irreducible
components of X . In addition, G1 ∈ H0(X , I), so F1 := G1

F
G ∈ O(X) and F

G = F1
G1

,
as required. ��
Proof of Theorem 3.5 The proof is conducted in several steps:
Step 1 Assume X = C

n . The maximal ideals of S−1
K O(Cn) are nx := mx (S

−1
K O(Cn))

where x ∈ K and mx is the maximal ideal of O(Cn) associated with x . In addition,
(S−1

K O(Cn))nx
∼= O(Cn)mx . As the local rings O(Cn)mx are regular for each x ∈ K ,

also S−1
K O(Cn) is regular. Observe that S−1

K O(Cn)/(mx (S
−1
K O(Cn))) ∼= C for each

x ∈ K and all the maximal ideals of S−1
K O(Cn) have the same height n. Consider the

partial derivatives ∂
∂xi

and the projections πi : C
n → C, (x1, . . . , xn) �→ xi . It holds

∂
∂xi

π j = δi j for 1 ≤ i, j ≤ n. By [23, 40.F, Th. 102, p. 291], S−1
K O(Cn) is an excellent

ring.
Step 2Assume X is a complex analytic subset ofCn . In this caseO(X) = O(Cn)/J(X).
Denote S′

K := {F ∈ O(Cn) : {F = 0} ∩ K = ∅}. As the restriction homomorphism
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O(Cn) → O(X), F �→ F |X is surjective, it holds

S−1
K O(X) ∼= (S′−1

K O(Cn))/(S′−1
K J(X)),

which is an excellent ring because it is the quotient of an excellent ring by an ideal.
Step 3 Assume (X ,OX ) is a Stein space and K ⊂ X is a holomorphically con-
vex compact set. By Lemma 3.6 we may assume that K meets all the irreducible
components of X . By [26, Thm. 5, Lem. 6] there exists a proper injective holomor-
phic map ϕ : X → C

k (where k is a large enough positive integer) such that for each
x ∈ Reg(X)∪K there exists anopenneighborhoodU in X such thatG|U : U → G(U )

is an analytic isomorphism. By Remmert’s Theorem, Z := ϕ(X) is a complex analytic
subset of C

k and consequently a Stein space with its canonical analytic structure.
Denote K ′ := ϕ(K ) and let us check that K ′ is holomorphically convex. Let 
 be

an Oka–Weil neighborhood of K in X such that ϕ|
 : 
 → ϕ(
) is biholomorphic
[17, VII.A.Prop. 3]. As K is holomorphically convex in X , by [15, A.Cor. 9] K is
holomorphically convex in 
. In addition, ϕ(
) is an Oka–Weil neighborhood of K ′
in Z and K ′ is holomorphically convex in ϕ(
). As ϕ(
) is holomorphically convex,
K ′ is by [15, VII.A.Cor. 9, VIII.A.Thm. 11] holomorphically convex in Z . Thus, it
is enough to show: the rings of fractions S−1

K O(X) and S−1
K ′ O(Z) are isomorphic,

because the second one is by Step 2 an excellent ring.
By [3, Lem. 3.8] the homomorphism

ϕ∗ : M(Z) → M(X), F
G �→ F◦ϕ

G◦ϕ

is an isomorphism. As K meets all the irreducible components of X , also K ′ meets
all the irreducible components of Z (recall that ϕ induces a bijection between
the irreducible components of X and those of Z ). Thus, S−1

K O(X) ⊂ M(X) and
S−1
K ′ O(Z) ⊂ M(Z). We claim: ϕ∗(S−1

K ′ O(Z)) = S−1
K O(X).

The inclusion ϕ∗(S−1
K ′ O(Z)) ⊂ S−1

K O(X) is clear because ϕ(K ) = K ′. To prove
the converse inclusion pick A ∈ O(X), B ∈ SK , and F,G ∈ O(X) such that G
is a non-zero divisor of O(X) and F◦ϕ

G◦ϕ
= A

B . As B ∈ SK and ϕ : X → Z is

biholomorphic on an open neighborhood of K , we deduce that F
G is holomorphic on

K ′. By Lemma 3.7 there exist F1,G1 ∈ O(Z) such that G1 is not a zero divisor of
O(Z), {G1 = 0}∩ K ′ = ∅ and F

G = F1
G1

. As G1 ∈ SK ′ , we have F
G = F1

G1
∈ S−1

K ′ O(Z)

and the converse inclusion is proved.
Step 4 General case: (X ,OX ) is a Stein space and K ⊂ X is a compact set. Let
K̂ be the holomorphic convex hull of K in X . Let T be the homomorphic image of
SK in S−1

K̂
O(X). As SK̂ ⊂ SK and 1 ∈ SK̂ , we have S−1

K O(X) ∼= T−1(S−1
K̂
O(X)),

see Remarks 3.8. As S−1
K̂
O(X) is excellent, the ring of fractions T−1(S−1

K̂
O(X)) is

excellent too, so S−1
K O(X) is excellent, as required. ��
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3.3 Normalization of rings of fractions associated with compact sets

Let (X ,OX ) be a Stein space and let K ⊂ X be a compact set. We compute below the
integral closure of S−1

K O(X) in its total ring of fractions S−1
K M(X). We recall some

properties of rings of fractions [4, §3. Ej. 3, 4, 7, 8, p. 44] that are used freely in the
proofs of Theorems 1.1 and 3.9 and Lemma 4.8.

Remarks 3.8 Let A be a commutative ring.

(i) If S,T are multiplicatively closed subsets of A and U is the image of T in
S−1A, then the rings of fractions (ST)−1A and U−1(S−1A) are isomorphic. In
particular, if S ⊂ T and 1 ∈ S, we have T−1A ∼= U−1(S−1A).

(ii) If ψ : A → B is a homomorphism of rings, S is a multiplicatively closed set
and T := ψ(S), then S−1B and T−1B are isomorphic as S−1A-modules.

(iii) A multiplicatively closed set S of A is saturated if whenever a product ab of
elements of A belongs to S, then both elements a, b ∈ S. Given amultiplicatively
closed set S ⊂ A, there exists a unique smallest saturated multiplicatively closed
set S∗ containing S, which is called the saturation of S. It holds that S∗ is the
complement in A of the union of the prime ideals of A that do not meet S.

(iv) If S ⊂ T are multiplicatively closed subsets of A, then the homomorphism
φ : S−1A → T−1A, a

s �→ a
s is an isomorphism if and only if T ⊂ S∗.

Theorem 3.9 Let (Xν,OXν , π) be the normalization of (X ,OX ) and let TK ∗ be the
multiplicatively closed set of all holomorphic functions on Xν that do not vanish
at the compact set K ∗ := π−1(K ). Then S−1

K O(X)
ν ∼= T−1

K ∗O(Xν) is the integral
closure of S−1

K O(X) in its total ring of fractions S−1
K M(X) and a finitely generated

S−1
K O(X)-module.

Proof First, by the splitting of normalization [11, 1.5.20] and [23, 33.H, Th. 78, p.
257] it holds that T−1

K ∗O(Xν) is a finitely generated S−1
K O(X)-module. The proof of

the first part of the statement is conducted in several steps. The first four steps have
the purpose of reducing the proof to the case: X is irreducible, K is a singleton, and
K ∗ is a finite set.
Step 1 Reduction to the case in which X has finitely many irreducible components and
K meets all of them. Let {Xi }mi=1 be the irreducible components of X that meet K . As
π : Xν → X induces a bijection between the irreducible components of X and Xν ,
the irreducible components of Xν that meet K ∗ are Xν

i := Cl(π−1(Xi \Sing(X))) for
i = 1, . . . ,m. Denote Xν ′ :=⋃m

i=1 X
ν
i and X

′ :=⋃m
i=1 Xi . Observe that (X ′,OX ′ :=

OX |X ′) and (Xν ′,O′
Xν := OXν |Xν ′) are Stein spaces because they are complex analytic

subsets of the Stein spaces (X ,OX ) and (Xν,OXν ). In addition, π : Xν ′ → X ′ is the
normalization of X ′, soM(X ′) ∼= M(Xν ′). By Lemma 3.6

S−1
K O(X) ∼= S′−1

K O(X ′) and T−1
K ∗O(Xν) ∼= T′−1

K ∗ O(Xν ′
),

S−1
K M(X) ∼= M(X ′) and T−1

K ∗M(X) ∼= M(Xν ′
),

where S′
K := {F ∈ O(X ′) : {F = 0} ∩ K = ∅} and T′

K ∗ := {G ∈ O(Xν ′) : {G =
0}∩K ∗ = ∅} (recall thatM(X) ∼= M(Xν)).Note thatS′−1

K O(X ′) is a subring ofM(X ′)
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and T′−1
K ∗ O(Xν ′) is a subring of M(Xν ′). Let O(X)

ν
be the integral closure of O(X)

inM(X) and let O(X ′)ν be the integral closure of O(X ′) inM(X ′). By [4, Prop. 5.7]
the integral closure of S−1

K O(X) in S−1
K M(X) ∼= M(X ′) is S−1

K O(X)
ν
. Analogously,

the integral closure of S′−1
K O(X ′) in S′−1

K M(X ′) ∼= M(X ′) is S′−1
K O(X ′)ν . Conse-

quently S−1
K O(X)

ν ∼= S′−1
K O(X ′)ν is the integral closure of S−1

K O(X) ∼= S′−1
K O(X ′)

inM(X ′) ∼= S−1
K M(X).

Thus, we have to show that S′−1
K O(X ′)ν ∼= T′−1

K ∗ O(Xν ′).We assume in the following
that X has finitely many irreducible components.
Step 2 Reduction to the case in which X is irreducible. By the splitting of normal-
ization [11, 1.5.20] and basic properties of rings of fractions [4, §3, §5], there exist
isomorphisms

S−1
K O(X)

ν ∼= S−1
K O(X)

ν ∼=
m∏
i=1

S−1
K (O(X)/J(Xi ))

ν ∼=
m∏
i=1

S′−1
Ki

O(Xi )
ν ∼=

m∏
i=1

S′−1
Ki

O(Xi )
ν
,

where Ki := K ∩ Xi and S′
Ki

:= {F ∈ O(Xi ) : {F = 0} ∩ Ki = ∅}. In addition,
O(Xν) ∼=∏m

i=1 O(Xν
i ) (as X

ν
1 , . . . , X

ν
m are the connected components of Xν because

(Xν,OXν ) is a normal complex analytic space), so

T−1
K ∗O(Xν) ∼= T−1

K ∗

(
m∏
i=1

O(Xν
i )

)
∼=

m∏
i=1

T−1
K ∗O(Xν

i )
∼=

m∏
i=1

TK ∗
i

−1O(Xν
i ),

where K ∗
i := K ∗ ∩ Xν

i = π−1(K ) ∩ Xν
i = (π |Xν

i
)−1(K ∩ Xi ). Thus, it is enough to

show

S′−1
Ki

O(Xi )
ν ∼= TK ∗

i

−1O(Xν
i ),

that is, we assume in the following (X ,OX ) is irreducible.
Step 3 Reduction to the case in which K and K ∗ are holomorphically convex. Let K̂
be the holomorphic convex hull of K in X . Let S′ be the homomorphic image of SK
in S−1

K̂
O(X). As SK̂ ⊂ SK and 1 ∈ SK̂ , we have S

−1
K O(X) ∼= S′−1(S−1

K̂
O(X)).

We claim: As K̂ is holomorphically convex, K̂ ∗ := π−1(K̂ ) is holomorphically
convex too.

Pick a point z ∈ Xν \ K̂ ∗. Then π(z) ∈ X \ K̂ , so there exists a holomorphic
function F on X such that supK̂ (F) < |F(π(z))|. Denote G := F ◦ π ∈ O(Xν) and
observe that supK̂ ∗(G) = supK̂ (F) < |F(π(z))| = |G(z)|. Thus, z does no belong

to the holomorphic convex hull of K̂ ∗ in Xν . Consequently, K̂ ∗ is holomorphically
convex.

As K ∗ ⊂ K̂ ∗, we have TK̂ ∗ ⊂ TK ∗ . As 1 ∈ TK̂ ∗ , we have T−1
K ∗O(Xν) ∼=

T′−1(T−1
K̂ ∗O(Xν)) where T′ is the homomorphic image of TK ∗ in T−1

K̂ ∗O(Xν). If

we prove that T−1
K̂ ∗O(Xν) is the integral closure of S−1

K̂
O(X) in M(X), we will

have by [4, Prop. 5.12] that S′−1(T−1
K̂ ∗O(Xν)) is the integral closure of S−1

K O(X) ∼=
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S′−1(S−1
K̂
O(X)) in M(X) = M(Xν). As T′ is the saturation of S′ in T−1

K̂ ∗O(Xν), we
deduce

T−1
K ∗O(Xν) ∼= T′−1(T−1

K̂ ∗O(Xν)) ∼= S′−1(T−1
K̂ ∗O(Xν)).

Consequently, T−1
K ∗O(Xν) is the integral closure of S−1

K O(X) in M(X) = M(Xν). In
the following, we assume in addition that K and K ∗ are holomorphically convex.
Step 4 Reduction to the case in which K is a singleton (and K ∗ a finite set). As K and
K ∗ := π−1(K ) are holomorphically convex, we have by Corollary 3.3

S−1
K O(X)

ν =
⋂
x∈K

O(X)
ν

mx
,

T−1
K ∗O(Xν) =

⋂
y∈K ∗

O(Xν)ny =
⋂
x∈K

⋂

y∈π−1(x)

O(Xν)ny =
⋂
x∈K

T−1
π−1(x)

O(Xν).

By [4, Prop. 5.12] O(X)
ν

mx
is the integral closure of O(X)mx in M(X). Thus, it is

enough to show: O(X)
ν

mx
and T−1

π−1(x)
O(Xν) are isomorphic under π∗.

Step 5 Let us prove: O(X)
ν

mx

π∗
∼= T−1

π−1(x)
O(Xν) for each x ∈ X .

Write π−1(x) = {y1, . . . , yr }. By Lemma 3.5 O(Xν)nyi
is an excellent ring. We

have the following commutative diagram of regular homomorphisms.

O(Xν)nyi
OXν ,yi

̂O(Xν)nyi

∼=
ÔXν ,yi

As Xν is a normal Stein space,OXν ,yi is a normal ring. By [2, VII.2.2(d)], the comple-

tion ÔXν ,yi of the local ringOXν ,yi (with respect to its maximal ideal) is a normal ring.
Consequently, O(Xν)nyi

is by [2, VII.2.2(d)] a normal ring. The field of fractions of
O(Xν)nyi

isM(Xν) for each yi . By Corollary 3.3 and [19, 2.1.15], the ring of fractions

T−1
π−1(x)

(O(Xν)) =⋂r
i=1 O(Xν)nyi

is a normal ring. Denote S := π∗(O(X)\mx ) and

observe that the natural homomorphism S−1O(Xν) → T−1
π−1(x)

(O(Xν)) is an isomor-
phism because the saturation of S is Tπ−1(x). We have the following commutative
diagrams.

O(X)
π∗

O(Xν)

M(X)
π∗
∼= M(Xν)

�

O(X)mx
π∗

S−1O(Xν)
∼=

T−1
π−1(x)

(O(Xν))

M(X)
π∗
∼= M(Xν)
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As T−1
π−1(x)

O(Xν) is a normal ring,O(X)
ν

mx
↪→ T−1

π−1(x)
O(Xν). By [1, Thm. 1.1] there

exists finitely many H1, . . . , Hs ∈ O(Xν) such that

T−1
π−1(x)

O(Xν) = H1 · π∗(O(X)mx ) + · · · + Hs · π∗(O(X)mx ).

Thismeans thatT−1
π−1(x)

O(Xν) is afinitely generatedO(X)mx -module, soT−1
π−1(x)

O(Xν)

is by [4, Prop. 5.1] an integral extension of O(X)mx , that is, T
−1
π−1(x)

O(Xν) ↪→
O(X)

ν

mx
. Consequently, T−1

π−1(x)
O(Xν) ∼= O(X)

ν

mx
, as required. ��

3.4 Normalization of an algebraic set endowedwith its Stein structure

Let X ⊂ C
n be an algebraic set and let I(X) := {P ∈ C[x] : P|X = 0}. We have:

The equality

JX ,x := { fx ∈ OCn ,x : Xx ⊂ { fx = 0}} = I(X)OCn ,x (3.2)

holds for each x ∈ C
n , see [31, §2]. We include here a straightforward proof for the

sake of completeness.

Proof Pick a point x ∈ C
n . Assume that it is the origin and let m be the maximal

ideal of C[x] associated with it. The completion of the local ring A := (C[x]/I(X))m
is Â = C[[x]]/(I(X)C[[x]]). As A is a reduced excellent ring, also Â is a reduced
excellent ring [2, VII.2.2(d)]. Consequently, the ideal I(X)C[[x]] is radical. Consider
the local analytic ring B := OCn ,0/(I(X)OCn ,0) and observe that its completion is

B̂ = C[[x]]/(I(X)OCn ,0C[[x]]) = C[[x]]/(I(X)C[[x]]) = Â,

so B is a reduced excellent ring [2, VII.2.2(d)]. Thus, I(X)OCn ,0 is a radical ideal. By
Hilbert’sNullstellensatz forOCn ,0 we deduce JX ,0 = J(Z(I(X)OCn ,0)) = I(X)OCn ,x ,
as required. ��

As (Cn,OCn ) is a Stein manifold and (X ,OX := OCn |X ) is a complex ana-
lytic subspace, it holds by Cartan’s Theorem B that O(X) := O(Cn)/J(X) where
J(X) := H0(Cn, JX ). In addition (X ,OX ) is a Stein space. Let P1, . . . , Pm be a
system of generators of I(X). By (3.2) P1, . . . , Pm generate JX ,x for each x ∈ C

n .
By [17, VIII.A.Thm. 15] P1, . . . , Pm generate J(X) as an O(X)-module, so J(X) =
I(X)O(X). Let (Xμ ⊂ C

n+m, ρ) be the algebraic normalization of the algebraic set
X ⊂ C

n .

Proof of Theorem 1.1 As A := C[x]/I(X) is an excellent ring, the integral closure
A

ν
of A in its total ring of fractions Q(A) is a finitely generated A-module. Let

H1, . . . , Hm ∈ A
ν
be a finite system of generators of A

ν
as an A-module. It holds

that A
ν = A[H1, . . . , Hm] ∼= C[x,y]/I(Xμ) and ρ : Xμ → X , (x, y) �→ x is the

normalization map.
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Fix x ∈ X and let R := Amx . DenoteS := ρ∗(A\mx ) andT := A
ν\(ny1∪· · ·∪nyr )

where ρ−1(x) = {y1, . . . , yr } and nyi is the maximal ideal of A
ν
associated with yi

for i = 1, . . . , r . The integral closure of R in Q(A)mx is by [4, Prop. 5.7] R
ν =

S−1A
ν
and H1, . . . , Hm generates R

ν
as an R-module. The natural homomorphism

S−1A
ν → T−1A

ν
is an isomorphism of R-modules because the saturation of S in A

ν

is T. The maximal ideals of the semi-local ring R
ν = T−1A

ν
are ni := nyiT

−1A
ν

for i = 1, . . . , r . Let p1, . . . , pt be the minimal prime ideals of the completion R̂.

By [2, VII.3.1] it holds t = r and (after reordering the indices) R̂
ν

ni
∼= (R̂/pi )

ν
for

i = 1, . . . , r (here is ‘hidden’ the use of Zariski Main Theorem!). As R
ν \ ni is the

image of A
ν \ nyi in R

ν = T−1A
ν
and T ⊂ A

ν \ nyi , we have R
ν

ni
∼= A

ν

nyi
for

i = 1, . . . , r . Thus, by [11, 1.5.20]

R̂
ν ∼=

m∏
i=1

(R̂/pi )
ν ∼=

m∏
i=1

R̂
ν

ni
∼=

m∏
i=1

̂A
ν

nyi
.

By (3.2) ̂A
ν

nyi

∼= ÔXμ,yi and by [11, 6.1.18] ρ∗(OXμ)x ∼=∏m
i=1 OXμ,yi . Thus, by [23,

24.C, p. 174]

R̂
ν ∼=

m∏
i=1

ÔXμ,yi
∼= ̂ρ∗(OXμ)x .

The completion of the ring ρ∗(OXμ)x is considered with respect to its Jacobson radical
ideal. As ρ∗(OXμ)x is a finitely generatedOX ,x -module, we deduce by [23, 23.K, Thm.
55, p. 170]

̂ρ∗(OXμ)x ∼= ÔX ,x ⊗OX ,x ρ∗(OXμ)x .

By (3.2) R̂ ∼= ÔX ,x . As R
ν
is a finitely generated R-module, [23, 23.K, Thm. 55, p.

170] implies

R̂
ν ∼= R

ν ⊗R R̂ ∼= (H1R + · · · + HmR) ⊗R R̂ ∼= H1ÔX ,x + · · · + HmÔX ,x .

As H1, . . . , Hm ∈ A
ν ⊂ O(Xμ), it holds that H1OX ,x + · · · + HmOX ,x is a OX ,x -

submodule of ρ∗(OXμ)x . In addition,

ÔX ,x ⊗OX ,x ρ∗(OXμ)x ∼= ̂ρ∗(OXμ)x

∼= R̂
ν ∼= H1ÔX ,x + · · · + HmÔX ,x

∼= ÔX ,x ⊗OX ,x (H1OX ,x + · · · + HmOX ,x ).

As the homomorphism OX ,x ↪→ ÔX ,x is faithfully flat, ρ∗(OXμ)x ∼= H1OX ,x + · · · +
HmOX ,x . As this happens for each x ∈ X , we deduce by [17, VIII.A.Thm. 15] that
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the polynomials H1, . . . , Hm ∈ A
ν
generate O(Xμ) as a O(X)-module. As each Hi

is integral over O(X), we conclude O(X)
ν ∼= O(Xμ). By Theorems 1.2 and 2.1,

the tuple (Xμ,OXμ, ρ) is isomorphic to the (analytic) normalization ((Xν,OXν ), π)

of (X ,OX ). As O(Xμ) is a finitely generated O(X)-module, the same happens with
O(Xν), as required. ��

3.5 Integral closure different from normalization ring

We construct next an irreducible Stein space (X ,OX ) of dimension 2 such that the
ring O(Xν) does not coincide with the integral closure O(X)

ν
of O(X) in the field

M(X).

Example 3.10 Let F ∈ O(C) be a holomorphic function on C whose zero set is
N

∗ := {2, 3, . . .} and such that multk(F) = k for each k ∈ N
∗. Let H ∈ O(C)

be a holomorphic function on C whose zero set is N
∗ and such that multk(H) = 1 for

each k ∈ N
∗.

Consider the open subset
 := {Re(y− x+ 1
2 ) > 0} ⊂ C

3, which a Stein manifold
endowed with the coherent sheaf O
 := OC3 |
. The pair (X := {F(x) − zF(y) =
0} ∩ 
,O
|X ) is a Stein space. We claim: X is irreducible and O(X)

ν �= O(Xν).

Proof As multk(F) = k for each k ∈ N
∗, we have {F = 0} ⊂ {F ′ = 0}. Conse-

quently,

Sing(X) = {F(x) = 0, F(y) = 0} ∩ 
 = {(k, j, z) : k, j ∈ N
∗, k ≤ j, z ∈ C}.

Denote � := {Re(y − x + 1
2 ) > 0} ⊂ C

2. Observe that Reg(X) := X \ Sing(X)

is analytically diffeomorphic to � \ (C × N
∗) via the biholomorphic map

� : Reg(X) → � \ (C × N
∗), (x, y, z) �→ (x, y),

whose inverse map is

�−1 : � \ (C × N
∗) → Reg(X), (x, y) �→

(
x, y,

F(x)

F(y)

)
.

As�\(C×N
∗) is connected, X is irreducible. If a := (k, j, z0) ∈ X , then the germ Xa

is analytically equivalent to the germ at the origin of equation {xk − (z + z0)y j = 0}.
We claim: if a := (k, k, 0), then Xa ∼= {xk − zyk = 0} is an irreducible analytic germ.

If xk − zyk = λ(x, y, z)μ(x, y, z), where λ,μ ∈ OC3,0, we may assume λ :=
xr + λr+1 and μ := xs + μs+1, where r , s ≥ 0, r + s = k, λr+1 ∈ mr+1 and
μs+1 ∈ ms+1. Thus,

xk − zyk = xk + xrμs+1 + xsλr+1 + λr+1μs+1 � −zyk = xrμs+1

+xsλr+1 + λr+1μs+1.

As −zyk ∈ mk+1 and λr+1μs+1 ∈ mk+2, we deduce r = 0 or s = 0, which means
that either λ or μ is a unit. Consequently Xa is irreducible.
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Let us prove: G(x, y) := H(x)
H(y) ∈ M(X) is a weakly holomorphic function on X .

Consequently, H(x)
H(y) defines and element of O(Xν).

Fix a := (k, j, z0) ∈ Sing(X). We have k ≤ j and

H(x)

H(y)
= (x − k)ξ1(x)

(y − j)ζ1(y)
and

F(x)

F(y)
= (x − k)kξ2(x)

(y − j) jζ2(y)

where ξi (x), ζi (y) are units in OC3,a . Thus, in Xa it holds that

H(x)k

H(y) j
· ζ1(y) j

ξ1(x)k
· ξ2(x)

ζ2(y)
= F(x)

F(y)
= z.

As k ≤ j , that is, j − k ≥ 0, we have

H(x)k

H(y)k
= zH(y) j−k · ξ1(x)k

ζ1(y) j
· ζ2(y)

ξ2(x)
∈ OX ,a,

so G(x, y) = H(x)
H(y) is locally bounded in a neighborhood of a. We conclude that

G(x, y) is a weakly holomorphic function on X . We claim: G /∈ O(X)
ν
.

Suppose by contradiction G ∈ O(X)
ν
. There exists k ≥ 1 and B0, . . . , Bk−1 ∈

O(
) such thatGk+∑k−1
i=0 BiGi is identically zero on X . For a := (k+1, k+1, 0) the

germ Gk
a +∑k−1

i=0 Bi,aGi
a is identically zero on Xa . Write H(x) = (x − (k+1))θ1(x)

where θ1(x) is a unit in OC3,a . The analytic germ

βa := (x − (k + 1))k +
k−1∑
i=0

Bi,a · (x − (k + 1))iθ1(x)
i−k(y − (k + 1))k−iθ1(y)

k−i

is identically zero on Xa . Write F(x) = (x − (k + 1))k+1θ2(x) where θ2(x) is a unit
in OC3,a . The ideal of analytic germs vanishing at Xa is generated by

ρa := (x − (k + 1))k+1 − (y − (k + 1))k+1
(
z
θ2(y)

θ2(x)

)
,

so ρa divides βa in OC3,a . But this is impossible because the order k of βa at a is

smaller than the order k + 1 of ρa at a. Consequently G /∈ O(X)
ν
, as required. ��

4 Real underlying structure of a complex analytic space

In this section, we develop the main tools we need to prove Theorem 1.6. Its proof
requires some preliminary work concerning the local properties of the real underlying
structure of a complex analytic space that have interest by their own. To ease the
presentation of some proofs, we use both symbols · and σ to denote the complex
conjugation in C

n . Recall that an ideal a of a commutative ring A is called real if
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whenever a sum of squares
∑p

i=1 a
2
i of elements of A belongs to a, each ai ∈ a. In

particular, real ideals are radical ideals. The real radical of the ideal a ⊂ A

r
√
a :=

⎧⎨
⎩a ∈ A : a2m +

p∑
j=1

a2i ∈ a, ai ∈ A, m, p ≥ 1

⎫⎬
⎭

is the smallest real ideal that contains a. Of course, an ideal a ⊂ A is real if and
only if it coincides with its real radical. A ring A is real if the zero ideal is a real
ideal. In particular, real rings are reduced rings. The real reduction of a ring A is the
quotient Arr := A/ r

√
(0) and it is the greatest real quotient of A. If (X ,OX ) is a real

analytic space and (X ,Or
X ) is the reduction of (X ,OX ), then Or

X ,x = (OX ,x )
rr for

each x ∈ X . Contrary to what happens in the complex case, the reduction of a real
analytic space need not be coherent, even if (X ,OX ) is aC-analytic space. Consider for
instance Whitney’s umbrella X := {z2 − x2y = 0} ⊂ R

n endowed with its canonical
C-analytic structure OX := ORn |X .

4.1 Local algebraic properties of the real underlying structure

We analyze first the algebraic properties, like the height and the primary decomposi-
tion, for certain type of distinguished ideals of OR2n ,x that are constructed from ideals
of OCn ,x . Given an ideal a of OCn ,x , the set a := {Fx : Fx ∈ a} is an ideal of OCn ,x .
Consider the ideal aR := ((a ∪ a)(OR2n ,x ⊗R C)) ∩ OR2n ,x of OR2n ,x . We will prove
that the operator ·R transforms:

• a prime ideal p of OCn ,x of height r into a real prime ideal pR of OR2n ,x of height
2r (see Theorem 4.9),

• a radical ideal a of OCn ,x into an ideal aR of OR2n ,x such that the primary

decomposition of its real radical
r
√
aR can be expressed in terms of the primary

decomposition of a via the operator ·R (see Corollary 4.10).

4.2 Tensor products

The proofs of the previous results require some preliminary algebraicwork that involve
tensor products of C-algebras. To make clearer the exposition, we use the notation
OR2n ,x ⊗R C to refer to OC2n ,x (as complexification of OR2n ,x ) in order to not make
confusion with the initial ring OCn ,x . The smallest C-subalgebra of OR2n ,x ⊗R C that
contains OCn ,x and OCn ,x is

OCn ,xOCn ,x :=
{ p∑

i=1

Fi,xGi,x : Fi,x ,Gi,x ∈ OCn ,x , p ≥ 1

}

endowedwith the naturalC-algebra structure. Given two ideals a, b ofOCn ,x , consider
the ideals a∗b := aOCn ,x+OCn ,xb ofOCn ,xOCn ,x and (a∗b)e := (a∗b)(OR2n ,x⊗RC)

of OR2n ,x ⊗R C. Fix two prime ideals p, q of OCn ,x .
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2914 F. Acquistapace et al.

Lemma 4.1 We have (p ∗ q)e ∩ OCn ,x = p, (p ∗ q)e ∩ OCn ,x = q and (p ∗ q)e ∩
(OCn ,xOCn ,x ) = p ∗ q.

Before proving Lemma 4.1, we need the following preparatory result from Linear
Algebra.

Lemma 4.2 Let κ be a field and let F1, . . . , Fr : X → κ be κ-linearly independent
functions ona set X. Ifwedenote F := (F1, . . . , Fr ), there exist points p1, . . . , pr ∈ X
such that the vectors F(p1), . . . , F(pr ) are κ-linearly independent.

Proof For r = 1, the result is trivially true. Suppose the result true for r − 1 and
let us see that it is also true for r . Denote G := (F1, . . . , Fr−1) and choose by
induction points p1, . . . , pr−1 ∈ X such that the vectors G(p1), . . . ,G(pr−1) are
κ-linearly independent. Suppose by contradiction that for each z ∈ X , the vectors
F(p1), . . . , F(pr−1), F(z) are κ-linearly dependent. Then, for each z ∈ X there exist
scalars λ1(z), . . . , λr−1(z) ∈ κ such that

F(z) = λ1(z)F(p1) + · · · + λr−1(z)F(pr−1)

� G(z) = λ1(z)G(p1) + · · · + λr−1(z)G(pr−1).

As the (constant) vectors G(p1), . . . ,G(pr−1) ∈ κr−1 are κ-linearly independent,
each λi (z) is a κ-linear combination of the functions F1, . . . , Fr−1. To prove this
easily use for instance Cramer’s solution for the consistent κ-linear system

⎛
⎜⎝

F1(z)
...

Fr−1(z)

⎞
⎟⎠ =

⎛
⎜⎝

F1(p1) · · · F1(pr−1)
...

. . .
...

Fr−1(p1) · · · Fp−1(pr−1)

⎞
⎟⎠

⎛
⎜⎝

λ1(z)
...

λr−1(z)

⎞
⎟⎠ .

Consequently, λ j :=∑r−1
k=1 μ jk Fk for some μ jk ∈ κ . We conclude

Fr =
r−1∑
j=1

(
r−1∑
k=1

μ jk Fk

)
Fr (p j ),

which is a contradiction because F1, . . . , Fr are κ-linearly independent. Thus, there
exists pr ∈ X such that the vectors F(p1), . . . , F(pr ) are κ-linearly independent, as
required. ��
Proof of Lemma 4.1 The proof is conducted in two steps:
4.B.7. We prove first: (p ∗ q)e ∩ OCn ,x = p. The equality (p ∗ q)e ∩ OCn ,x = q is
proved analogously.

Let Fx ∈ (p ∗ q)e ∩ OCn ,x and write Fx = ∑r
i=1(Fi,xGi,x + Ai,x Bi,x ) where

Fi,x ∈ p, Ai,x ∈ q and Gi,x , Bi,x ∈ OR2n ,x ⊗R C. Define

G ′
i,(x,x)(z,w) := Gi,x (

z+w
2 , z−w

2
√−1

), B ′
i,(x,x)(z,w) := Bi,x (

z+w
2 , z−w

2
√−1

) ∈ OC2n ,(x,x).
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It holds G ′
i,(x,x)(z,z) = Gi,x and B ′

i,(x,x)(z,z) = Bi,x .

Let 
 × σ(
) ⊂ C
2n be an open connected neighborhood of (x, x) on which

the germs above admit holomorphic representatives Fi , Ai ,G ′
i , B

′
i . Define Ci :=

Ai ◦ σ ∈ H0(σ (
),OCn ) and observe Ai = Ci ◦ σ . The holomorphic function

�(z, w) = F(z) −
r∑

i=1

(Fi (z)G
′
i (z, w) + Ci (w)B ′

i (z, w)) ∈ H0(
 × σ(
),OC2n )

satisfies

�(z, z) = F(z) −
r∑

i=1

(Fi (z)G
′
i (z, z) + Ci (z)B

′
i (z, z))

= F(z) −
r∑

i=1

(Fi (z)Gi + Ai (z))Bi = 0.

By [10, 1.1.5.Prop. 1] � is identically zero on 
 × σ(
). Denote mx the maximal
ideal of OCn ,x associated with x . As Ai ∈ q ⊂ mx , we have Ci (x) = Ai (x) = 0, so

0 = �(z, x) = F(z) −
r∑

i=1

(Fi (z)G
′
i (z, x) + B ′

i (z, x)Ci (x))

= F(z) −
r∑

i=1

Fi (z)G
′
i (z, x).

Consequently, Fx =∑r
i=1 Fi,xG

′
i,x (z, x) ∈ p and (p ∗ q)e ∩ OCn ,x = p.

4.B.8. Next we prove: (p ∗ q)e ∩ (OCn ,xOCn ,x ) = p ∗ q.
Let Hx ∈ (p ∗ q)e ∩ (OCn ,xOCn ,x ) and write as we have done in 4.B.7

Hx =
r∑

i=1

(Ai,x (z)Bi,(x,x)(z,z) + Ci,x (z)Di,(x,x)(z,z)) =
s∑

j=1

Fj,x (z)G j,x (z),

(4.1)
where Ai,x ∈ p, Ci,x ◦ σ ∈ q, Bi,(x,x), Di,(x,x) ∈ OC2n ,(x,x), Fj,x ,G j,x ◦ σ ∈ OCn ,x .
Let
×σ(
) ⊂ C

2n be an open connected neighborhood of (x, x) onwhich the germs
above admit holomorphic representatives Ai , Bi ,Ci , Di , Fj ,G j . The holomorphic
function

�(z,w) :=
r∑

i=1

Ai (z)Bi (z,w) + Ci (w)Di (z,w)) −
s∑

j=1

Fj (z)G j (w), (4.2)

satisfies �(z,z) = 0, so by [10, 1.1.5.Prop. 1] � is identically zero.
Consider the C-linear subspace H/q of the C-linear space OCn ,x/q spanned by

{G j,x ◦ σ : j = 1, . . . , s}. We may assume that {G j,x ◦ σ : j = 1, . . . , �} constitute
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a basis of H. Thus, Gk,x ◦ σ belongs to the C-linear space H+ q for k = � + 1, . . . , s.
Write

Gk,x =
�∑

j=1

μ jkG j,x + G ′
k,x ,

where μ jk ∈ C and G ′
k,x ◦ σ ∈ q for k = � + 1, . . . , s. We may assume G ′

k,x admits
a holomorphic representative G ′

k on 
. Thus,

s∑
j=1

Fj (z)G j (w) =
�∑

j=1

Fj (z)G j (w) +
s∑

k=�+1

Fk(z)

⎛
⎝

�∑
j=1

μ jkG j (w) + G ′
k(w)

⎞
⎠

=
�∑

j=1

(
Fj (z) +

s∑
k=�+1

μ jk Fk(z)

)
G j (w) +

s∑
k=�+1

Fk(z)G ′
k(w).

If we substitute Fj by Fj (z) +∑s
k=�+1 μ jk Fk(z) for j = 1, . . . , � and Gk by G ′

k
for k = � + 1, . . . , s, we may assume Gk,x ◦ σ ∈ q for k = � + 1, . . . , s. We claim:
Fi,x ∈ p for i = 1, . . . , �.

After shrinking 
, we assume that Z(q) admits a representative Y that is an irre-
ducible complex analytic subset of
. LetU be an open neighborhood in Y of a regular
point that is analytically diffeomorphic to an open subset ofC

d . As Y is irreducible, the
restrictions to U of G1 ◦ σ , . . . ,G� ◦ σ are, by the Identity Principle, C-linear inde-
pendent. Denote G ◦ σ := (G1 ◦ σ , . . . ,G� ◦ σ). By Lemma 4.2 there exist points
p1, . . . , p� ∈ U such that the vectors G(p1), . . . ,G(p�) are C-linearly independent.
As pk ∈ U ⊂ Y , Ci,x ◦ σ ∈ q and G j,x ◦ σ ∈ q for j = � + 1, . . . , s, we deduce
after substituting pi in (4.2)

0 = �(z, pi ) =
r∑

i=1

Ai (z)Bi (z, pi ) −
�∑

j=1

Fj (z)G j (pi ).

Consequently,

Hi,x :=
�∑

j=1

Fj,x (z)G j (pi ) =
r∑

i=1

Ai,x (z)Bi,x (z, pi ) ∈ p

for i = 1, . . . , �. Consider the consistent C-linear system

⎛
⎜⎝
H1,x

...

H�,x

⎞
⎟⎠ =

⎛
⎜⎝
G1(p1) · · · G1(p�)

...
. . .

...

G�(p1) · · · G�(p�)

⎞
⎟⎠

⎛
⎜⎝
F1,x
...

F�,x

⎞
⎟⎠ .
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As the vectors G(p1), . . . ,G(p�) are C-linearly independent, Fj,x ∈ p for j =
1, . . . , �. We conclude

s∑
j=1

Fj,x (z)G j,x (z) =
�∑

j=1

Fj,x (z)G j,x (z) +
s∑

k=�+1

Fk,x (z)Gk,x (z) ∈ pOCn ,x

+OCn ,xq = p ∗ q,

as required. ��
Remark 4.3 Consequently, OCn ,x/p, OCn ,x/q, and (OCn ,xOCn ,x )/(p ∗ q) can be
regarded as C-subalgebras of (OR2n ,x ⊗R C)/(p ∗ q)e. The smallest C-subalgebra
of (OR2n ,x ⊗R C)/(p ∗ q)e that contains OCn ,x/p and OCn ,x/q is

(OCn ,x/p)(OCn ,x/q) :=
{

r∑
i=1

[Fi,x ][Gi,x ] : Fi,x ,Gi,x ∈ OCn ,x

}

∼= (OCn ,xOCn ,x )/(p ∗ q).

The following result allows us to represent the C-algebra (OCn ,xOCn ,x )/(p ∗ q) as
the tensor product (OCn ,x/p) ⊗C (OCn ,x/q). The latter description will ease to decide
if the C-algebra (OCn ,xOCn ,x )/(p ∗ q) is an integral domain, a normal domain, etc.

Lemma 4.4 The map

ϕ : (OCn ,x/p) ⊗C (OCn ,x/q) → (OCn ,xOCn ,x )/(p ∗ q),

r∑
i=1

[Fi,x ] ⊗ [Gi,x ]

�→
r∑

i=1

[Fi,x ][Gi,x ]

is an isomorphism.

Proof By [5, Ch.III.§4.4] OCn ,x/p ⊗C OCn ,x/q is (isomorphic to) the smallest C-
subalgebra of (OR2n ,x ⊗RC)/(p∗q)e that containsOCn ,x/p andOCn ,x/q if and only if
every finite family {F1,x , . . . , Fr ,x } ⊂ OCn ,x/p ofC-linearly independent holomorphic
germs is also OCn ,x/q-linearly independent.

Let {F1,x + p, . . . , Fr ,x + p} ⊂ OCn ,x/p ⊂ (OR2n ,x ⊗R C)/(p ∗ q)e be C-linearly
independent. We want to show: The set {F1,x , . . . , Fr ,x } is OCn ,x/q-linearly indepen-
dent.

The C-linear vector subspace H ⊂ OCn ,x generated by {F1,x , . . . , Fr ,x } meets p
only in the origin. Let G1,x , . . . ,Gr ,x ∈ OCn ,x be such that

∑r
i=1 Fi,xGi,x ∈ (p∗q)e.

By Lemma 4.1

r∑
i=1

Fi,xGi,x ∈ (p ∗ q)e ∩ (OCn ,xOCn ,x ) = p ∗ q.
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Let A j,x ∈ p, Bj,x ∈ q, and C j,x , Dj,x ∈ OCn ,x be such that

r∑
i=1

Fi,xGi,x =
s∑

j=1

(A j,xC j,x + Bj,x D j,x ).

LetG ′
i,x , B

′
j,x ,C

′
j,x ∈ OCn ,x be holomorphic germs such thatGi,x = G ′

i,x (z), Bj,x =
B ′
j,x (z), and C j,x = C ′

j,x (z). Let 
 ⊂ C
n be an open neighborhood of x such

that Fi,x , A j,x , Dj,x have representatives in H0(
,OCn ) and Gi,x ,C ′
j,x , B

′
j,x have

representatives in H0(σ (
),OCn ). Shrinking
, we may assume in addition that there
exists an irreducible complex analytic subset Y ⊂ 
 that is a representative of Z(q).
Consider the holomorphic function

�(z,w) :=
r∑

i=1

Fi (z)G ′
i (w) −

s∑
j=1

(A j (z)C ′
j (w) + B ′

j (w)Dj (z))

that satisfies �(z, z) = 0 for each z ∈ 
. By [10, 1.1.5.Prop. 1] � is identically
zero. We claim: Gi,x = G ′

i,x ◦ σ ∈ q for each i = 1, . . . , r . As q is a prime ideal,
Hilbert’sNullstellensatz guarantees J(Z(q)) = q. Thus, it is enough to prove:Gi (p) =
G ′

i ◦ σ(p) = 0 for each p ∈ Y and each i = 1, . . . , r .

Pick a point p ∈ Y . As B ′
j,x ◦ σ = Bj,x ∈ q,

0 = �(z, p) =
r∑

i=1

Fi (z)G ′
i (p) −

s∑
j=1

A j (z)C ′
j (p).

We deduce

r∑
i=1

Fi (z)G ′
i (p) =

s∑
j=1

A j (z)C ′
j (p) ∈ H ∩ p = {0}.

As the family {F1,x , . . . , Fr ,x } isC-linearly independent,G ′
i (p) = 0 for i = 1, . . . , r ,

as required. ��
As consequences of Lemma 4.4 we have the following results.

Corollary 4.5 Let p, q be prime ideal of OCn ,x . Then

(i) (OCn ,xOCn ,x )/(p ∗ q) is an integral domain.
(ii) If in addition, the quotientsOCn ,x/pandOCn ,x/qarenormal rings, (OCn ,xOCn ,x )/

(p ∗ q) is a normal integral domain.

Proof (i) By [6, V.§17, Cor. to Prop. 1] and Lemma 4.4, (OCn ,xOCn ,x )/(p ∗ q) is an
integral domain.
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(ii) Let K be the field of fractions of (OCn ,x/p) and let E be the field of fractions of
(OCn ,x/q). Denote the field of fractions of (OCn ,xOCn ,x )/(p ∗ q) with L . By [9,
11.6.2] and Lemma 4.4 K ⊗C E is (isomorphic to) the smallest C-subalgebra
K E of L that contains K and E . In addition, K ⊗C (OCn ,x/q) is by [9, 11.6.2]
isomorphic to the smallest C-subalgebra K (OCn ,x/q) of L that contains K and
(OCn ,x/q),whereas (OCn ,x/p)⊗C E is isomorphic to the smallest C-subalgebra
(OCn ,x/p)E of L that contains (OCn ,x/p) and E . As the homomorphisms C ↪→
(OCn ,x/p), C ↪→ K , C ↪→ (OCn ,x/q) and C ↪→ E are flat,

(OCn ,xOCn ,x )/(p ∗ q) ∼= (OCn ,x/p) ⊗C (OCn ,x/q) ↪→ K ⊗C (OCn ,x/q)

↪→ K ⊗C E ∼= K E ↪→ L

(OCn ,xOCn ,x )/(p ∗ q) ∼= (OCn ,x/p) ⊗C (OCn ,x/q) ↪→ (OCn ,x/p) ⊗C E

↪→ K ⊗C E ∼= K E ↪→ L.

As L is the field of fractions of (OCn ,xOCn ,x )/(p∗q), it is also the field of fractions
of the integral domains (OCn ,x/p)E , K (OCn ,x/q) and K E . By [5, II.§7.7, Cor.
to Prop. 14, p. 306]

(OCn ,x/p) ⊗C (OCn ,x/q) = ((OCn ,x/p) ⊗C E) ∩ (K ⊗C (OCn ,x/q)). (4.3)

By [15, 6.14.2], (OCn ,x/p)⊗C E and K ⊗C (OCn ,x/q) are normal rings. By [19,
2.1.15] and Eq. (4.3), the ring (OCn ,x/p) ⊗C (OCn ,x/q) is normal, as required.

��

4.2.1 Analysis of a special case

Let (X ,OX ) be a reduced complex analytic space. Consider the subsheaf OXOX of
the sheaf of rings OR

X ⊗R C given by

OX ,xOX ,x := {F1,xG1,x + · · · + FrGr ,x : Fi,x ,Gi,x ∈ OX ,x }.

It holds: OX ,xOX ,x is the smallest C-subalgebra of OR

X ,x ⊗R C that contains both

OX ,x and OX ,x .
We rewrite Corollary 4.5 as follows.

Corollary 4.6 Let x ∈ X be such that the ring OX ,x is an integral domain. Then

(i) OX ,xOX ,x is an integral domain.
(ii) If in addition OX ,x is a normal ring, OX ,xOX ,x is a normal integral domain.

Corollary 4.7 The map

ϕ : OX ,x ⊗C OX ,x → OX ,xOX ,x ,

r∑
i=1

Fi,x ⊗ Gi,x �→
r∑

i=1

Fi,xGi,x
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is an isomorphism if and only if the germ Xx is irreducible. Consequently, if U denotes
the open set of points x ∈ X atwhich the germ Xx is irreducible, the restriction sheaves
(OXOX )|U and (OX ⊗C OX )|U are isomorphic.

Proof If Xx is irreducible, the result follows from Lemma 4.4. Assume next that Xx is
reducible. By [5, Ch.III.§4.4] it is enough to find a non-identically zero holomorphic
germ Fx ∈ OX ,x that isOX ,x -linearly dependent. Let X1,x be an irreducible component
of Xx and let Fx ∈ OX ,x be an equation of X1,x . Let Gx be an equation of the union
of the remaining irreducible components of Xx . Observe that FxGx = 0, so Fx is
OX ,x -linearly dependent. However, Fx is not identically zero (we use here that Xx is
reducible), as required. ��

4.3 Prime ideals

The clue to prove Theorem 4.9, as well as some results concerning the local approach
to the underlying structure of the normalization devised in Sect. 5, is the following
lemma.

Lemma 4.8 Let p, q be prime ideals ofOCn ,x . LetP,Q be prime ideals ofOCm ,y such
that OCm ,y/P is the normalization of OCn ,x/p and OCm ,y/Q is the normalization of
OCn ,x/q. Then

(i) p ∗ q is a prime ideal of (OCn ,xOCn ,x ).
(ii) (OCm ,yOCm ,y)/(P ∗ Q) is the normalization of (OCn ,xOCn ,x )/(p ∗ q).
(iii) If m′

x is the maximal ideal of (OCn ,xOCn ,x )/(p ∗ q) associated with x and
n′
y is the maximal ideal of (OCm ,yOCm ,y)/(P ∗ Q) associated with y, the

local ring ((OCm ,yOCm ,y)/(P ∗ Q))n′
y
is the normalization of the local ring

((OCn ,xOCn ,x )/(p ∗ q))m′
x
.

(iv) (p ∗ q)e is a prime ideal of OR2n ,x ⊗R C.

Proof By [6, V.§17, Cor. to Prop. 1] and Lemma 4.4 (OCn ,xOCn ,x )/(p∗q) is an integral
domain and this proves (i). To prove (iv) we have to show (OR2n ,x ⊗R C)/(p ∗ q)e is
an integral domain.

It is enough to check that the completion of the local ring (OR2n ,x ⊗R C)/(p∗q)e is
an integral domain. Letm1,x be the maximal ideal ofOCn ,x . Thenmx := m1,xOCn ,x +
OCn ,xm1,x is the maximal ideal of OCn ,xOCn ,x associated with x . By [25, 17.9] the
completion of (OR2n ,x ⊗R C)/(p ∗ q)e is (if we assume without loss of generality
x = 0)

C[[x,y]]/((p ∗ q)eC[[x,y]])

and the completion of (OCn ,xOCn ,x )mx /(p ∗ q)mx is

C[[x,y]]/((p ∗ q)mx C[[x,y]]) = C[[x,y]]/((p ∗ q)C[[x,y]])
= C[[x,y]]/((p ∗ q)eC[[x,y]]).
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To show that the completion of (OCn ,xOCn ,x )mx /(p ∗ q)mx is an integral domain, we
prove by [2, VII.3.1]: the normalization of (OCn ,xOCn ,x )mx /(p ∗ q)mx is a local ring.

Recall that OCm ,y/P is the normalization of OCn ,x/p and OCm ,y/Q is the normal-
ization of OCn ,x/q. Let K be the field of fractions of OCn ,x/p and let E be the field of
fractions of OCn ,x/q. Let L be the field of fractions of (OCn ,xOCn ,x )/(p ∗ q). We have
the following commutative diagram:

OCn ,x/p OCm ,y/P K

(OCn ,xOCn ,x )/(p ∗ q) (OCm ,yOCm ,y)/(P ∗ Q) K E L

OCn ,x/q OCm ,y/Q E

By Lemma 4.6 the ring (OCm ,yOCm ,y)/(P ∗ Q) is normal, so the integral closure

(OCn ,xOCn ,x )/(p ∗ q)
ν

↪→ (OCm ,yOCm ,y)/(P ∗ Q).

All the elements of OCm ,y/P (resp. OCm ,y/Q) are integral over OCn ,x/p (resp.
OCn ,x/q), so the elements of (OCm ,y/P)∪(OCm ,y/Q) are integral over (OCn ,xOCn ,x )/

(p ∗ q). By [4, Cor. 5.3]

(OCn ,xOCn ,x )/(p ∗ q)
ν ∼= (OCm ,yOCm ,y)/(P ∗ Q),

so we have proved (ii).
Let m′

1,x be the maximal ideal of OCn ,x/p and m′
2,x the maximal ideal of OCn ,x/q.

Then m′
x := m′

1,x (OCn ,x/q) + (OCn ,x/p)m
′
2,x = mx/(p ∗ q) is the maximal ideal of

(OCn ,xOCn ,x )/(p∗q) associated with x . Let n′
1,y be themaximal ideal ofOCm ,y/P and

n′
2,y the maximal ideal of OCm ,y/Q. Then n′

y := n′
1,y(OCm ,y/Q) + (OCm ,y/P)n′

2,y is

the maximal ideal of (OCm ,yOCm ,y)/(P ∗ Q) associated with y. We claim: n′
y is the

unique prime ideal of (OCm ,yOCm ,y)/(P ∗ Q) lying over m′
x .

By [4, Cor. 5.8] n′
1,y is the unique prime ideal ofOCm ,y/P lying overm′

1,x , because

OCm ,y/P is a local ring. Let n′ be a prime ideal of (OCm ,yOCm ,y)/(P ∗ Q) such that
n′ ∩ (OCn ,xOCn ,x )/(p ∗ q) = m′

x . The prime ideal n′ ∩ (OCm ,y/P) satisfies

(n′ ∩ (OCm ,y/P)) ∩ (OCn ,x/p) = n′ ∩ (OCn ,x/p)

= n′ ∩ (OCn ,xOCn ,x )/(p ∗ q) ∩ (OCn ,x/p)

= m′
x ∩ (OCn ,x/p) = m′

1,x .
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Thus, n′ ∩ (OCm ,y/P) = n′
1,y . Analogously n′ ∩ (OCm ,y/Q) = n′

2,y , so

n′
y = n′

1,y(OCm ,y/Q) + (OCm ,y/P)n′
2,y ⊂ n′

and consequently n′
y = n′.

As (OCm ,yOCm ,y)/(P∗Q) is the integral closure of (OCn ,xOCn ,x )/(p∗q) in L , the
integral closure of A := (OCn ,xOCn ,x )mx /(p∗q)mx = ((OCn ,xOCn ,x )/(p∗q))m′

x
in its

field of fractions L is by [4, Prop. 5.12] A
ν = ((OCm ,yOCm ,y)/(P∗Q))m′

x
. The natural

homomorphism A
ν → ((OCm ,yOCm ,y)/(P ∗Q))n′

y
is an isomorphism of A-modules

because the saturation of ((OCm ,yOCm ,y)/(P∗Q))\m′
x is ((OCm ,yOCm ,y)/(P∗Q))\

n′
y , so we have proved (iii). Consequently, A

ν
is a local ring, which proves (iv) after

the preparatory reductions. ��
Now we are ready to prove the results announced at the beginning of the section.

Theorem 4.9 (Height of prime ideals). Let p be a prime ideal of OCn ,x . Then pR is a
real prime ideal of OR2n ,x and ht(pR) = 2ht(p).

Proof Let r := ht(p) and let (0) := p0 � · · · � pr =: p be a chain of prime ideals
of maximal length in OCn ,x (whose ending is p). Define for i = 0, . . . , 2r the prime
ideal

Pi :=
{

(p� ∗ p�)
e if i = 2�,

(p�+1 ∗ p�)
e if i = 2� + 1.

By Lemma 4.8 P0 � · · · � P2r is a chain of prime ideals in OR2n ,x ⊗R C of length
2r . Thus, pR ⊗R C = (p� ∗ p�)

e has height ≥ 2r .
It holds: dimC(Z(p)) = n − r and dimR(Z(pR)) = 2(n − r). In addition,

dimR(Z(pR)) = 2n − ht(J(Z(pR))) and by [28, V.§1.Prop. 1 & Prop. 3]

2n − ht(J(Z(pR)) ⊗R C) = dimC(Z(J(Z(pR)) ⊗R C))

= dimR(Z(J(Z(pR)))) = dimR(Z(pR)) = 2n − 2r ,

so ht(J(Z(pR)) ⊗R C) = 2r . As pR ⊗R C ⊂ J(Z(pR)) ⊗R C, we conclude ht(pR ⊗R

C) = 2r .
AsJ(Z(pR)) is a real radical ideal,J(Z(pR))⊗RC is a radical ideal. LetJ(Z(pR))⊗R

C = q1 ∩ · · ·∩ qs be the primary decomposition of J(Z(pR))⊗R C where each q j is a
prime ideal.Assumeht(q1) = ht(J(Z(pR))⊗RC), sopR⊗RC ⊂ J(Z(pR))⊗RC ⊂ q1.
As pR ⊗R C and q1 are prime ideals of the same height, pR ⊗R C = q1. Thus,
J(Z(pR)) ⊗R C = pR ⊗R C and, since the homomorphism R ↪→ C is faithfully flat,
J(Z(pR)) = pR, so pR is a real prime ideal of height 2r = 2n − dimR(Z(pR)), as
required. ��
Corollary 4.10 (Primary decomposition of radical ideals). Let a be a radical ideal of
OCn ,x and let a = p1 ∩ · · · ∩ pr be the primary decomposition of a. Then

r
√
aR =

pR1 ∩ · · · ∩ pRr is the primary decomposition of
r
√
aR.
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Proof As Z(a) =⋃r
i=1 Z(pi ), we deduce Z(aR) =⋃r

i=1 Z(pRi ). By the real Nullstel-
lensatz and Theorem 4.9

r
√
aR = J(Z(aR)) =

r⋂
i=1

J(Z(pRi )) =
r⋂

i=1

pRi .

In addition,
r
√
aR = pR1 ∩ · · · ∩ pRr is the primary decomposition of

r
√
aR. ��

5 Real underlying structure of the normalization

In this section, we prove Theorem 1.6. Before that we devise some local properties of
the real underlying structure of the normalization of a complex analytic space.

5.1 Local properties of the real underlying structure of the normalization

Fix a reduced complex analytic space (X ,OX ) and let (Xν,OXν , π) be its normal-
ization. We analyze in this section the real underlying structure of the normalization
(Xν,OXν , π) of a Stein space (X ,OX ). We will use freely the facts collected in the
following lemma.

Lemma 5.1 Let A be an excellent R-algebra and let A
ν
be the integral closure of A

in its total ring of fraction Q(A). Then A
ν ⊗R C is the integral closure of A ⊗R C in

its total ring of fractions Q(A) ⊗R C. In addition, if A⊗R C is a normal ring, then A
is a normal ring too.

Proof The first part of the statement follows from [19, Prop. 19.1.1 and Thm. 19.4.3]
or [15, Prop. 6.14.2]. For the second part, observe first that if A is a C-algebra, then
A ⊗R C ∼= A and Q(A) ⊗R C ∼= Q(A). Otherwise,

√−1 /∈ A,
√−1 /∈ Q(A),

and the polynomial t2 + 1 is irreducible both in A[t] and in Q(A)[t]. It holds
A ⊗R C ∼= A[t]/(t2 + 1) and Q(A) ⊗R C ∼= Q(A)[t]/(t2 + 1). Using these facts,
a straightforward exercise shows the remaining part. ��

Our main result of local nature in this section is the following.

Theorem 5.2 Let x ∈ X and write π−1(x) := {y1, . . . , yr }. Let p1/a, . . . , ps/a be the
minimal prime ideals of OX ,x = OCn ,x/a. Then r = s and

(i) The minimal prime ideals of (OR

X ,x )
rr := OR2n ,x/

r
√
aR are pR1 /

r
√
aR, . . . ,

pRr /
r
√
aR.

(ii) OR

Xν ,yi
is after reordering the indices the normalization of OR2n ,x/p

R

i for i =
1, . . . , r .

(iii) The normalization of the reduced ring (OR

X ,x )
rr is OR

Xν ,y1
× · · · × OR

Xν ,yr
.

We approach first the case in which OX ,x is a normal integral domain.
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Lemma 5.3 Let x ∈ X be such that the ring OX ,x is a normal integral domain. Then

the ring OR

X ,x is a normal integral domain and ̂OR

X ,x ⊗R C ∼= ̂
(OX ,xOX ,x )m′

x
where

m′
x is the maximal ideal of OX ,xOX ,x associated with x.

Proof Before proving OR

X ,x is a normal ring we need some initial preparation. Write

OX ,x ∼= OCn ,x/pwhere p is a prime ideal ofOCn ,x . It holds by Lemma 4.8 thatOR

X ,x
∼=

OR2n ,x/p
R is an integral domain. Let m1,x be the maximal ideal of OCn ,x associated

with x . Then mx := m1,xOCn ,x + OCn ,xm1,x is the maximal ideal of OCn ,xOCn ,x
associated with x . Denote A := (OCn ,xOCn ,x )mx and B := (OX ,xOX ,x )m′

x
, where

m′
x

∼= mx/(p ∗ p) is the maximal ideal of OX ,xOX ,x associated with x . Let us prove:
A is an excellent ring. Once this is proved we deduce by [2, VII.2.2(b)] that also
B ∼= A/((p ∗ p)A) is an excellent ring.

We prove first that A is a local regular ring. By [23, 24.D] it is enough to show that
its completion is regular. The completion of A is Â = C[[z,z]] = C[[x,y]], where
z := (z1, . . . ,zn), zi := xi + √−1yi , x := (x1, . . . ,xn) and y := (y1, . . . ,yn).
Consequently, both A and Â are local regular rings.

In addition, the height of the maximal idealmA of A is 2n by Theorem 4.9. Observe
that A/mA ∼= C and C ↪→ A. We have in A derivations and elements

Di :=
{

∂
∂xi

if i = 1, . . . , n,
∂

∂yi−n
if i = n + 1, . . . , 2n

ξi :=
{
xi if i = 1, . . . , n,

yi−n if i = n + 1, . . . , 2n,

such that Diξ j = δi j for i, j = 1, . . . , 2n. By [23, 40.F, Thm. 102, p. 291], A is an
excellent local ring.

We are ready to prove: OR

X ,x is a normal ring. By [2, VII.2.2(d)] it is enough to

show: the completion Ĉ of the excellent local ring C := OR

X ,x ⊗R C ∼= (OR2n ,x ⊗R

C)/(pR ⊗R C) is normal.
Assume without loss of generality x = 0. The completion of OR2n ,x ⊗R C is

C[[x,y]]. By [25, 17.9], we have

Ĉ = C[[x,y]]/(pR ⊗R C)C[[x,y]] = C[[x,y]]/(p ∪ p)C[[x,y]], (5.1)

B̂ = Â/((p ∗ p) Â) = C[[x,y]]/(p ∪ p)C[[x,y]]. (5.2)

By Lemma 4.8, B is a normal ring. As B is in addition excellent, Ĉ ∼= B̂ is normal by
[2, VII.2.2(d)], as required. ��
Remark 5.4 A similar proof shows that if OX ,x is a regular ring, then OR

X ,x is a regular
ring.

We study now what happens when OX ,x is an integral domain.

Lemma 5.5 Let x ∈ X be such that OX ,x is an integral domain and write π−1(x) =
{y}. Then OR

X ,x is an integral domain and OR

Xν ,y is the integral closure of O
R

X ,x in its
field of fractions.
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Proof The proof is conducted in several steps:
Step 1 The ringOXν ,y is the integral closure ofOX ,x in its field of fractions K . The C-
monomorphism π∗ : OX ,x ↪→ OXν ,y induces an R-monomorphism OR

X ,x ↪→ OR

Xν ,y
(see [16, II.4.1]) and this one a C-monomorphism

B := OR

X ,x ⊗R C ↪→ C := OR

Xν ,y ⊗R C.

The fields of fractions of B are contained in the one of C . As C is by Lemma 5.3 a
normal integral domain, the integral closure B

ν
of B in its field of fractions is contained

in C . We claim: B
ν = C . To prove this, we assume proved for a while that C ⊂ B̂

ν
.

We have the chain of inclusions B
ν

↪→ C ↪→ B̂
ν
. As B is an excellent local ring,

the homomorphism B → B̂ is faithfully flat. If we tensor B
ν

↪→ C ↪→ B̂
ν
by−⊗B B̂,

injectivity is preserved, that is,

B
ν ⊗B B̂ ↪→ C ⊗B B̂ ↪→ B̂

ν ⊗B B̂.

By [23, 23.K, Thm. 55, p. 170] B̂
ν ∼= B

ν ⊗B B̂ (because B
ν
is a finite B-module).

Thus,

B̂
ν ⊗B B̂ ∼= (B

ν ⊗B B̂) ⊗B B̂ ∼= B
ν ⊗B B̂ ∼= B̂

ν
.

Consequently,

B̂
ν ∼= B

ν ⊗B B̂ ↪→ C ⊗B B̂ ↪→ B̂
ν ⊗B B̂ ∼= B̂

ν
,

so B
ν ⊗B B̂ ∼= C ⊗B B̂. As the homomorphism B → B̂ is faithfully flat, we conclude

B
ν = C .

Step 2 We are reduced to prove: C ⊂ B̂
ν
. As the homomorphism B → B̂ is regular,

we deduce by [2, VII.2.6] that B̂
ν = B

ν ⊗B B̂ ∼= B̂
ν
, so we will show: C ⊂ B̂

ν
. As

C ↪→ Ĉ , it is enough to prove: Ĉ ∼= B̂
ν
.

Define A := (OX ,xOX ,x )m′
x

⊂ B where m′
x is the maximal ideal of OX ,xOX ,x

associated with x . We will prove in two steps: Ĉ ∼= Â
ν ∼= Â

ν ∼= B̂
ν
.

Step 3 Let us prove: A is a local integral domain with field of fractions L and the
integral closure A

ν ∼= (OXν ,yOXν ,y)m′
x
of A in L is a local integral domain.

By Corollary 4.6OX ,xOX ,x is an integral domain, whereasOXν ,yOXν ,y is a normal
integral domain. Let K be the total ring of fractions ofOX ,x and K the field of fractions
of OX ,x . The ring OXν ,y is the integral closure of OX ,x in K , whereas OXν ,y is the
integral closure ofOX ,x in K . Let L be the field of fractions ofOXν ,xOXν ,y and let KK
be the smallest C-subalgebra KK of L that contains K and K . As KK is contained
in the field of fractions of OX ,xOX ,x and OXν ,xOXν ,y ⊂ KK ⊂ L , we deduce L is
the field of fractions of OX ,xOX ,x . Thus,

OX ,xOX ,x OXν ,yOXν ,y K K L = qf(OX ,xOX ,x ).
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As the ring OXν ,yOXν ,y is normal, the integral closure OX ,xOX ,x
ν

of OX ,xOX ,x is
contained in OXν ,yOXν ,y . As all the elements of OXν ,y are integral over OX ,x , the

elements ofOXν ,y ∪OXν ,y are integral overOX ,xOX ,x , soOX ,xOX ,x
ν = OXν ,yOXν ,y .

Weknow thatm′
x = mxOX ,x+OX ,xmx wheremx is themaximal ideal ofOX ,x asso-

ciated with x . Let n′
y be the maximal ideal of OXν ,yOXν ,y associated with y. It holds

n′
y = nyOXν ,y +OXν ,yny, where ny is the maximal ideal of OXν ,y associated with y.

We claim: n′
y is the unique prime ideal q ofOXν ,yOXν ,y such that q∩OX ,xOX ,x = m′

x .
Consider the commutative diagram

OX ,x OXν ,y K

OX ,xOX ,x OXν ,yOXν ,y K K

OX ,x OXν ,y K

By [4, 5.8] ny is the unique prime ideal of OXν ,y lying over mx , because OXν ,y is a
local ring. Let q be a prime ideal of OXν ,yOXν ,y such that q ∩ OX ,xOX ,x = m′

x . We
have

q ∩ OX ,x = q ∩ OX ,xOX ,x ∩ OX ,x = m′
x ∩ OX ,x = mx .

The prime ideal q ∩ OXν ,y satisfies (q ∩ OXν ,y) ∩ OX ,x = q ∩ OX ,x = mx , so
q∩OXν ,y = ny . Analogously q∩OXν ,y = ny , so n′

y = nyOXν ,y +OXν ,yny ⊂ q and
we conclude n′

y = q.

The integral closure of A := (OX ,xOX ,x )m′
x
in L is by [4, 5.12] A

ν ∼=
(OXν ,yOXν ,y)m′

x
. We claim: A

ν
is a local integral domain.

Let n′ be a maximal ideal of A
ν
. By [4, 5.8] n′ ∩ A = m′

x A, so n
′ = n′

y A
ν
because

n′
y is the unique prime ideal of OXν ,yOXν ,y lying overm′

x . Thus, A
ν
is a local integral

domain.
Step 4. We show next: Ĉ ∼= Â

ν ∼= Â
ν ∼= B̂

ν
.

As A
ν
is a local ring, Â

ν
is by [2,VII.3.1] a local ring and Â is an integral domain.As

A → Â is a regular homomorphism and A
ν
is a finite A-module, Â

ν ∼= A
ν ⊗A Â ∼= Â

ν

(use [2, VII.2.6] and [23, 23.K, Thm. 55, p. 170]). Using [25, 17.9] one shows that Â is
the completion of B (proceed as in the last part of the proof of Lemma 5.3). By Lemma

5.3, C is a normal local domain and Ĉ ∼= Â
ν
. Consequently, Ĉ ∼= Â

ν ∼= Â
ν ∼= B̂

ν
, as

required. ��

We are ready to prove Theorem 5.2.
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Proof of Theorem 5.2 We have proved in Lemma 4.10 that
r
√
aR = ⋂s

i=1 p
R

i is the

primary decomposition of the radical ideal
r
√
aR. As

(OR

X ,x )
rr ∼= OR

X ,x/
r
√

(0) ∼= ((OR2n ,x/a
R)/(

r
√
aR/aR)) ∼= OR2n ,x/

r
√
aR,

we deduce that pR1 /
r
√
aR, . . . , pRs /

r
√
aR are the minimal prime ideals of OX ,x , which

proves (i). By [11, 1.5.20]

(OR

X ,x )
rr

ν ∼= OR2n ,x/
r
√
aR

ν ∼=
s∏

i=1

OR2n ,x/p
R

i

ν
.

Thus, we have only to check: r = s and, after reordering the indices, OR2n ,x/p
R

i

ν ∼=
OR

Xν ,yi
.

By [11, 1.5.20] we know

OX ,x
ν ∼= OCn ,x/a

ν ∼=
s∏

i=1

OCn ,x/pi
ν
.

By [11, 4.4.8, 6.1.18, 6.3.7], we deduce r = s, OX ,x
ν ∼= OXν ,y1 × · · · × OXν ,yr

and after reordering the indices OCn ,x/pi
ν ∼= OXν ,yi . By Lemma 5.5, we conclude

OR2n ,x/p
R

i

ν ∼= OR

Xν ,yi
, which proves (ii) and consequently (iii). ��

5.2 Global properties of the real underlying structure of the normalization

We are ready to afford the proof of Theorem 1.6.

Proof of Theorem 1.6 We prove the following implications:

(i) ⇐⇒ (ii) follows from [16, III.2.15] or [28, Prop.V.§1.8].
(i) �⇒ (iii) As (Xν,OXν ) is a normal complex analytic space, its irreducible com-

ponents are its connected components and they are pure dimensional, so the same
happens with Xν R. By Lemma 5.3 the ring OR

Xν ,x is normal for each x ∈ Xν R,

so the germ Xν R
x is irreducible for each x ∈ Xν R. By [28, V.§1.Prop. 8] the real

analytic space (Xν R,OR

Xν ) is coherent, so it is a reduced C-analytic space.

Fix a point x ∈ XR. As (X ,OX ) is reduced and (XR,OR

X ) is coherent, OR

X ,x =
(OR

X ,x )
rr . By Theorem 5.2 the normalization of OR

X ,x is O
R

Xν ,y1
× · · · ×OR

Xν ,yr
where

π−1(x) := {y1, . . . , yr }. Consequently,

O
XR
∼

,x

ν ∼= OR

X ,x ⊗R C
ν ∼= OR

X ,x

ν ⊗R C

∼= (OR

Xν ,y1 ⊗R C) × · · · × (OR

Xν ,yr ⊗R C)

∼= O
Xν R
∼

,y1
× · · · × O

Xν R
∼

,yr
. (5.3)
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Let πR
∼ : Xν R

∼ → XR
∼

be a complexification of πR. By (5.3) we deduce (πR
∼

)−1(X) =
Xν . By Lemma 2.3 we may assume that πR

∼ : Xν R
∼ → XR

∼
is proper and surjective.

By [28, VI.§2.Thm. 3] the set of points at which a reduced complex analytic space

is normal is an open set, so we may assume that Xν R
∼

is a normal complex analytic
space. By [11, 6.1.8]

πR
∼

∗(O
Xν R
∼ )x ∼= O

Xν R
∼

,y1
× · · · × O

Xν R
∼

,yr

if x ∈ XR
∼

and (πR
∼

)−1(x) := {y1, . . . , yr }. If x ∈ XR, we deduce πR
∼

∗(O
Xν R
∼ )x ∼=

O
XR
∼

,x

ν
.

Let (Z , ρ) be the normalization of (XR
∼

,O
XR
∼ ). By [11, 6.1.8] ρ∗(OZ )x = O

XR
∼

,x

ν
.

Thus, the coherent sheaves πR
∼

∗(O
Xν R
∼ ) and ρ∗(OZ ) coincide at the points of XR. By

[8, §3.Prop. 2] we may assume shrinking XR
∼

if necessary that πR
∼

∗(O
Xν R
∼ ) = ρ∗(OZ )

on XR
∼

. If x ∈ XR
∼ \ Sing(XR

∼
), then ρ−1(x) := {z} is a singleton and

OZ ,z ∼= ρ∗(OZ )x = O
XR
∼

,x

ν ∼= O
XR
∼

,x
.

On the other hand,

OZ ,z ∼= ρ∗(OZ )x = πR
∼

∗(O
Xν R
∼ )x ∼= O

Xν R
∼

,y1
× · · · × O

Xν R
∼

,yr

if (πR
∼

)−1(x) := {y1, . . . , yr }. As OZ ,z is an integral domain, we have r = 1 and

πR
∼

∗(O
Xν R
∼ )x ∼= O

Xν R
∼

,y1
∼= OZ ,z ∼= O

XR
∼

,x
. Thus, the restriction

πR
∼ | : Xν R

∼ \ (πR
∼

)−1(Sing(XR
∼

)) → XR
∼ \ Sing(XR

∼
)

is a holomorphic diffeomorphism. Consequently, (Xν R
∼

, πR
∼

) is isomorphic to the

normalization (Z , ρ) of (XR
∼

,O
XR
∼ ).

(iii) �⇒ (i) Let Xi be an irreducible component of X and let Xν
i be the connected

component of Xν that satisfies π(Xν
i ) = Xi . It holds that (Xν

i ,OXν |Xν
i
, π |Xν

i
)

is the normalization of (Xi ,OX |Xi ). Thus, we may assume X is irreducible.
Consequently, its normalization Xν is connected and both Xν R and XR are
irreducible [12, §5]. By [28, IV.§1.Cor. 3] both Xν R and XR are pure dimensional.

As (Xν R
∼

, πR
∼ , πR

∼
) is the normalization of (XR

∼
,O

XR
∼ ) (after shrinking Xν R

∼
and

XR
∼

if needed) and the sets Xν R
∼

and XR
∼

are considered initially as ‘narrow’ as

needed around Xν R and X
R
, we deduce πR

∼ −1(XR) = Xν R. Consequently, XR

is by [16, IV.3.13] coherent, as required. ��
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