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Abstract

In this work, we study some algebraic and topological properties of the ring O(X") of
global analytic functions on the normalization (X", Ox») of a reduced complex ana-
Iytic space (X, Ox). If (X, Oy) is a Stein space, we characterize O(X") in terms of
the (topological) completion of the integral closure O(X )V of the ring O(X) of global
holomorphic functions on X (inside its total ring of fractions) with respect to the usual
Fréchet topology of O(X )U. This shows that not only the Stein space (X, Ox) but also
its normalization is completely determined by the ring O(X) of global analytic func-
tions on X. This result was already proved in 1988 by Hayes—Pourcin when (X, Ox)
is an irreducible Stein space, whereas in this paper we afford the general case. We
also analyze the real underlying structures (X%, O%‘}) and (X' R, O%‘}v) of a reduced
complex analytic space (X, Ox) and its normalization (X", Oxv). We prove that the
complexification of (X" ¥, O%v) provides the normalization of the complexification of
(xR, O%) if and only if (X &, O%) is a coherent real analytic space. Roughly speaking,
coherence of the real underlying structure is equivalent to the equality of the following
two combined operations: (1) normalization + real underlying structure + complexi-
fication, and (2) real underlying structure + complexification + normalization.
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1 Introduction

In this paper, we analyze the algebraic and topological relation between the Fréchet
algebras O(X) and O(X") of global analytic functions on a reduced complex ana-
lytic space (X, Ox) and on its normalization ((X", Oxv), 7). Algebraic operations as
integral closure and topological operations as completion will have significant roles.
Given a commutative ring A we denote A’ the integral closure of A in its total ring of
fractions Q(A).

Assume first that X C C” carries an algebraic structure and let (X# c C"™", p)
denote its algebraic normalization. The rmg P(XH) of polynomial functions on X* is
(isomorphic to) the integral closure P(X ) of the ring P(X) of polynomial functions
on X (in the ring of rational functions on X). The ring TP(X ) is in addition a finitely
generated P(X)-module and a reduced C-algebra. We endow X and X" with their
natural analytic structures, that is, we consider the reduced complex analytic spaces
(X, O0x := Ocn|x) and (X*, Oxn := Ocn+m|xn). Zariski Main Theorem is equivalent
to the following statement: Oy« , is an integrally closed domain for each y € X*
(see [24, §V.6]). As a consequence of the latter fact, one can prove that O(X*) is
(isomorphic to) the integral closure O (X )U of O(X) in its total ring of fractions. More
precisely, one has the following result.

Theorem 1.1 (Zariski Theorem) Let X C C" be an algebraic set. Then the C-algebras
mu and O(X") are isomorphic, the tuple (X*, Oxwu, p) is isomorphic to the (ana-
Iytic) normalization (X", Oxv), w) of (X, Ox), and O(X") is a finitely generated
O(X)-module.

This fact is no longer true in general when (X, Oy) is a reduced complex analytic
space, even if (X, Oy) is a 1-dimensional Stein space, as it is shown in [18, §1]
exhibiting an explicit counterexample. Alternatively, in Example 3.10 we provide a
2-dimensional Stein space (X, Oy) such that O(X)v # 0(XY).

In this paper, we prove that if (X, Ox) is a reduced Stein space, the C-algebra
O(X?V) is the completion as a metric space of the integral closure O(X )v of O(X) in
its total ring of fractions. The latter coincides with the ring M(X) of meromorphic
functions on X because (X, Ox) is a Stein space [22, 52.17, 53.1]. The space O(X")
is endowed with the natural metric topology of uniform convergence on compact sets
[14, 8.3]. As the sheaf O v is coherent and X" is separable, O(X") with such topology
is a Fréchet space [17, VIII.A. Thm. 8]. The inclusion O(X)v — O(X") (see Theorem
2.1) endows mv with the induced (metric) topology. If S C O(X"), the closure
CI(S) coincides with the completion of S as a metric space, so we can recover C1(S)
from S without referring to the ambient space O(X"). In general, O(X )v need not be
complete [18, §1] and if such is the case (‘.)(X)U # O(X"). However, as announced
above, we show in Sect. 3 the following result.

Theorem 1.2 (Density of the integral closure) Let (X, Ox) be a reduced Stein space.
Then O(XV) is the completion of the (metric) space (‘)(X)v, or equivalently, O(X)v is
a dense subset of O(X").
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2890 F. Acquistapace et al.

The result above was proved in [18] only for irreducible Stein spaces. Our proof
for the general case is quite different and is obtained as a consequence of a user-
friendly description (as an inverse limit) of the closure of an O(X)-submodule 9t of
the O(X)-module of global sections H%(X, F) of a coherent sheaf of ©x-modules
F (the O(X)-module H°(X,¥) is endowed with its natural Fréchet topology [17,
VIIL.A.Thm. 8]). More precisely, let K C X be a compact set and let Sk be the
set of holomorphic functions on X whose zero sets do not meet K. The set Sk is a
multiplicatively closed set, which may contain zero divisors if X is not irreducible.
We call 81_(1‘51 the module of fractions of M associated with K. If K1 C K, C X are
compact sets, then Sg, C Sk, and

F F
. g1 —1
PKLKy ° SKZ‘JI—> SKI‘JI, T — T
is @ homomorphism of O(X)-modules, which may be non-injective if X is not irre-
ducible. Obviously if K, K’ C X are compact sets, their union K” := K U K’ is
a compact subset of X that contains both. Thus, the multiplicatively closed sets Sg
allow us to represent C1(91) as the following inverse limit.

Proposition 1.3 The closure C1(N) is (isomorphic to) the inverse limit 1(£n S}I‘ﬁ of

KcX
compact

the inverse system

6= {{5}1‘31} KcX ,{pKl,Kz}chchx}-

compact compact

In addition, if {K¢}¢>1 is an exhaustion of X by compact sets, then C1(I) = l(in S}; M.
>1

As a straightforward application of Proposition 1.3 (making 91 = O(X)), we write
the ring O(X) as the inverse limit of the rings of fractions S}] O(X) whereeach K C X
is a compact set.

Corollary 1.4 The ring O(X) is (isomorphic to) the inverse limit l(in S}IO(X) of

KcX
compact

the directed system

G = {{S}IO(X)} KCX {,OKI,KZ}chchx}-

compac compact

12

In addition, if {K¢}e>1 is an exhaustion of X by compact sets, then O(X)
- o1
lim S &, O(X).
=1
We call SEIO(X) the ring of fractions of O(X) associated to K. Corollary 1.4
generalizes the fact that
0x) = [\ 8'0X) (1.1)

KcX
compact

@ Springer



Normalization of Complex Analytic Spaces 2891

if X isirreducible. To prove (1.1) from Corollary 1.4 one uses that each ring of fractions
SI}IO(X) is a subring of M(X), that each homomorphism pg, x, : S};O(X) —

Sgll(‘)(X ) is injective if K1 C K2 C X and the following well-known remark.

Remark 1.5 Let {A;};c; be a family of subgroups of a group A such that for each pair
i,j € Ithereexists k € I suchthat Ay C A; NA;. We consider the partial order < on
I givenby: i < k ifand only if Ax C A;, and the family of inclusion homomorphisms
Jik 1 Ax <> A;ifi < k. Observe that j;; =1id4, and Jjx = JieoJek : Ax — Ag —
A; ifi < £ < k. Thus, the pair ({A;}icr, {Jik}i<k) is an inverse system of groups and
inclusion homomorphisms. The inverse limit l(in A; is the intersection A := ﬂie 1 Ai
iel
together with the inclusion homomorphisms jlf A< A; foreachi € 1. O

If X is not irreducible, the homomorphisms pk, x, : SE;(‘)(X ) — SEIIO(X ) may
not be injective and the rings of fractions S;l(f)(X ) may not be subrings of M(X),
because the multiplicatively closed set S g may contain zero divisors, so the intersection
works no longer and inverse limit is required for the description of O(X).

The customary description of Stein spaces as being those complex spaces that
have “sufficiently many” global holomorphic functions [17, VII] attains precision
from a theorem of Forster/Igusa/Iwahashi/Remmert [13,20,21,30] stating: (X, Ox)
is Stein if and only if the map x : X — Spec.(0(X)), x — xx, that maps a
point x € X to the evaluation homomorphism x, : O(X) — C, f — f(x) at
such point, is a homeomorphism. Recall that Spec,.(O(X)) is the set of continuous
C-algebra homomorphisms ¢ : O(X) — C. Consequently, a complex analytic space
(X, Oyx) is Stein if and only if there exist enough global holomorphic functions on
X to enable X to be regained topologically from the continuous spectrum of these
functions, that is, (X, Ox) is completely determined by its C-algebra O(X) of global
holomorphic functions. In addition, a reduced complex analytic space is Stein if and
only if its normalization is Stein [27]. Thus, we conclude that if (X, Oy) is a reduced
Stein space, its C-algebra O(X) of global analytic functions determines both spaces
(X, 0x) and (X", Oxv).

We include in 3.4 for the sake of completeness a proof of Zariski Theorem 1.1 that
follows the ideas developed in this work. Such result compares the algebraic structure
of an algebraic set and its underlying complex analytic structure. In a similar way we
may compare the real underlying structures of a complex analytic space and its normal-
ization. A celebrated approach to complex algebraic curves (which can be understood
as particular cases of Stein spaces) is the study of their real underlying structures from
which the concept of Riemannian surface arises. There are certain properties that are
preserved when considering the real underlying structure of a complex analytic space:
local regularity, local irreducibility, local normality, etc.

We analyze the behavior of the normalization of a reduced complex analytic space
(X, Ox) when considering the real underlying structure (X%, O%). By 2.5and?2.7 there

exists a complexification of (X R OI}R}), ftEat is, a Ncomplex analytic space (X R @ FR)

endowed with an anti-involution o : X® — X& such that X® is the set of fixed
points of o. If (XV, Oxv, 7r) is the normalization of (X, Ox) and (XK, OI)%,)) is its
real analytic structure, we complexify the real analytic morphism 7® : XV® — xR
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2892 F. Acquistapace et al.

to obtain a complex analytic morphism 7® : X'® — XR where (X"F, Ogir)
is a complexification of (X", Oxv), see 2.7.1. We have the following commutative
diagram.

Xl) XVR( )ETR
nL an ﬂ“fgl
X XRC XE

Our next result determines when the tuple (X 2 OXTR’ JTR) is the normalization of

(x®, 0 ;ia) in terms of the coherence of the real analytic space (X R o XR).

Theorem 1.6 (Real underlying structure of the normalization). The following asser-
tions are equivalent:

(i) The real analytic space (X®, O xR) is coherent.
(ii) For each point a € X, the irreducible components of the germ X, remain irre-
ducible in a neighborhood of a.

(iii) The triple (X' &, O)ETR’ 7R is the normalization of (X¥, O}?]k) after shrinking

—~

XV R and X® if necessary.

Roughly speaking, the previous result determines under what extent the operations
of normalization and complexification commute via considering the real underlying
structure (in the proper place), that is,

real structure normalization
) . real structure
+ complexificationy = {4 real structure .
.. . . is coherent
+ normalization + complexification

or in other words
~ —
(XR) = (X")® « Xx®is coherent.

Structure of the article The article is organized as follows. In Sect. 2 we present
all basic terminology and notations used in this article as well as some basic results
concerning holomorphic and anti-holomorphic functions on complex analytic spaces.
The reading can be started directly in Sect. 3 and referred to the Sect. 2 of ‘Basic facts’
only when needed. In Sect. 3 we prove Theorems 1.1 and 1.2 and Proposition 1.3. To
that end, given a Stein space (X, Ox), we represent the ring O(X) as an inverse limit of
excellent rings (Corollary 1.4 and Theorem 3.5) and the ring O(X") as an inverse limit
of normal excellent rings (Corollary 1.4 and Theorem 3.9). In addition, we provide
an explicit 2-dimensional Stein space (X, Ox) such that O(X )v # O(X") (Example
3.10). In Sect. 5, we analyze the real underlying structure of the normalization of a
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complex analytic space in order to prove Theorem 1.6. The proof of this result requires
adeep knowledge of some local properties of the real underlying structure of a complex
analytic set explored in Sect. 4.

2 Basic facts on real and complex analytic spaces

We collect next notations and basic facts that are recurrent in the article.

2.1 Notations and general terminology

In the following, holomorphic refers to the complex case, whereas it is analytic to
the real case. For a further reading about complex analytic spaces we refer to [17]
while we remit the reader to [16] for the theory of real analytic spaces. We denote
the elements of O(X) with capital letters if (X, Ox) is a complex analytic space and
with small letters if (X, Ox) is a real analytic space. We will use freely Remmert’s
Theorem [28, VII.§2.Thm. 2] that states: The image of a proper holomorphic map
between complex analytic spaces is a complex analytic set.

Denote the coordinates in C" with z := (z1, ..., z,) Where z; 1= x; + ~/—1y;.
Consider the conjugation =~ : C* — C"*, z +— 7 := (z1,...,2n) of C"*, whose set
of fixed points is R”. A subset S € C" is invariant if S = S. Let @ C C" be an
invariant open set and F :  — C a holomorphic function. We say that F is invariant
if F(z) = F(z) for each z € Q. This implies that F restricts to a real analytic function
on 2 N R". Conversely, if f is analytic on R”, it can be extended to an invariant
holomorphic function F on some invariant open neighborhood 2 C C" of R".

2.2 Real and imaginary parts

Write the tuple z := (z1,...,2,) € C"as z = x + /—1y where x := (x1, ..., x,)
and y := (y1, ..., yp), so we identify C" with R**. If F : Q@ — C is a holomorphic
function, F(x + +/—1y) := W*(F)(x, y) + vV—13*(F)(x, y) where

F F(2)
N*(F)(x,y) ;=M and J*(F)(x,y) =

F(z) — F(2)
2/—1

are real analytic functions on 2 = QR understood as an open subset of R*. Assume
in addition that €2 is invariant. Then

NF):Q—>C, 2> w and J(F):Q—>C, z+—~> —F(Zz)\/___f(z)

are invariant holomorphic functions that satisfy F = R(F) 4+ +~/—1 I(F). We have
N*(F) = REN(F)) —I*(S(F)) and I*(F) = I*N(F)) + R*QS(F)),
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so it is convenient not to confuse the pair of real analytic functions (R*(F), I*(F))
on QF with the pair of invariant holomorphic functions (R(F), J(F)) on 2.

2.3 Reduced analytic spaces [16, 1.1]

Let K = R or C and let (X, Ox) be an either complex or real analytic space. Let Fx
be the sheaf of K-valued functions on X and let ¥ : Ox — Fx be the morphism of
sheaves defined for each open set U C X by 9y (s) : U — K, x — s(x) where
s(x) is the class of s modulo the maximal ideal myx ; of Oy ,. Recall that (X, Ox) is
reduced if ¥ is injective. Denote the image of Ox under @ with O'. The pair (X, O')
is called the reduction of (X, Ox) and (X, Ox) is reduced if and only if Ox = O%.
The reduction is a covariant functor from the category of K-analytic spaces to that of
reduced K-analytic spaces.

2.4 Normalization of reduced complex analytic spaces

A reduced complex analytic space (X, Ox) is normal if for each point x € X, the
local analytic ring Ox , is a normal ring, that is, it is reduced and integrally closed
(in its total ring of fractions). Riemann’s extension theorem holds for normal complex
analytic spaces, that is, if X is a normal complex analytic space and Y C X is a closed
analytic subset of codimension greater than or equal to one, each function F on X
that is holomorphic outside Y and locally bounded at the points of ¥ can be extended
holomorphically to the whole X. Functions on an arbitrary complex analytic space
that are holomorphic outside some closed analytic subset of codimension at least one
and are locally bounded at the points of such closed analytic subset are usually called
weakly holomorphic. We can restate Riemann’s extension theorem as follows: Each
weakly holomorphic function on a normal complex analytic space is holomorphic.

We consider for each reduced complex analytic space (X, Ox) the following two
sheaves of O x-modules.

e The sheaf J(,, of germs of weakly holomorphic functions.
e The normalization sheaf 0%, whose fiber at each point x € X is the integral closure

Ox.c of Ox., in its total ring of fractions Q(Ox x).

Recall that if pq, ..., py are the minimal prime ideals of the ring Oy ,, the total ring
of fractions Q(Ox ) of Ox , is (isomorphic to) the product of the fields of fractions
0Q(Ox x/p;) of the integral domains Oy ,/p ;. In addition, the integral closure of the
local ring O x x in its total ring of fractions is (isomorphic to) the product of the integral
closures of the rings Ox x/p; in their respective fields of fractions.

According to [14,29] both sheaves of Ox-modules J{,, and O are coherent. We
summarize the main results concerning the normalization of reduced complex analytic
spaces in the following theorem.

Theorem 2.1 (Normalization). Let (X, Ox) be a reduced complex analytic space. Then

there exists a normal complex analytic space (X", Oxv) together with a proper (sur-
Jjective) holomorphic map 7w : X' — X that is a 1-sheeted analytic ramified cover,
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whose critical set is the set of singular points Sing(X) of X. The couple (X", Oxv), )
is unique up to biholomorphic diffeomorphism. In addition,

1) If Xy = X1xU---U Xy is the decomposition into irreducible components
of the germ X, of X at a point x € X, the fiber w1~ (x) has cardinality s and
(after reordering the indices) w maps a neighborhood of the point y; € 77l (x)

in XV onto a neighborhood of x in a representative of X x for j = 1,...,s.
Additionally, if p1, ..., ps are the minimal prime ideals of the ring Ox x, then
(after reordering the indices) Oxv y, = Ox,x/pjvforj =1,...,s.

(i1) The homomorphism of rings w* : M(X) — M(X"), & — & o7 induced by 7
is an isomorphism between the rings of meromorphic functions of X and X". We
say that (X, Ox) and (X", Oxv) are birational.

(iii) The coherent sheaves of O x-modules H,,, O"X and . (Oxv) are isomorphic.

(iv) We have the following chain of inclusions and isomorphisms

0(X) = 0(X) — HO(X,H,) = HOX, 0%) = HO(X, 7,(0xv)) = O(X").

For the proof of the previous theorem, we refer the reader to [14, §6 and §8] or [29,
Lemme fondamental]. The space (X", Oxv) is called the normalization of (X, Ox).
We recall next how to show elementarily that An integral element & € Q(O(X)) over
O(X) is a weakly holomorphic function, that is, O(X)V c HO(X, H,).

Proof Let F', G, Ag,...,Ap_1 € O(X) be holomorphic functions such that G is
a non-zero divisor of O(X) and & := g satisfies the monic polynomial equation
t? + Z,f:_(; Artk. Observe that & is holomorphic on X \ {G = 0} and, as G is a
non-zero divisor of O(X), the analytic set Y := {G = 0} has codimension > 1. Let

us show that £ is locally bounded at the points of Y. Pick a point x € X \ Y, where &
is defined and £(x) # 0. We have

p—1 p—1
E)P 4+ ) A@EM =0 ~ E@)F == A0
k=0 k=0
p—1 p—1
= E@] = Y TA@IE@FPT s g )] < max {1 ) [Ag())]
k=0 k=0

As the function max{1, Z,f:_(} |Ax|} : X — R is continuous, & is locally bounded at
the points of Y, as required. O

Using Cartan’s Theorem B and [22, 52.17, 53.1], one shows that if (X, Oy) is a
reduced Stein space, the total ring of fractions Q (O (X)) coincides with the ring M(X)
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of meromorphic functions on X. Thus, we have the following diagram

0OX) > oo({>”< 0(X")
|
\4
Q(0(X)) = M(X) == M(X") = Q(O(X"))

that is, O(X) < O(X)" < O(X") = M(X).

2.5 Underlying real analytic structure [16, 11.4]

Let (Z, Oz) be alocal model for a complex analytic space defined by a coherent sheaf
of ideals J C Ocn|g, thatis, Z := supp(Oc»|q/J) and Oz := (Ocn|q/JT)|z. Suppose
that J is generated by finitely many holomorphic functions Fi, . .., F, on . Let J¥ be
the coherent sheaf of ideals of Op2. |r generated by R*(F;), As*(F )fori =1,

Let (ZF, OH§ = Ogan /IR| ~r) be the local model for a real analytic space deﬁned by
the coherent sheaf of ideals J®. For each complex analytic space (X, Ox), there exists
a structure of real analytic space on X that we denote (X, O%) and it is called the
real underlying structure of (X, Ox). The previous construction provides a covariant
functor from the category of complex analytic spaces to that of real analytic spaces
[16,1.3.3]. If (X, Oy) is a reduced complex analytic space, it may fail that (XR, O%{})
is coherent or reduced [16, I11.2.15].

2.6 Holomorphic and anti-holomorphic sections

The conjugation in C induces readily a conjugation in the sheaf O% ®r C as follows.
First, if (Z, Oz) is a local model for complex analytic spaces, we define the conjugate
germof Fy := W (Fy)+7/—13%(Fy) € 0%  @rCas Fy := N*(Fy)—v/—13*(Fy) €
OHZQ’ . ®r C. We define the conjugation in the sheaf O§ ®r C by considering neighbor-
hoods at each point x € X that are isomorphic to some local model. The conjugation
w : OI,R} Qr C — (‘)I,R} ®R C is the morphism of sheaves such that w, (Fy) = Fy for
eachx € X and F, € O%‘}x Qg C.

A germ G, € (‘) . ®r Cis called anti-holomorphic (resp. holomorphic) if there
exists an 1somorphlsm of a neighborhood of x onto a local model such that G is
the image of an anti-holomorphic (resp. holomorphic) germ. Of course G, is anti-
holomorphic if and only if G, is holomorphic. We denote by Ox the sheaf of anti-
holomorphic sections that we define as a subsheaf of O% ®p C. For each open set
U C X we have

H(U,0x) = (G € H'(U, 9% ®& C) : G, is anti-holomorphic Vx € U}.

The sheaf Ox of holomorphic sections may be regarded analogously as a subsheaf
of O§ ®r C. The conjugation of O% ®r C turns holomorphic sections into anti-
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holomorphic ones and vice versa. Ifagerm G, € Ox ﬂ@x,x, there exists Hy € Ox
such that G, = H,. Thus, |G|)26 =G.G, =G, H, € Ox.x,so |G|)2C is by Remmert’s
Theorem constant and by the maximum modulus principle G, € C. This means that
if U C X is an open subset, H(U, Ox) N HOU,0x) =C.

2.6.1 Anti-involutions

Let (X,Ox) be a complex analytic space and let (X%, O%) be its real underly-
ing structure. An anti-involution on (X, Oy) is a morphism of R-ringed spaces
o (XE, O]§ ®r C) — (X&, O%{} ®r C) such that 02 = id and it interchanges
the subsheaf of holomorphic sections O x with the subsheaf of anti-holomorphic ones
Oy. For simplicity anti-involutions shall be denoted as o : (X, Ox) — (X, Ox).

2.6.2 Fixed part space

Let (X, Ox) be a complex analytic space endowed with an anti-involution o :
(X,0x) > (X,0x). Let X? := {x € X : o(x) = x} and define a sheaf Oxo
on X in the following way: for each open subset U C X, we define HO(U, Oxo) as
the subset of HO(U, Ox|xo) of invariant sections. The R-ringed space (X, Oxo) is
called the fixed part space of (X, Ox) with respect to . By [16, 11.4.10] it holds that
(X9, Oxo) is areal analytic space if X # @ and itis a closed subspace of (XR, O[)R}).

2.7 Complexification and C-analytic spaces [16, 111.3]

A real analytic space (X, Ox) is a C-analytic space if it satisfies one of the following
two equivalent conditions:

(1) Each local model of (X, Oy) is deﬁnedwby a coherent sheaf of ideals.
(2) There exist a complex analytic space (X, Oy) endowed with an anti-involution
o whose fixed part space is (X, Oy).

We call the complex analytic space (X,0 %) a complexification of X. As (X, Ox)isa
coherent real analytic space (because the local models are defined by coherent sheaves
of ideals), the complexification (X, Oy) satisfies the following properties:

@) O)?,x = Ox.x ®r C for each x € X.

(i1) The germ of (X,0 %) at X is unique up to an isomorphism.
(iii) X has a fundamental system of invariant open Stein neighborhoods in X.
(iv) If X is reduced, then X is also reduced.

For further details see [8,16,32].
Remark 2.2 The above definition of complexification differs from Cartan’s classical

one. In [8] a complexification of a reduced real analytic space is a reduced complex
analytic space (X, Oy) satisfying conditions (i), (ii), and (iii) stated above.
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2898 F. Acquistapace et al.

2.7.1 Complexification of morphisms [16, 111.3.11]

Let¢ : (X,0x) — (Y, Oy) be a morphism of C-analytic spaces. Let (3(, Oy) and
(17, 0y) be respective complexifications of (X, Ox) and (Y, Oy). There exist:

(i) aStein open neighborhood 2 C X of X and an anti-involution o : (2, 0%l0) —
(€2, O3 lq) whose fixed part space is (X, Ox),
(i1) a Stein open neighborhood ® C Y of Y and an anti-involution 7 : (O, Oyle) —
(0, Oyle) whose fixed part space is (Y, Oy),
(i) a morphlsm of Stem spaces ¢ : (2, Oxle) — (®, 0yle) such that ¢|x = ¢
and R o0 = 7 0 @K,

In addition, if ¢ is an isomorphism (resp. embedding), shrinking €2 and ®, also ¢ is an
isomorphism (resp. embedding). We show next that if ~!(¥) = X and ¢ is proper
and surjective, shrinking €2 and ©, also ¢ is proper and surjective.

Lemma 2.3 Let (X,0Ox) and (Y, Oy) be C- analyttc spaces. Let ¢ @ X — Y be
a proper surjective analytic map and let ¢ : X > Ybea complexification of ¢.
Suppose that p~'(Y) = X. Then there exist open neighborhoods Q C X of X and
ecy of Y such that ¢ : Q2 — © is proper and surjective.

Proof Let {Li}r>1 be an exhaustion of ¥ by compact sets. As ¢ is proper, {Ky :=

@ '(Li)}k=1 is an exhaustion of X by compact sets. As Y is paracompact and locally
compact there exists a locally finite covering {V;}ic; of Y by open subsets with
compact closures. For each x € X, let W* C X be an open neighborhood of x with
compact closure such that there exists i (x) € I satisfying (ClI(W*)) C U* 1= Vj(y).
As ¢ is surjective, ¥ C (J,cx U*.

Consider the family of compact sets {Kj \ Int(K—1)}x>1 where Ko = &. For each
k > 1 we choose a finite set J; such that

Ji © K \Int(Kg—1) € ) W™

xeJy

2.7.1.1 Define J := {J;-; Ji and let us check: For each y € Y there exists an
open neighborhood V¥ C Y and £ > 1 such that V¥ N @(CI(W*)) = @ if x €
J\ U1<k<l Ji. Consequently, the family § := {¢(CL(W*¥))} ey is locally finite and
the set S := |, ., @(CU(W?)) is closed in Y.

Ifye Y \ CI(S), the result is clear. Pick a point y € CI(S) and let V' C Y be an
open neighborhood of y with compact closure. As the family {V;};<; is locally finite,
there exists a finite set F C [ such that V; N Cl(V?Y) = @ if i € I\ F. Consider
the compact set | ;. C1(V;) and let £ > 1 be such that [ ;. CI(V;) C Int(L;). Let
x € J be such that VY N @(CI(W?Y)) # @. Then VY N U* # &, so there exists i € F
such that U* = V;. Thus, ¢(x) € V; C Int(Ly), sox € | J; oj<¢ Jk-
2.7.1.2 Define T := |J, ., CL(W*). We claim: the map ¢|r : T — S is proper and
surjective.
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Let L C S be a compact set and let us check that (¢|7)~! (L) is also compact. By
2.G.1.1 there exists £ > 1 such that

LN U P(CUWY)) = &
xe€Jp,k>0+1

Consequently, (@|7) ™ (L)NUy ey pzes1 W' = 2.Thus, (@17) " (L) € Uyey,. 1<kt
CI(W¥) is compact because it is a closed subset of a finite union of compact sets.
2.7.1.3 Let Qo := Uer Int(C1(W*)), which is an open neighborhood of X in }N(,
and let C := T \ 0, which is a closed subset of 7' that does not meet X. As ¢|r
is proper and go_l(Y ) = X, the image ¢(C) is a closed subset of Y that does not
meet Y. Let ©) := Y \ (C), which is an open neighborhood of Y in Y. Then Q; :=
(@lr)~ 1®)) c Qpisan open neighborhood of X in X and the map ¢lg, : 21 — O
is proper. Consequently, @(£21) is by Remmert’s Theorem an analytic subset of ®
that contains Y. Thus, ¢(£21) is a neighborhood of Y in Y.Let © := Int(@p(£21)) and
Q= (¢lg, )~ 1(®). The restriction ¢|q : 2 — Ois proper and surjective, as required.
O

3 Normalization of Stein spaces

In the first part of this section, we prove Theorem 1.2 and Proposition 1.3. We will
show that the ring of fractions S;IO(X ) is an excellent ring (Theorem 3.5) and the
integral closure of S}l O(X) in M(X) is ‘J'I}lO(X") (Theorem 3.9) where T+ is the
multiplicatively closed set of all holomorphic functions on X" that do not vanish at
K* =71 (K) and (X", Oxv, 7) denotes the normalization of (X, Ox). Recall that,
as (X, Oy) is a Stein space, the total ring of fractions Q (O (X)) coincides with the ring
of meromorphic function M(X) on X. In the second part of this section, we include a
proof of Zariski Theorem 1.1 and an example of a 2-dimensional Stein space (X, Ox)
for which O(X) " is different from O(X").

Proof of Theorem 1.2 By Theorem 2.1 (iv) the inclusion O(X )v — O(X") holds. We
will show in Theorem 3.9 that

810X = TloxY) 3.1)

for each compact set K C X, where K* := 7~ (K). By Proposition 1.3 and (its
straightforward application) Corollary 1.4, we conclude

ClOX)) = lim 8. 0X)" = lim T O(XY) = lim T,'0(X") = 0(X").
KcX KcX LcXxY
compact compact compact

The first isomorphism in the previous row follows from Proposition 1.3 applied to
V106 )U and the second isomorphism follows from (3.1). The third is true because the
family of compact sets K* for K C X compact is cofinal inside the family of compact
subsets of X", whereas the last isomorphism is a consequence of Corollary 1.4. O

Thus, in order to have Theorem 1.2 proved we are only left to show that Proposition
1.3 and Theorem 3.9 hold.
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3.1 Fréchet closure of an O (X)-submodule

Let (X, Ox) be a Stein space and let I be a coherent sheaf of O x-modules. Recall that
we endow H(X, F) with its natural Fréchet topology [17, VIIL.A.Thm. 8]. Let 91 be
an O(X)-submodule of H%(X, F). In what follows K will always denote a compact
set. Consider

cO) ={A e HO(X,’Jr) : VK € X 3H € O(X) such that {H =0} N K = @& and
HA € M},
GO ={A € HO(X, F): Vx € X 3G € O(X) such that G(x) # 0 and GA € M}.

Lemma 3.1 The closure of Win HO(X, F) is CL(D) = ¢, (N) = C(N).

Proof As the chain of inclusions €1 (1) C € (91) C CI(DT) holds by [7, VIIL.Thm.
4], we only check: CI(1) C €; (D).

Let K C X be a compact set. As (X, Ox) is a Stein space, we may assume that
K is holomorphically convex [17, VII.A]. Since 91Oy is a coherent sheaf of Oy-
modules, there exists by Cartan’s Theorem A an open neighborhood 2 C X of K
and A,..., A, € HO(X, F) such that Oy , is generated as an Ox -module by
Alx,...,Arx foreach x € Q. By [7, VIILThm. 11] the finitely generated O(X)-
submodule M := (Aq, ..., A,)O(X) of HO(X, F) is closed and by [13, §2.Satz 3]
the ideal

M :CIM)) :={H € O(X) : HCIN) C N}

is closed. By [7, VIILLem. 6] MOx , = CIM)Ox  for each x € X. Thus,
M = CIO)Ox.x = Ox,x for each x € €, that is, it is generated by 1 at each
point of 2. After shrinking 2, we may assume that it is a holomorphically convex
neighborhood of K and H%($2, (901 : CI(M))Ox) = HY(2, Ox) (see [17, VILA.Prop.
3 and VIII.LA.Thm. 15]). By [17, VIII.A.Thm. 11] there exist holomorphic functions
H e HO(X, (O : CI(M)Ox) = (M : CI(M)) that are arbitrarily close to 1 on K.
Thus, there exists H € O(X) such that {H =0} N K = @ and H CI(9T) C 91 C N.
Consequently, CI(t) C €;(N), as required. O

We are ready to prove Proposition 1.3.
Proof of Proposition 1.3 For each compact set K C X, consider the homomorphism

FH

ok : CIO) — SN, F > —
where H € Sk satisfies FH € 91 (recall that by Lemma 3.1 C1(91) = & (N)). It
is straightforward to show that ¢ is well defined. As CI(91) = €, (N), it holds that
CI(O) together with the homomorphisms {¢x} xcx is isomorphic to the inverse

compact
limit of the inverse system &. For the second part of the statement, observe that the
collection {K,}, is cofinal inside the family of compact subsets of X. O
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Remark 3.2 An analogous result holds if we consider only finite subsets of X (that are
obviously compact sets) instead of all compact subsets of X. To that end use the letter
Z C X to denote a finite set and consider

M) :={A e H'(X,F) : V.Z C X 3H € O(X) such that {H = 0}
NF =@and HA € N}.

As (0 C &GO C (M) and €1 (M) = (O = CI(N), we have CI(N) =
¢3(M). Once this equality holds, the alternative description

CI(M) = lim 839,
FCX
finite

which involves only finite sets, follows similarly to the one in Proposition 1.3.

We denote an arbitrary maximal ideal of O(X) with m, whereas m, refers to the
maximal ideal associated with a point x € X.

Corollary 3.3 Assume in addition that X is irreducible and N is a torsion-free O(X)-
module. We have:

O N=y N
(i) CIM) = &MN) = Nyex Nm,. Consequently, E(N) = N if and only if
N C Ny for each (free) maximal ideal m not associated with a point
x e X.
(iii) CLOY) = &M =) kex Sg'M.

compact
(iv) If{K¢}e>1 is an exhaustion of X by compact sets, then €1 (N) = ﬂlz] 8}; MN.
(v) If K C X is a holomorphically convex compact set, then m N\ Sg = & if and
only if m = m, for some x € K. In addition, 8;1‘31 = Nyex Nm,-

Proof Statements (ii) and (iv) are clear once the remaining ones are proved. Consider
the multiplicatively closed set & := O(X) \ {0}.

(i) Observe that 0t < M, <> 891 for each maximal ideal m of O(X). Conse-
quently, M < [, Nm. Let & € [, Nm and define a := {H € O(X) : HE €
I}. We claim: a = O(X).

Otherwise, there exists a maximal ideal mp of O(X) suchthata C mp. As& € My,
there exists A € M and H € O(X) \ mg such that & = %. As O(X) is an integral
domain, HE = A € 9, s0 H € a C my, a contradiction. Consequently, a = O(X)
andé =1-&£ e

(iii) As Sg C S, the ring O(X) is an integral domain and 91 is torsion-free, the
homomorphism S}]‘ﬁ <> 8~ !9t is an inclusion. In addition, pg, k, : Sgi‘ﬁ —

S}}‘J‘(is injective if K1 C K» C X are compact sets. The statement follows from
Proposition 1.3 and Remark 1.5.
(v) Let m be a maximal ideal of O(X).
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3.A.4. We prove first: mNSx = & if and only if there exists x € K such that m = m,.
Let m be a maximal ideal such that m N 8¢ = & and assume that m # m, for
each x € K. Thus, for each x € K there exists F, € m such that Fy (x) # 0. As K is
compact, we find F1, ..., F, € msuchthat {F; =0,...,F, =0} NK = @.By[7,
VIII.Thm. 11] the finitely generated ideal a := (F1, ..., F,)O(X) C mis closed. We
have a0y y = Ox x foreachx e Q = X \{F1 =0, ..., F, =0}
3.A.5. We claim: There exists H € a thatis closeto 1 on K,so {H =0}N K = &.
After shrinking €2, we may assume thatitis a holomorphically convex neighborhood
of K and H%(Q, aOx) = H*(Q, Ox) (see [17, VILA.Prop. 3 and VIIL.A. Thm. 15]).
By [17, VIILLA.Thm. 11] there exists a holomorphic function H € HO(X, aOx) =a
thatiscloseto lon K,so {H =0} N K = &.
Thus, H € m N Sk, which is a contradiction. Consequently, m = m, for some
x € K. The converse is clear.
3.A.6 We check now: S}l‘ﬁ = ﬂxe x M, . By (i) the torsion-free O(X)-module
81;19’1 satisfies

Sp'N = ﬂ(s "M € () Gx' M, = (1) N, € M(X).

xekK xekK

Pick now a fraction % € [),cx Mm,. For each x € K there exists A, € 9 and
F, ¢ m, such that == A . As K is compact, we find x1,...,x, € K such that
{Fy, =0,. F, = O} N K = . Proceeding as in the proof of 3.A.5 there exist
Gi,..., G, € O(X) such that the zero set of H := Fy,G1 + - - - 4+ Fx, G, does not

meet K. Define B := Ay, G1 +---+ A, G, € ) and observe that % = % € SEI‘JI
(because 1:—:' = %) for each i. Thus, ﬂxeK M, C S;l‘ﬂ, as required. O

>< "1|D>

Remarks 3.4 (i) By Remark 3.2, we have O(X) = lim 8 ' O(X).
nite

(i) If X is irreducible, we have by Corollary 3.3

o) = [ 8x'0x)= () $700) =) 0X)m,.

KcX FCX xeX
compact finite

(iii) If X has finitely many irreducible components and a compact set K C X meets
all of them, Sk does not contain zero divisors and S,_(IO(X ) C M(X). In this
case, we consider an exhaustion {K,}¢>; of X by compact sets such that K
meets all the irreducible components of X. Then the homomorphisms pk,, k;

l(‘.)(X) — 8% (‘)(X) are injective and O(X) = (> 8 _IO(X)
@iv) If X has 1nﬁn1tely many connected components, 8 x meets the set of (non-trivial)

zero divisors of O(X) because K does not meet all the irreducible components
of X.
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3.2 Excellence of rings of fractions associated with compact sets
Let (X, Oyx) be a Stein space and let K C X be a compact set.
Theorem 3.5 The ring of fractions S;l O(X) is excellent.

To lighten the proof of the previous result, we do before some preliminary work.
Given a subset S C X, we denote J(S) the ideal of all holomorphic sections in O(X)
that vanishes identically on S. As X is a Stein space, J(S) generates by Cartan’s
Theorem A the coherent sheaf of ideals Js » 1= {fx € Ox x : Sx C {fx = 0}}.

Lemma 3.6 Assume K is holomorphically convex and let Z be the union of the (finitely
many) irreducible components of X that meet K. Denote

Sk :={FeOX): (F=0NK =2},
i ={Fe0(Z): {F=0}nK = ).

Then 8 M(X) = M(Z) and $x' O(X) = 8,1 O(Z). In addition, 8' M(X) is the
total ring of fractions of SEI O0(X).

Proof Let {X;}x>1 be the collection of the irreducible components of X. We may
assume that Z = (J;_; Xx. Let  be a holomorphically convex neighborhood of
K in X that does not meet Z' := Ukzm+1 X} (see [17, VIL.A.Prop. 3]). We have
J(ZNO0x x = Ox x for each x € Q, that is, it is generated by 1 at each point of 2.
Thus, by [17, VIILA.Prop. 6] H*(Q2, 3(Z)0x) = H*(Q, Ox). By [17, VIILA.Thm.
11] there exists a holomorphic function H € HY(X,J(Z2)0x) = §(Z’) that is close
tolonK,so{H =0}NK = @and H € 8g.By[22,53 A5] M(X) = [ [~ M(Xx)
and M(Z) = [];—; M(Xy). Consider the surjective projection homomorphism

T ]_[ M(Xi) — ]_[ M(Xx)

k>1 k=1

and let 7’ : M(X) — M(Z), g — g—lé be the corresponding surjective homo-

morphism (induced by m and the isomorphisms above). Let us check that the
homomorphism

_ A/B A
0 : 8 M(X) - M(2), % > B|Z|é|z

is an isomorphism. As 7’ is surjective, 6 is surjective. Let us check that it is also

injective. If G(A/TB) = Bé'éz = 0, then Alz = 0,s0 HA = 0 on X (recall that
A/

H € J(Z") N 8k was constructed above). Thus, H% = 0, so the quotient TB =0in
S}IM(X) (as H € 8k). Therefore 0 is injective.
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By Cartan’s Theorem B, the restriction homomorphism ¢ : O(X) — O(Z), F +—
F|z is surjective. Consequently, the homomorphism

- - FFlz
. 1 1
¢ 8000 > 802, G o

is surjective. Let us check that it is also injective. If (p’(%) = g—‘é =0, then F|z =0,

so HF =0on X and g = 0. Therefore ¢ is injective.
Finally, as M(Z) is the total ring of fractions of 8;1(’)(2), we conclude that
S;IM(X) is the total ring of fractions of S;IO(X), as required. O

Lemma 3.7 Assume K is holomorphically convex. Let F, G € O(X) be such that G
is not a zero divisor and g_i € Ox x for each x € K. Then there exist F1, G1 € O(X)

such that G is not a zero divisor, (G| =0} N K = & and g = g—‘l
Proof Consider the sheaf of ideals J of Ox whose stalks are I, := {H, € Ox x :
H, g—: € Ox x}. By [3, Lem. 3.2] J is coherent, so there exist by Cartan’s Theorem A

anopen neighborhood 2 C X of K and holomorphic sections Hy, ..., H. € H O(X D
such that the ideal J, is generated by Hj y, ..., Hy x for each x € Q. Let {Xy}x>1 be
the collection of the irreducible components of X that do not meet K. As G is a non-
zero divisor of O(X), there exists zx € Xy suchthat G(zx) # 0foreachk > 1. We may
assume that D := {zx}x>1 is a discrete subset of X. Let Z := D U supp(J), which is a
complex analytic subset of X that does not meet K. Shrinking 2 we may assume that
itis a holomorphically convex neighborhood of K in X and that it does not meet Z (see
[17, VIL.A.Prop. 3]). Consider the coherent sheaf & := J(D)Ox N (Hy, ..., H,)Ox.
We have I, = Oy, for each x € Q, that is, it is generated by 1 at each point of <.
Thus, by [17, VIILA.Prop. 6] H*(Q, F) = H(Q, Ox).By[17, VIILA.Thm. 11] there
exists H € HO(X,F) ¢ H(X, J(D))N H°(X, J) thatis close to 1 on K.Letm > 0
be such that G| := m H + G does not vanish at any point of K. As H € H(X, (D)),
we have H|p = 0, so G does not vanish at any point of D. Consequently, G is not
a zero divisor of O(X) because it is not identically zero at any of the irreducible
components of X. In addition, G| € HY(X,J),s0 F| := Glg € O(X) and g = g—ll
as required. O

Proof of Theorem 3.5 The proof is conducted in several steps:

Step 1 Assume X = C". The maximal ideals of SEIO((C") are n, = mx(S}IO((C”))
where x € K and m, is the maximal ideal of O(C") associated with x. In addition,
(S}IO((C”))M = O(C")p, . As the local rings O(C")y,, are regular for each x € K,
also S?O((C”) is regular. Observe that S}IO((C”)/(mx (SEIO(C”))) = C for each
x € K and all the maximal ideals of 8;1 O(C") have the same height n. Consider the
partial derivatives aix, and the projections 7; : C* — C, (x1, ..., x,;) — x;. It holds
Bixi”./ =§;jforl <i, j <n.By[23,40.F, Th. 102, p. 291], SEIO(C”) is an excellent
ring.

Stei 2 Assume X is a complex analytic subset of C". In this case O(X) = O(C")/J(X).
Denote 8 := {F € O(C") : {F =0} N K = @}. As the restriction homomorphism

@ Springer



Normalization of Complex Analytic Spaces 2905

O0(C") — O(X), F +— F|y is surjective, it holds
$E'O(X) = (8’5 0CM) /(8T (X)),

which is an excellent ring because it is the quotient of an excellent ring by an ideal.
Step 3 Assume (X, Oyx) is a Stein space and K C X is a holomorphically con-
vex compact set. By Lemma 3.6 we may assume that K meets all the irreducible
components of X. By [26, Thm. 5, Lem. 6] there exists a proper injective holomor-
phic map ¢ : X — C¥ (where k is a large enough positive integer) such that for each
x € Reg(X)UK there exists an open neighborhood U in X suchthat G|y : U — G(U)
is an analytic isomorphism. By Remmert’s Theorem, Z := ¢(X) is a complex analytic
subset of CX and consequently a Stein space with its canonical analytic structure.

Denote K’ := ¢(K) and let us check that K’ is holomorphically convex. Let 2 be
an Oka—Weil neighborhood of K in X such that ¢|q : @ — ¢(£2) is biholomorphic
[17, VILA.Prop. 3]. As K is holomorphically convex in X, by [15, A.Cor. 9] K is
holomorphically convex in €. In addition, ¢(2) is an Oka—~Weil neighborhood of K’
in Z and K’ is holomorphically convex in ¢(£2). As ¢(2) is holomorphically convex,
K’ is by [15, VILA.Cor. 9, VIIL.A.Thm. 11] holomorphically convex in Z. Thus, it
is enough to show: the rings of fractions SEIO(X ) and Sg}O(Z) are isomorphic,
because the second one is by Step 2 an excellent ring.

By [3, Lem. 3.8] the homomorphism

0 M(Z) > MX), & 62

is an isomorphism. As K meets all the irreducible components of X, also K’ meets
all the irreducible components of Z (recall that ¢ induces a bijection between
the irreducible components of X and those of Z). Thus, S}IO(X) C M(X) and
8210(2) € M(Z). We claim: 9*($¢10(2)) = $5O(X).

The inclusion w*(SE} 0(2)) C 8}1 O(X) is clear because ¢(K) = K'. To prove
the converse inclusion pick A € O(X), B € 8k, and F,G € O(X) such that G

is a non-zero divisor of O(X) and gzz = %. As B € Sgkand g : X — Zis

biholomorphic on an open neighborhood of K, we deduce that g is holomorphic on
K'. By Lemma 3.7 there exist F, G; € O(Z) such that G is not a zero divisor of
O(2), (G =0)NK'=@and § = - As G € 8g/, wehave & = £- € 8,)0(2)
and the converse inclusion is proved.

Step 4 General case: (X, Ox) is a Stein space and K C X is a compact set. Let
K be the holomorphic convex hull of K in X. Let T be the homomorphic image of
Sk in §.'O(X). As 8z C 8k and 1 € 8, we have 8;'O(X) = T8 .'0(X)),

see Remarks 3.8. As SIEIO(X) is excellent, the ring of fractions ‘J'_I(SIEIO(X)) is

excellent too, so 8}1 O(X) is excellent, as required. |
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3.3 Normalization of rings of fractions associated with compact sets

Let (X, Ox) be a Stein space and let K C X be a compact set. We compute below the
integral closure of 8}10()( ) in its total ring of fractions SglM(X ). We recall some
properties of rings of fractions [4, §3. Ej. 3, 4, 7, 8, p. 44] that are used freely in the
proofs of Theorems 1.1 and 3.9 and Lemma 4.8.

Remarks 3.8 Let A be a commutative ring.

(1) If 8, T are multiplicatively closed subsets of A and U is the image of T in
8~1A, then the rings of fractions ($T)~'A and U~!(8 ' A) are isomorphic. In
particular, if § C Tand 1 € 8, we have T-1A = U~ (871 A).

(i) If ¥ : A — B is a homomorphism of rings, § is a multiplicatively closed set
and T := ¥(8), then $~' B and T~! B are isomorphic as $~! A-modules.

(iii) A multiplicatively closed set S of A is saturated if whenever a product ab of
elements of A belongs to 8, then both elements a, b € 8. Given a multiplicatively
closed set S C A, there exists a unique smallest saturated multiplicatively closed
set 8* containing 8, which is called the saturation of S. It holds that 8* is the
complement in A of the union of the prime ideals of A that do not meet 8.

(iv) If § ¢ T are multiplicatively closed subsets of A, then the homomorphism
$:8 1A > T4, $ > ¢ is an isomorphism if and only if T C §*.

Theorem 3.9 Let (XV, Oxv, ) be the normalization of (X, Ox) and let Tx+ be the
multiplicatively closed set of all holomorphic functions on X" that do not vanish
at the compact set K* = 7~ Y(K). Then S,_(IO(X)V = ‘J’I_(iO(X”) is the integral
closure of S}l O(X) in its total ring of fractions S;M(X) and a finitely generated
Sgl(‘)(X)-module.

Proof First, by the splitting of normalization [11, 1.5.20] and [23, 33.H, Th. 78, p.
257] it holds that T_iO(X V) is a finitely generated S}IO(X )-module. The proof of
the first part of the statement is conducted in several steps. The first four steps have
the purpose of reducing the proof to the case: X is irreducible, K is a singleton, and
K* is a finite set.

Step 1 Reduction to the case in which X has finitely many irreducible components and
K meets all of them. Let {X;}/"_, be the irreducible components of X that meet K. As
7w : XV — X induces a bijection between the irreducible components of X and X",
the irreducible components of X" that meet K* are X} := Cl(7~'(X; \ Sing(X))) for
i=1,...,m.Denote X" := | J/_; X’ and X' := [/, X;. Observe that (X', Oy :=
Ox|x)and (X", O’XU := Oxv|xv) are Stein spaces because they are complex analytic
subsets of the Stein spaces (X, Ox) and (X", Oxv). In addition, 7 : X"" — X’ is the
normalization of X', so M(X’) = M(X"’). By Lemma 3.6

8. OX) =8 O(X) and T lOo(x") = T oxY),
SEIM(X) =M(X) and T lM(X) = M(X"),

where 8 :={F € O(X"): {F =0}NK =@} and T, :={G € O(X") : {G =
0}NK™* = &} (recall that M(X) = J\/[(X”)).NotethatS’I;lO(X’) isasubring of M(X”)
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and ‘J’/K_*IO(X ") is a subring of M(X""). Let O(X)" be the integral closure of O(X)
in M(X) and let O(X’)" be the integral closure of O(X’) in M(X"). B‘}y [4, Prop. 5.7]
the integral closure of S}IO(X) in S}IM(X) = M(X') is SQIO(X) . Analogously,
the integral closure of S/I;IO(X’) in S/EIM(X’) = M(X) is S/I;lmv. Conse-
quently Sglmu = 8;1WU is the integral closure of Sglo(X) = S/I;IO(X’)
in M(X') = 8§ M(X).

Thus, we have to show that S’K_lmv = ‘J"K_*l O(X""). We assume in the following
that X has finitely many irreducible components.
Step 2 Reduction to the case in which X is irreducible. By the splitting of normal-
ization [11, 1.5.20] and basic properties of rings of fractions [4, §3, §5], there exist
isomorphisms

500" =8 000 =[[s¢ O/ =[[8; 0xn =[]sx 0",

i=1 i=1 i=1
where K; := K N X; and S’Kl_ ={F € O(X;) : {F =0}NnK; = @}. In addition,

ox" =T11IL, O(X}) (as X7, ..., X, are the connected components of X" because
(X", Oxv) is a normal complex analytic space), so

T O(XY) = Tp (]‘[ O(X}’)> = [[7x-0xp)) = [Tk~ 0K,

i=1 i=1 i=1

where K := K* N X} = 7z HK)N X} = (71|X;))_1(K N X;). Thus, it is enough to
show

SO = Tl O(X)),

that is, we assume in the following (X, Oy) is irreducible.

Step 3 Reduction to the case in which K and K* are holomorphically convex. Let K
be the holomorphic convex hull of K in X. Let 8’ be the homomorphic image of Sk
in SFO(X). As8; C Sk and 1 € 8y, we have ' O(X) = 8/‘1(81_310(X)).

We claim: As K is holomorphically convex, K* =Y (K ) is holomorphically
convex t0o.

Pick a point z € XV \ K*. Then 7(z) € X \ K, so there exists a holomorphic
function F on X such that sup, (F) < |F((z))|. Denote G := F o € O(X") and
observe that sup . (G) = supg (F) < |[F(7(z))| = |G(2)|. Thus, z does no belong
to the holomorphic convex hull of K*in XV. Consequently, K* is holomorphically
convex.

As K* C I%*, we have Tz, C Tg+. As 1 € Tg,, we have ‘T,;lO(X”) x~
‘I’_l(‘J'IElO(X")) where 77 is the homomorphic image of Tk in ‘J’I;O(X"). If
we prove that r.]'l_ei(‘)(X”) is the integral closure of SEIO(X) in M(X), we will
have by [4, Prop. 5.12] that S’_l(TIEiO(X”)) is the integral closure of S%l 0X) =
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8”1(8;O(X)) in M(X) = M(X"). As 7’ is the saturation of 8 in ‘TIEiO(X”), we
deduce

TtO(X") = 7/*‘(7[;10()(“)) ~ gt (Tl—eio(X”)).

Consequently, ‘J’Ei O(XV) is the integral closure of 8;1 O(X) in M(X) = M(XV). In
the following, we assume in addition that K and K* are holomorphically convex.
Step 4 Reduction to the case in which K is a singleton (and K* a finite set). As K and
K* := 771 (K) are holomorphically convex, we have by Corollary 3.3

S50 = [ 00,

xekK
T0X) = () OXMa, = () (] 0, = ()T, L,,0x".
yeK* x€K yer—1(x) xek

By [4, Prop. 5.12] O(X):nx is the integral closure of O(X)y,, in M(X). Thus, it is

—1

enough to show: O(X ):ﬂx and TH, . (x)O(X V) are isomorphic under *.

n,*
Step 5 Let us prove: O(X):nx = ‘I;_ll(x)(‘)(X")for eachx € X.

Write 7~!'(x) = {y1, ..., y}. By Lemma 3.5 O(X“)nyi is an excellent ring. We
have the following commutative diagram of regular homomorphisms.

O(X ), > Oxv y,

—

OX ), —— Oxv.y,

As XV is anormal Stein space, Oxv y, is a normal ring. By [2, VIL.2.2(d)], the comple-

tion @/x-v\x, of the local ring Oxv y, (with respect to its maximal ideal) is a normal ring.
Consequently, O(X ”)ny[ is by [2, VII.2.2(d)] a normal ring. The field of fractions of
O(X")nyl_ is M(X") for each y;. By Corollary 3.3 and [19, 2.1.15], the ring of fractions
‘T;_ll ) OX™) =iz O(X")nyl_ is a normal ring. Denote § := 7*(O(X) \ m,) and
observe that the natural homomorphism $~1O(X") — TJ';EI @)
phism because the saturation of 8 is T -1(,). We have the following commutative
diagrams.

(O(X")) is an isomor-

O00T=0(X")  O(X)m, = 8710(X") == TL, (O(X))
M(X) %— M((XY) M(X) " M(XV)

1R
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As ‘.T__l( )(‘_)(X") 1sanormalr1ng,(‘)(X)m — ‘J'__,( )O(X”).By[l,Thm. 1.1] there

exists finitely many Hi, ..., Hy € O(X") such that

T OXY) = Hy 2 (0(X)m) + + Hy - 75 (OO, ).

This means that T~ -l (x )O(X”) is afinitely generated O (X ), -module, so g1 -l (x )O(X”)

is by [4, Prop. 5.1] an 1ntegral extension of O(X)n,, that is, g1 0X") —

7=l (x)
O(X)mx. Consequently, g1 oxY) = O(X)mx, as required. O

Y E))
3.4 Normalization of an algebraic set endowed with its Stein structure

Let X C C”" be an algebraic set and let J(X) := {P € C[x] : P|x = 0}. We have:
The equality

HX,x ={fx € O(C”,x Xy C{fi=0}) = j(X)O(C”,x (3.2)

holds for each x € C", see [31, §2]. We include here a straightforward proof for the
sake of completeness.

Proof Pick a point x € C". Assume that it is the origin and let m be the maximal
1dea1 of C[x] associated with it. The completion of the local ring A : (C[x] /I(X))m
is A = ClIx11/I(X)C[[x]]). As A is a reduced excellent ring, also A is a reduced
excellent ring [2, VII.2.2(d)]. Consequently, the ideal J(X)C[[x]] is radical. Consider
the local analytic ring B := Ocn,0/(J(X)Oc¢r o) and observe that its completion is

B = CI[[x]1/(I(X)Ocn oClIx]]) = CI[=]]/IX)CI[x]]) = 4,

so B is areduced excellent ring [2, VIL.2.2(d)]. Thus, J(X)Ocn o is aradical ideal. By
Hilbert’s Nullstellensatz for Ocr o we deduce Jx 0 = J(Z(I(X)Ocn,0)) = I(X)Ocn x,
as required. O

As (C", Ocn) is a Stein manifold and (X, Oy := Ocr|x) is a complex ana-
Iytic subspace, it holds by Cartan’s Theorem B that O(X) := O(C")/J(X) where
J(X) = HO((C", dx). In addition (X, Ox) is a Stein space. Let Pj,..., P, be a
system of generators of J(X). By (3.2) Py, ..., Py, generate Jx . for each x € C".
By [17, VIILA.Thm. 15] Py, ..., P, generate J(X) as an O(X)-module, so J(X) =
J(X)O(X). Let (X* C C"™, p) be the algebraic normalization of the algebraic set
X cC".

Proofof Theorem 1.1 As A := C[x]/J(X) is an excellent ring, the integral closure
A" of A in its total ring of fractions Q(A) is a finitely generated A-module. Let
Hi,...,H, c A bea ﬁmte system of generators of A" as an A-module. It holds
that A" — A[Hl, oo  Hyl = Clx, v1/9(X*) and p : X* — X, (x,y) — x is the
normalization map.

@ Springer



2910 F. Acquistapace et al.

Fixx € X andletR := Ay, .Denote 8 := p*(A\m,)and T := Zv\(ny1 U---Un,y,)
where p~'(x) = {y1,..., y,} and n,, is the maximal ideal of A" associated with Vi
fori = 1,...,r. The integral closure of R in Q(A)n, is by [4, Prop. 5.7] R =
$~14" and H 1 ..., Hy generates R’ as an R-module. The natural homomorphism
§~1A" — T-1A" is an isomorphism of R- modules because the saturation of 8 i in ZV
is J. The maximal ideals of the semi-local ring R =7 1"4" aren; = ny, T A
fori =1,...,r. Letpy, ..., p, be the minimal prime ideals of the completlon R.
By [2, VIL3. 1] it holds + = r and (after reordering the indices) R = (R/p,) for
i=1,. T (here is ‘hldden the use of Zar1sk1 Mam Theorem!). As R’ \ n; is the
1mageofA \ ny, inR =7 '"A"and T C A \ny,wehaveR %A‘U‘V‘ for
i=1,...,r. Thus, by [11, 1.5.20]

Vi

By (3.2) A = Oxuy, and by [11,6.1.18] pu(Oxu)x = [T/, Oxuy,. Thus, by [23,
24.C, p. 174]

m —_—
; 1_[ Xi,y = = 05 (Oxn)x.

The completion of the ring o, (O xr), is considered with respect to its Jacobson radical
ideal. As p4(Oxn), is afinitely generated O x ,-module, we deduce by [23, 23.K, Thm.
55, p. 170]

P+(Oxn)x = Ox x 0y P+ (Oxn)y.

By (3.2) R = O/X\x AsR'isa finitely generated R-module, [23, 23.K, Thm. 55, p.
170] implies

R 2R QrRE(HIR+ -+ HyR) Qg R= H Oy + -+ HyOx .

As Hy, ..., H, € A" C O(X"), it holds that H{Ox , + --- 4+ HyOx , is a Ox .-
submodule of p,(Oxxr),. In addition,

Ox.x ®0y, Px(Oxu)x = psx(Oxu)x
=<V — —
=R = HIOX,x + -+ HmOX,x
= 0xx ®oy, (H10xx + -+ + HynOx x).

As the homomorphism Oy, <> Oy x is faithfully flat, py (Oxn)y = HyOx x +- -+
H,,Ox x. As this happens for each x € X, we deduce by [17, VIILA.Thm. 15] that
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the polynomials Hy, ..., H, € A" generate O(X*) as a O(X)-module. As each H;
is integral over O(X), we conclude O(X)v = O(X*"). By Theorems 1.2 and 2.1,
the tuple (X*, Oxu, p) is isomorphic to the (analytic) normalization ((X", Oxv), )
of (X, Ox). As O(X*") is a finitely generated O(X)-module, the same happens with
O(XYV), as required. O

3.5 Integral closure different from normalization ring

We construct next an irreducible Stein space (X, Oy) of dimension 2 such that the
ring O(X") does not coincide with the integral closure O(X )v of O(X) in the field
M(X).
Example 3.10 Let F € O(C) be a holomorphic function on C whose zero set is
N* := {2,3,...} and such that multy (F) = k for each k € N*. Let H € O(C)
be a holomorphic function on C whose zero set is N* and such that mult; (H) = 1 for
each k € N*,

Consider the open subset 2 := {Re(y —x + %) > 0} ¢ C3, which a Stein manifold
endowed with the coherent sheaf Og := Ocs|q. The pair (X = {F(x) — zF(y) =
0} N, Oqlx) is a Stein space. We claim: X is irreducible and mv # O(X").

Proof As multy(F) = k for each k € N*, we have {F = 0} C {F' = 0}. Conse-
quently,

Sing(X) ={F(x) =0, F(y) =0}NQ={(k,j,2): k,j eN", k< j, ze C}.

Denote ® := {Re(y — x + %) > 0} c C2. Observe that Reg(X) := X \ Sing(X)
is analytically diffeomorphic to ® \ (C x N*) via the biholomorphic map

@ :Reg(X) > O\ (Cx N, (x,y,2) = (x,),
whose inverse map is

. F)
®~': @\ (C x N*) > Reg(X), (x, Ve —— ).
\(Cx N = Reg(X), () > (w3 )

As ®\ (Cx N*)isconnected, X isirreducible. Ifa := (k, j, z9) € X, thenthe germ X,
is analytically equivalent to the germ at the origin of equation {x* — (z + zo)y/ = 0}.
We claim: ifa := (k, k, 0), then X, = {x* — zyk = 0} is an irreducible analytic germ.

If x* — zyk = Ax,y,2)u(x,y,z), where A, u € (‘)ngo, we may assume A =
x4+ Apqp and u o= x* + pgyq, where r,s > 0,7 +5 = k, A,pp € m" ! and
ws+1 € m*+1 Thus,

k k _ _k r K k _ r
XU =zyt =X X sl F XAl F Al sl M 2V =X gt
+xs)¥r+l + A1 s t1-

k k+2

As —zyF € m*! and A, 11 € mF2, we deduce r = 0 or s = 0, which means
that either A or u is a unit. Consequently X/, is irreducible.
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Let us prove: G(x, y) := Zg‘;
H(x)

Consequently, 74 defines and element of O(X").
Fix a := (k, j, z0) € Sing(X). We have k < j and

€ M(X) is a weakly holomorphic function on X.

H(x) _ (x —k)&1(x) and F(x) _ (x — k)k&(x)
Hy) - )al) F(y) =Dl

where §; (x), ¢; () are units in Ogs ,. Thus, in X, it holds that

HO' 60 6w _ Fo _
Hy)Y & @f &0) — FO)

As k < j,thatis, j —k > 0, we have

H (x)k e 1008 o)
. —zHM)/ . . as
How ~ MO Loy B €O
H(x)

so G(x,y) = is locally bounded in a neighborhood of a. We conclude that

H(y)
G (x, y) is a weakly holomorphic function on X. We claim: G ¢ mv.

Suppose by contradiction G € O(X)v. There exists k > 1 and By, ..., Bx_1 €
O(2) such that G¥ + Zf;é B; G' isidentically zero on X. Fora := (k+1, k+1, 0) the
germ Gﬁ + Zf;ol B; 4 Gfl is identically zero on X,. Write H (x) = (x — (k+1))0; (x)
where 0 (x) is a unit in O¢s ,. The analytic germ

k—1

Bai=(x—(k+ 1)+ Bia- (x = (k+1)01(x) ™ (y — (k+ 1) o)
i=0

is identically zero on X,. Write F(x) = (x — (k + 1)¥*16, (x) where 6 (x) is a unit
in O¢s ,. The ideal of analytic germs vanishing at X, is generated by

0y

pai= (= (ko DM — (= e ) (225

0 p, divides B, in O¢s ,. But this is impossible because the order k of 8, at a is
smaller than the order k + 1 of p, at a. Consequently G ¢ O(X )V, as required. O

4 Real underlying structure of a complex analytic space

In this section, we develop the main tools we need to prove Theorem 1.6. Its proof
requires some preliminary work concerning the local properties of the real underlying
structure of a complex analytic space that have interest by their own. To ease the
presentation of some proofs, we use both symbols = and o to denote the complex
conjugation in C". Recall that an ideal a of a commutative ring A is called real if
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whenever a sum of squares le: 1 ai2 of elements of A belongs to a, each ¢; € a. In

particular, real ideals are radical ideals. The real radical of the ideal a C A

P
Ja = aeA:azm—i—Za?ea, ai€ A, mp=>1
Jj=1

is the smallest real ideal that contains a. Of course, an ideal a C A is real if and
only if it coincides with its real radical. A ring A is real if the zero ideal is a real
ideal. In particular, real rings are reduced rings. The real reduction of a ring A is the
quotient A" := A//(0) and it is the greatest real quotient of A. If (X, Ox) is a real
analytic space and (X, O%) is the reduction of (X, Ox), then O;(,x = (Ox )" for
each x € X. Contrary to what happens in the complex case, the reduction of a real
analytic space need not be coherent, evenif (X, Oy) is a C-analytic space. Consider for
instance Whitney’s umbrella X := {z> — x?y = 0} C R” endowed with its canonical
C-analytic structure Ox := Opn|x.

4.1 Local algebraic properties of the real underlying structure

We analyze first the algebraic properties, like the height and the primary decomposi-
tion, for certain type of distinguished ideals of Op2» , that are constructed from ideals
of O¢» . Given an ideal a of O¢» y, the set @ := {(Fy : Fy, € a}is an ideal ofa(cn,x.
Consider the ideal a® := ((a U @) (Og2n  ®r €)) N Ogan , of Ogan . We will prove
that the operator -® transforms:

e aprime ideal p of O¢r , of height r into a real prime ideal p® of Opon , of height

2r (see Theorem 4.9),
e a radical ideal a of Ocn, into an ideal a® of Ogan , such that the primary

decomposition of its real radical ~/aX can be expressed in terms of the primary
decomposition of a via the operator -® (see Corollary 4.10).

4.2 Tensor products

The proofs of the previous results require some preliminary algebraic work that involve
tensor products of C-algebras. To make clearer the exposition, we use the notation
Op2  ®r C to refer to Ocan , (as complexification of Opa. ) in order to not make
confusion with the initial ring Ocn . The smallest C-subalgebra of Og2n , ®gr C that

contains Oc» x and Ocn y is

p
OC",xOC”,x = {Z Fi,xGi,x : Fi,)m Gi,x € O(C",)Ca p = 1}

i=1

endowed with the na_tural (C-algebEa structure. Given two id_eals a, b of_ Ocn x, consider
theideals axb := aOcr x +Ocr b of Ocr xOcn  and (axb)® := (ax b)(Ogan RrC)
of Op2n , ®r C. Fix two prime ideals p, q of Ocn .
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Lemma4.1 We have (p * 9)° N Ocrx = p, (p x§)° N @cn,x =qand (pxq°N
(OC”,xOC”,x) =p=x* a

Before proving Lemma 4.1, we need the following preparatory result from Linear
Algebra.

Lemma4.2 Let « be a field and let F1, ..., F. : X — «k be k-linearly independent
functionsonaset X. Ifwedenote F := (Fy, ..., F,), there exist points p1, ..., pr € X
such that the vectors F(p1), ..., F(p;) are k-linearly independent.

Proof For r = 1, the result is trivially true. Suppose the result true for r — 1 and
let us see that it is also true for r. Denote G := (Fy,..., F,_1) and choose by
induction points pi,..., pr—1 € X such that the vectors G(p1), ..., G(p,—1) are
k-linearly independent. Suppose by contradiction that for each z € X, the vectors
F(p1), ..., F(pr—1), F(z) are k-linearly dependent. Then, for each z € X there exist
scalars A1(z), ..., Ar—1(z) € k such that

F@)=Mm@F(p)+-+A1@F(pr-1)
= G(2) =M @)G(pD) + -+ 241D G (pr-1)-

As the (constant) vectors G(p1), ..., G(pr—1) € k"1 are k-linearly independent,

each A;(z) is a «-linear combination of the functions Fi, ..., F._1. To prove this
easily use for instance Cramer’s solution for the consistent « -linear system

Fi(2) Fi(p) - Fi(pr—1) A1(2)

Fa@) \Fion) - Fpa(pre)) \loi(@)

Consequently, A ; := Z;;} W jk Fy for some jx € k. We conclude

r—1 /r—1
Fo=>Y" (Z Mijk> Fr(pj).

j=1 \k=1
which is a contradiction because F1, ..., F, are k-linearly independent. Thus, there
exists p, € X such that the vectors F(py), ..., F(p,) are k-linearly independent, as
required. O

Proof of Lemma 4.1 The proof is conducted in two steps:
4.B.7. We prove first: (p * q)° N Ocn x = p. The equality (p * q)¢ N 6@1,)( =qis
proved analogously.

Let Fy € (p*q)° N Ocn , and write F, = Zle(Fi,xGi,x + mBi,x) where
Fix€p, Aix €qand G; x, Bi x € Oga , ®r C. Define

Gl vm(zw) = Gi (257, 270, B (5 (z.w) = Bi  (ZHY, ) € Ocm (o 3
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It holds G (2. 2) = Gix and B] (2. 2) = Bix.
Let © x () C C? be an open connected neighborhood of (x,X) on which
the germs above admit holomorphic representatives F;, A;, G}, B]. Define C; :=

Ajoo € HO(O'(Q), Ocn) and observe A; =C;oo. The holomorphic function
r
Pz w) = F@) = ) (F()G](z w) + Ci(w)Bj(z, w)) € H(Q x 7(Q), Ocx)
i=1
satisfies
-
I'(z,2) = F(2) — Z(Fi (Z)G§ (z,2) + C,-(Z)Bl-’(z, 7))
i=1

= F(z) = Y (Fi()G; + Ai(2))B; = 0.

i=1

By [10, 1.1.5.Prop. 1] I is identically zero on 2 x o(£2). Denote m, the maximal
ideal of O¢» , associated with x. As A; € g C my, we have C; (x) = A;(x) =0, so

0=T@% =F@&) - Y (Fi)G|(zX) + B/(z.H)Ci (X))

i=1

=FQR) - Y FQRG]Ex).

i=1

r

Consequently, F, =Y i, Fi,xG;’X(z, X) €pand (p*q)°NOcn, =p.
4.B.8. Next we prove: (p * )° N (Ocn xOcn x) = p *1.
Let Hy € (p x9)° N (Ocr xOcn ») and write as we have done in 4.B.7

r N
Hy = (Aix(2)Bi x5 (2. 2) + Cix(@D D (x0)(2. ) = Y Fj «(2)Gx(2),
i=1 =1

! 4.1
where A; y € p,Cixo0 €q, Bi x5, Di,(x3 € OCZn’(x’f), Fiy,Gjxoo € Ocny.
LetQxo(Q) C C¥ bean open connected neighborhood of (x, X) on which the germs
above admit holomorphic representatives A;, B;, C;, D;, Fj, G ;. The holomorphic
function

L(z,w) := ) Ai(2)Bi(z,w) + Ci(w)Di(z,w)) = Y | F;j(2)G;(w),  (42)
i=1 j=l

satisfies I'(z, z) = 0, so by [10, 1.1.5.Prop. 1] I is identically zero.
Consider the C-linear subspace H/q of the C-linear space Oc» /q spanned by
{Gjzoo: j=1,...,s}. Wemay assume that {Gjz o0 : j=1,..., £} constitute
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a basis of H. Thus, G x o o belongs to the C-linear space H+q fork =£+1,...,s.
Write
¢
Gy = ZM,/ij,x + Gl
j=1
where uj; € Cand G} ;o0 € qfork =£+41,...,s. We may assume G} - admits

a holomorphic representative G on €2. Thus,

s 14 K 4
Y Fi(2)Giw) =Y Fi(2)Giw+ Y F(2) | Y 1jxGjw) + Gi(w)
j=1 j=1 k=0+1 j=1
14 s s
=Z<F,~(z)+ > u,;ka(z)> Giw)+ Y Fi(2)Gpw).
j=1 k=t+1 k=t+1

If we substitute Fj by Fj(z) + > t_y mjkFi(z) for j = 1,..., £ and G; by G},
fork =¢41,...,s, wemay assume Gy oo € qfork =€+ 1,...,s. We claim:
Fixepfori=1,..., L.

After shrinking €2, we assume that Z(q) admits a representative Y that is an irre-
ducible complex analytic subset of 2. Let U be an open neighborhood in Y of a regular
point that is analytically diffeomorphic to an open subset of C¢. As Y is irreducible, the
restrictions to U of G o0, ..., Gy o o are, by the Identity Principle, C-linear inde-
pendent. Denote G oo := (Gyoo0,...,Ggoo). By Lemma 4.2 there exist points
P1, ..., pe € U such that the vectors G(py), ..., G(pr) are C-linearly independent.
AsppeUCY,Cizoo eqandGjzso0 € qforj =L+ 1,...,s, we deduce
after substituting p; in (4.2)

r 4
0=T(z.71) =Y _ Ai(z)Bi(z. i) — Y _ Fj(2)G(Pi).

i=1 j=1

Consequently,

14 r
Hiy =) Fj«(2)G;(Pi) =)  Aix(2)Bi(z,Pi) €p
j=1

i=1

fori =1, ..., ¢. Consider the consistent C-linear system
Hl,x Gl(ﬁ) Gl(m) Fl,x
Hy x Ge(p1) - Ge(po)) \Fex
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As the vectors G(p1), ..., G(pe) are C-linearly independent, F; , € p for j =
1, ..., £. We conclude

K 4 K
D Fix(2)Gj (@) =) Fi(2)Gjx(@+ Y Fix(2)Gix(Z) € pOcn

j=1 j=1 k=t+1
+0cr xq =p x4,
as required. O
Remark 4.3 Consequently, Ocn_/p, Ocn. /g, and (Ocn xOcn 1)/ (p * §) can be

regarded as C-subalgebras of (Og2: , ®r C)/(p * q)°. The smallest C-subalgebra
of (Ogan , ®r C)/(p * )¢ that contains Ocn . /p and @cn‘x/ﬁ is

(O(C”,x/p)(a@’,x/a) = Z[Fi,x][ai,x] : Fi,Xa Gi,x € OC”,X}

i=1

= (O(Cn,xa(cn,x)/(p *a)

The following result allows us to represent the C-algebra (O(Cn,xﬁ(cn,x) /(P *xq) as
the tensor product (Ocn »/p) ®c (Ocn x/4). The latter description will ease to decide
if the C-algebra (Ocn Ocr )/ (p * @) is an integral domain, a normal domain, etc.

Lemma 4.4 The map

¢ 1 (Ocn 2 /p) ®c (Ocn /@) = (Ocr xOcr )/ P W), Y [Fix] ®[Gix]

i=1

= Y [Fi[Gisl
i=1

is an isomorphism.

Proof By [5, Ch.II1.§4.4] Oc» x/p ®c Ecn,x/ﬁ is (isomorphic to) the smallest C-
subalgebra of (O , ®r C)/(p*q)¢ that contains Ocn x /p and Ocn  /q if and only if
every finite family { F1 x, . .., Fr x} C Ocn x/p of C-linearly independent holomorphic
germs is also B(Cn, +/9-linearly independent.

Let {Fix+p,..., Frx +p} C Ocnx/p C (Op2 , ®r C)/(p * )¢ be C-linearly

independent. We want to show: The set {Fi x, ..., Frx}is 6@1, +/9-linearly indepen-
dent.
The C-linear vector subspace H C Oc»  generated by {F] y, ..., F, x} meets p

only in the origin. Let G x, ..., G, x € 6@:,,; be such that Zle Fi xGix € (pxq)°.
By Lemma 4.1

,
D FixGic e (pxD N (OcnOcn ) =p*7q.

i=1
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LetAjy €ep,Bjx €q,and Cj », Dj , € Ocn  be such that

r N

> Fi.Gii=) (Aj<Cjy+Bj.Dj.).

i=1 j=1
Let G: - ] - C’ _ € Ocn 5 be holomorphic germs such that G; , = =G ;(2), Bj =
B}j(z), and Cj,x = ij(z). Let @ C C”" be an open ne1ghborh00d of x such
that Fj x, Aj x, Dj x have representatives in H%(Q, Ocn) and G; 5, C; - }f have
representatives in H O(a (), Ocn). Shrinking €2, we may assume in addition that there
exists an irreducible complex analytic subset ¥ C €2 that is a representative of Z(q).
Consider the holomorphic function

[(z,w) =Y Fi(2)Gjw) — Y (A;(z)C)(w) + B}(w)D;(z))

i=1 j=I

that satisfies I'(z,z) = 0 for each z € Q. By [10, 1.1.5.Prop. 1] T is identically
zero. We claim: G; x = G/ —o00 € qforeachi = 1,...,r. As qis a prime ideal,
Hilbert’s Nullstellensatz guarantees d(Z(q)) = q. Thus, itis enough toprove: G;(p) =
Gi.oo(p) =0foreachp € Y andeachi =1,...,r

Pick a point p € Y. As B}j oo =Bj,€q,

0=T(z,p) =Y F(2G(P) -y Aj=)C;P).

i=1 j=1

We deduce
Y Fi(2)Gi(p) =Y Aj(z)C;(p) e HNp = {0}.
i=1 j=1

As the family {F] , ..., Fr}is C-linearly independent, G;(ﬁ) =0fori=1,...,r,
as required. O

As consequences of Lemma 4.4 we have the following results.

Corollary 4.5 Let p, q be prime ideal of Ocn . Then

1) (O@l’x@cn’x)/(p *q) is an integral domain. .
(i1) Ifinaddition, the quotients Ocn x /p and Ocn x /qare normalrings, (Ocr xOcr x)/
(p * q) is a normal integral domain.

Proof (i) By [6, V.§17, Cor. to Prop. 1] and Lemma 4.4, (O(Cn’xa(cn’x)/(p *() is an
integral domain.
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(i1) Let K be the field of fractions of (O¢» /p) and let E be the field of fractions of
(Ocn x/9). Denote the field of fractions of (O¢» O(Cn’x)/(p *q) with L. By [9,
11.6.2] and Lemma 4.4 K ®c E is (isomorphic to) the smallest C-subalgebra
KE of L that contains K and E. In addition, K ®c (6@1 /9 is by [9, 11.6.2]
isomorphic to the smallest C- subalgebra K (Ocn +/q) of L that contains K and
(Ocn +/9), whereas (Ocn . /p) @c E is isomorphic to the smallest C-subalgebra
(Oc¢r, «/p)E of L that contains (O¢r x/p) and E. As the homomorphisms C <
(Ocr x/p),C— K,C — (O(Cn,x/q) and C < E are flat,

(Ocr xOcn ) /(P %) = (Ocn x/P) ®c (Ocr x/§) > K ®c (Ocn 1 /7)
> KQcEZXKE < L

(Ocr xOcn ) /(P %) = (Ocn x/P) ®c (Ocr x/§) = (Ocn o /p) ®c E
> KQcEZXKE — L.

As L is the field of fractions of (Oc» x O(cn 1)/ (p*q), itis also the field of fractions
of the integral domains (O¢», «/ME, K(O(Cn «/9) and KE. By [5, 11.§7.7, Cor.
to Prop. 14, p. 306]

(Ocr,+/p) ®c (Ocr,+ /@) = (Ocr,+/p) ®c E) N (K @c (Ocr x/@). (4.3)
By [15,6.14.2], (Oc x /p) ®c E and K Q¢ (6@1,)6/&) are normal rings. By [19,

2.1.15] and Eq. (4.3), the ring (O¢» »/p) ®c (@Cnﬁx/ﬁ) is normal, as required.
O

4.2.1 Analysis of a special case

Let (X, Ox) be a reduced complex analytic space. Consider the subsheaf Ox Oy of
the sheaf of rings O% ®r C given by

OX,xGX,x = {Fl,xal,x +-- 4+ Frar,x : Fi,xy Gi,x € OX,X}-

It holds: ox,xﬁx,x is the smallest C-subalgebra of O% + ®r C that contains both

Ox.x and 6“.
We rewrite Corollary 4.5 as follows.

Corollary 4.6 Let x € X be such that the ring Ox  is an integral domain. Then

@) (‘_)XJGX’,C is an integral domain.
(i1) Ifin addition Ox y is a normal ring, Ox »Ox x is a normal integral domain.

Corollary 4.7 The map
r r
(2 OX,x Qc OX,x - OX,on,Xs Z Fi,x ® Gi,x = Z Fi,xGi,x
i=1 i=1
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is an isomorphism if and only if the germ X is irreducible. Consequently, if U denotes
the open set of points x € X atwhichthe germ X is irreducible, the restriction sheaves
(Ox0x)|y and (Ox ®c Ox)|y are isomorphic.

Proof If X, is irreducible, the result follows from Lemma 4.4. Assume next that X, is
reducible. By [5, Ch.II1.§4.4] it is enough to find a non-identically zero holomorphic
germ Fy € Oy  thatis [6) x x-linearly dependent. Let X , be anirreducible component
of X, and let F, € Ox , be an equation of X .. Let G, be an equation of the union
of the remaining irreducible components of X . Observe that F.G, = 0, so F, is
6x,x—1inearly dependent. However, F} is not identically zero (we use here that X, is
reducible), as required. O

4.3 Prime ideals

The clue to prove Theorem 4.9, as well as some results concerning the local approach
to the underlying structure of the normalization devised in Sect. 5, is the following
lemma.

Lemma 4.8 Let p, q be prime ideals of Ocn x. Let B, Q be prime ideals of Ocm y such
that Ocm /B is the normalization of Ocn /9 and Ocm , /Q is the normalization of
Ocn x/9. Then

(i) p*qisaprime ideal_of((‘)@z,xacn,x). .
(i) (Ocm,yOcm y) /(B * Q) is the normalization of (Ocn xOcn x)/(p * ).
(iii) If m), is the maximal ideal of (O(C",xacn,x)/ (p * q) associated with x and
/

w, is the maximal ideal of (O(Cm’ya(cm’y) /(B * Q) associated with y, the

local ring ((O@m,yﬁcm,y)/(ip * 5)),1; is the normalization of the local ring

((Ocr xOcn 1)/ (p % D) -
(iv) (p* )¢ is a prime ideal of Op2n  ®r C.

Proof By [6, V.§17, Cor. to Prop. 1] and Lemma 4.4 (Ocn ,xﬁcn x)/(p*q) is an integral
domain and this proves (i). To prove (iv) we have to show (Og2: , ®r C)/(p * 9)° is
an integral domain.

It is enough to check that the completion of the local ring (Og2. , @& C)/(p*q)°¢ is

an integral domain. Let m , be the maximal ideal of O¢» . Thenm, := my, x@@n,x +

Ocn ymy , is the maximal ideal of Ocn» ,Ocn , associated with x. By [25, 17.9] the
completion of (Oga , ®& C)/(p * q)¢ is (if we assume without loss of generality
x=0)

Cllx, y11/((p = 9)“Cllx, y1D

and the completion of (O(Cn,xa(cn,x)mx/(p * Q)m, 18

Cllx, y11/((p * Dm, Cllx, yID) = Clix, y11/((p * DClIx, y1D
= Cllx, y1I/((p * D*Cl[x, ¥1D.
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To show that the completion of (ocn,xﬁcn,x)mx /(P * q)m, is an integral domain, we
prove by [2, VIL.3.1]: the normalization Of(o((:",xa((:",x)mx /(P *qQ)m, is alocal ring.

Recall that Ocm /B is the normalization of Ocn x/p and Ocm /2 is the normal-
ization of O¢» /q. Let K be the field of fractions of O¢» . /p and let E be the field of
fractions of O¢n . /q. Let L be the field of fractions of (O(Cn’xa(crt’x) /(P *7q). We have
the following commutative diagram:

Ocr x/pC Ocny/P—K

(Ocr,Ocn )/ (p % D (Ocn yOcm ) /(B * Q) KE—— L

J ]

Ocn x /7° Ocm y/ Q> E

By Lemma 4.6 the ring (Ocnm, y@cm, )/ (B * ) is normal, so the integral closure

(O 1 Ocn) /(D) = (Ocn,Ocm ) /(B + ).

All the elements of Ocn /P (resp. acm,y /9Q) are integral over Ocn . /p (resp.
Ocr .« /9), so the elements of (Ocn,, /PB)U(Ocn, /D) are integral over (Ocr Ocr )/
(p xq). By [4, Cor. 5.3]

(O£ Ocr ) /(P D) = (O, Ocn )/ (P * ).

so we have proved (ii).
Letm| , be the maximal ideal of Oc» ,/p and m),  the maximal ideal of Ocn x/g.

Then m/, := m/l,x(E(C”,x/a) + (O(cn,x/p)ﬁ/lx = m,/(p * q) is the maximal ideal of
(Ocn ,xﬁcn x)/(p*1q) associated with x. Let n’l ’y be the maximal ideal of Ocn /B and
n/2,y the maximal ideal of O(Ci’y/g' Then ni = n’l’y(acm,y/ﬁ) + (Ocm,y/‘,ﬁ)ﬁ’z’y is
the maximal ideal of (Ocm ,Ocm )/ (P * Q) associated with y. We claim: n’y is the
unique prime ideal of (Ocm,y@cm,y)/(‘ﬁ % Q) lying over w.

By [4, Cor. 5.8] "/1, v is the unique prime ideal of Ocm ,/ ‘E lying over mi’ .» because
Ocm,y /P is alocal ring. Let n” be a prime ideal of (Ocn yOcm )/ (P * Q) such that
W N (Ocn,Ocn )/ (p*7q) = m/.. The prime ideal n’ N (O¢n ,/P) satisfies

M N Ocn /P N (Ocn 1 /p) =0 N (Ocn /p)
=1"N(Ocr xOcn )/ (P * D N (Ocn 1 /p)
= N (Ocny/p) =m .
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Thus, 0’ N (Ocn,y/P) = 1} . Analogously n' N (Ocm y/Q) = ) ,, 0

), =1}, (Ocn,,/Q) + Ocn ,/P)T, , C

and consequently n}, = n'’.

As (Ocm ,yOcm,y)/ (B Q) is the integral closure of (Ocn xOcn x)/(p*q) in L, the
integral closure of A := (Ocr xOcr )m, /(P*T)m, = ((Ocr xOcn x)/(p*d))m/, inits
field of fractions L is by [4, Prop. 5.12] A" = ((O@m,yﬁcm,y)/(‘ﬁ*ﬁ))m/x . The natural
homomorphism A’ - ((O(cmyy@(cm,y)/(‘lj * ﬁ))n/‘_ is an isomorphism of A-modules
because the saturation of ((ocm,yﬁcm,y)/(q:z *5))'\ w’, is ((Ocm ,y@cm,y)/(&ﬁ %))\

n/y, so we have proved (iii). Consequently, A" is a local ring, which proves (iv) after
the preparatory reductions. O

Now we are ready to prove the results announced at the beginning of the section.

Theorem 4.9 (Height of prime ideals). Let p be a prime ideal of Ocn . Then pRisa
real prime ideal of Op2n  and ht(p®) = 2ht(p).

Proof Let r := ht(p) and let (0) := pg € --- C p, =: p be a chain of prime ideals
of maximal length in O¢» x (whose ending is p). Define fori = 0, ..., 2r the prime
ideal
T = (pe xpp)¢  ifi = 2¢,
YTl (pegr % pP0)¢ ifi =20+ 1.

By Lemma 4.8 By < - -+ C Py is a chain of prime ideals in Og2n , ®r C of length
2r. Thus, p® @r C = (p¢ * pg)¢ has height > 2r.

It holds: dimc(Z(p)) = n — r and dimR(Z(pR)) = 2(n — r). In addition,
dimg (Z(®)) = 2n — ht(J(Z(P®))) and by [28, V.§1.Prop. 1 & Prop. 3]

2n — ht(J(Z(p®)) ®r C) = dimc(Z(J(Z(p™)) @k C))
= dimp(2(J(Z(p®)))) = dimg (2(p®)) = 2n — 2r,

s0 ht(J(Z(pR)) ®@r C) = 2r. As pR @r C c J(Z(p®)) ®r C, we conclude ht(p® @r
C) =2r.

As J(Z(pR)) is areal radical ideal, J(Z(p®))@r Cis aradical ideal. Let J(Z(p®)) ®r
C = q1 N---Ngy be the primary decomposition of J(Z(p)) ®r C where each qjisa
primeideal. Assume ht(q;) = ht(J(Z(p®)QrC), s0 pR*RrC c J(Z(H®))QRC C q;.
As p® ®g C and q; are prime ideals of the same height, p® ®r C = q;. Thus,
J(Z(p®)) ®r C = p® @g C and, since the homomorphism R < C is faithfully flat,
J(Z(pR)) = p®, so pk is a real prime ideal of height 2r = 2n — dimg(Z(pR)), as
required. O

Corollary 4.10 (Primary decomposition of radical ideals). Let a be a radical ideal of
Ocn.x and let a = py N --- N p, be the primary decomposition of a. Then ~/a® =
p]$ N---N pIrR is the primary decomposition of ~/aX.
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Proof As2(a) = |Ji_; Z(p;), we deduce Z(a®) = JI_, Z(p}). By the real Nullstel-
lensatz and Theorem 4.9

r r
Va® = 3(2@) = (3@zeH) = ().
i=1 i=1
In addition, v/a® = pft N .. N p¥ is the primary decomposition of v/a¥. o

5 Real underlying structure of the normalization

In this section, we prove Theorem 1.6. Before that we devise some local properties of
the real underlying structure of the normalization of a complex analytic space.

5.1 Local properties of the real underlying structure of the normalization

Fix a reduced complex analytic space (X, Ox) and let (X", Oxv, i) be its normal-
ization. We analyze in this section the real underlying structure of the normalization
(XY, Oxv, ) of a Stein space (X, Ox). We will use freely the facts collected in the
following lemma.

Lemma 5.1 Let A be an excellent R-algebra and let A" be the integral closure of A
in its total ring of fraction Q(A). Then A’ ®r C is the integral closure of A @gr C in
its total ring of fractions Q(A) ®g C. In addition, if A ®r C is a normal ring, then A
is a normal ring too.

Proof The first part of the statement follows from [19, Prop. 19.1.1 and Thm. 19.4.3]
or [15, Prop. 6.14.2]. For the second part, observe first that if A is a C-algebra, then

A®rC = Aand Q(A) ®r C = Q(A). Otherwise, v/—1 ¢ A, /—1 ¢ Q(A),
and the polynomial t2 + 1 is irreducible both in A[t] and in Q(A)[t]. It holds
A®gr C = A[t]/(t? + 1) and Q(A) ®r C = Q(A)[t]/(t? + 1). Using these facts,
a straightforward exercise shows the remaining part. O

Our main result of local nature in this section is the following.

Theorem 5.2 Letx € X andwrite v =" (x) := {y1, ..., y;}. Letpi/a, ..., ps/abe the
minimal prime ideals of Ox x = Oc» x/a. Thenr = s and
(i) The minimal prime ideals of (O%x)” = Opan /VaR are pft/Vak, ..
pr/Vak.
(i1) OI)R}V’ v is after reordering the indices the normalization of Ogan /p%R fori =
1,...,r.
(iii) The normalization of the reduced ring (O§x)” is O§"7y1 X oo X (9&&_

We approach first the case in which Oy , is a normal integral domain.
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Lemma5.3 Let x € X be such that the ring Ox x is a normal integral domain. Then

—

the ring O% . is a normal integral domain and O% LOrRC= (Ox,xﬁx,x)m’x where

W, is the maximal ideal of Ox.xOx.x associated with x.

Proof Before proving O% . Is a normal ring we need some initial preparation. Write

~

Ox.x = Ocr x/p where p is a prime ideal of Oc» . It holds by Lemma 4.8 that O%x x~
Oran /p® is an integral domain. Let m; , be the maximal ideal of Oc, , associated
with x. Then m, := ml,xa(C",x + Ocr xMp x is the maximal ideal of O(Cn,x@(cn,x
associated with x. Denote A := (O(Cn’xﬁ(cn’x)mx and B = (oX,xﬁx,gm/X, where
m, = my /(p * p) is the maximal ideal of Ox, +Ox x associated with x. Let us prove:
A is an excellent ring. Once this is proved we deduce by [2, VII.2.2(b)] that also
B = A/((p *p)A) is an excellent ring.

We prove first that A is a local regular ring. By [23, 24.D] it is enough to show that
its completion is regular. The completion of A is A= Cl[z, z]] = C[[x, y]1], where
z = (21,...,2n), Zj := xi + N=1yi, x = (%1, ....xp) and v := (Y1, ..., Vn)
Consequently, both A and A are local regular rings.

In addition, the height of the maximal ideal m4 of A is 2n by Theorem 4.9. Observe
that A/m4 = C and C < A. We have in A derivations and elements

2 ifi=1,...,n, %  ifi=1,...,n,
& =
2n

D; = { ™
! b ifi=n+1,...,

0Yi—n

vien fi=n+1,...,2n,

such that D;§; = §;; fori, j = 1,...,2n. By [23, 40.F, Thm. 102, p. 291], A is an
excellent local ring.
We are ready to prove: O]%x is a normal ring. By [2, VIL.2.2(d)] it is enough to

show: the completion c of the excellent local ring C := O]?x ®r C = (Og , ®r

C)/(»® ®r C) is normal.
Assume without loss of generality x = 0. The completion of Og2: , ®r C is
Cl[x, v1]- By [25, 17.9], we have

C = ClIx. v1I/(® ®& O)Cl[x, v]] = Cl[x. v/ UPCl[x. vIl.  (5.1)
B = A/((p xPA) = ClIx, v1l/(p UP)CIIx, v1I. (5.2)

By Lemma 4.8, B is a normal ring. As B is in addition excellent, C = B is normal by
[2, VIL.2.2(d)], as required. O

Remark 5.4 A similar proof shows that if Ox , is a regular ring, then O]%X is aregular
ring.

We study now what happens when Ox , is an integral domain.

Lemma5.5 Let x € X be such that Oy  is an integral domain and write 7)) =

{v}. Then O%{}’x is an integral domain and O%V)y is the integral closure of O]?X in its
field of fractions.
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Proof The proof is conducted in several steps:

Step 1 The ring Oxv y is the integral closure of O , in its field of fractions K. The C-
monomorphism 7* : Ox , — Oxv .y induces an R-monomorphism OR Xox < O%v’ y
(see [16, I1.4.1]) and this one a C-monomorphism

B:=0%,®C— C:=0% , ®rC.

The fields of fractions of B are contained in the one of C. As C is by Lemma 5.3 a
normal integral domain, the integral closure B" of B inits field of fractions is contained

in C. We claim: B" = C. To prove this, we assume proved for a while that C C B’
We have the chain of inclusions B <> C <> B'. As B is an excellent local ring,

the homomorphism B — Bis faithfully flat. If we tensor B < C< B’ by —®p B,
injectivity is preserved, that is,

EU®B§‘—>C®BEC—>EV®B§.

By [23, 23.K, Thm. 55, p. 170] B =B ®B B (because B’ is a finite B-module).
Thus,

o~

-V

12

B'®3B=(B" ®3B)®3B=B ®3B

Consequently,
=V v = = = N
B =B ®BBC—>C®BB<—>B ®pB=B,

so. B '®3B = C®sB. Asthe homomorphism B — Bis faithfully flat, we conclude
B’ =cC.

Step 2 We are reduced to prove C C B As the homomorphlsm B — Bis regular
we deduce by [2, VIL.2.6] that B = B Rp Bx=B" , so we will show: C C B As

C — C,itis enough to prove: cx B .

Define A = (ox,XEX,X)m; C B where w, is the maximal ideal of Ox,xﬁx,x
associated with x. We will prove in two steps: CxA" =A = BU.

Step 3 Let us prove: A is a local integral domain with field of fractions L and the
integral closure A= (Oxv,yﬁxv,y)m; of Ain L is a local integral domain.

By Corollary 4.6 ox,xﬁx,x is an integral domain, whereas Oxv,yﬁxv,y is anormal
inte_gral domain. Let K be the total ring of fractions of Ox , and K the ﬁeld_of fractions
of Ox x. The ring Oxv  is the integral closure of Ox . in K, whereas Oxv y is the
integral closure of BX,X in K. Let L be the field of fractions of O XU,XBXU,}, andlet KK
be the smallest C-subalgebra K K of L that contains K and K. As K K is contained
in the field of fractions of ox,xﬁx,x and oxu,xﬁxv,y c KK C L, we deduce L is
the field of fractions of Ox,xﬁx,x. Thus,

OX,XEX,X(H OX",an",y( KKC L= qf(OX,XGX,x)~
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J— ————V J—
As the ring Oxv yOxv , is normal, the integral closure Ox (Ox,, of Ox Ox , is
contained in Oxv ,Oxv y. As all the elements of Oxv , are integral over Oy y, the
J— J— ————V J—

elements of Oxv , UOxv , are integral over Oy yOx x,50 Ox xOx x = Oxv ,0xv y.

We know thatm/, = m, Ox ,+0Ox M, where m, is the maximal ideal of Ox  asso-
ciated with x. Let n’y be the maximal ideal of Oxv ,Oxv y associated with y. It holds
n, = nyOxv y + Oxv Ay, where ny is the maximal ideal of O xv  associated with y.
We Clairp: n/y is the unique Prim? ideal q of(‘)xv,yaxv,y suchthat qNOx Oy, = w.

Consider the commutative diagram

Ox x— Oxvy

T

OxxO0x x &= Oxv ,Ox» y“—= KK

]

(G MY S, <

By [4, 5.8] ny is the unique prime ideal of Oxv y lying over m,, because Oxv y is a
local ring. Let q be a prime ideal of Oxv’yﬁxv,y such that g N Ox ,Ox , = w.. We
have

qn OX,x =q ﬂOxgxﬁxyx ﬂOX,x =m; ﬂOx,x =m,.

The prime ideal g N Oxv , satisfies (q N Oxv,) N Oxx = qN Oxx = my, so
qN Oxv,y = ny. Analogously N Oxv y =Ty, son) =nyOxv y + Oxv yit, C qand
we conclude n}, = q.

The integral closure of A := (Ox,«Ox ), in L is by [4, 5.12] -
(oxvﬁxv,y)m;. We claim: A" is a local integral domain.

Let n’ be a maximal ideal of A" . By [4,58]" NA=m/Ason = n/yAv because
w, is the unique prime ideal of O xv. y6xv’ y lying over m,. Thus, A" isalocal integral

y
domain.

Step 4. We show next: C A = A = ?v
As A’ isalocal ring, A isby [2, VIL3. 1] alocal ring and Alisan 1ntegral domain. As

A— Aisa regular homomorphism and A" is afinite A-module, A ~A'QuA = A
(use [2, VII.2.6] and [23, 23.K, Thm. 55, p. 170]). Using [25, 17.9] one shows that Alis
the completion of B (proceed as in the last part of the proof of Lemma 5.3). By Lemma

5.3, C is a normal local domain and C = A" . Consequently, CzA = A = B as
required. =

We are ready to prove Theorem 5.2.
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Proof of Theorem 5.2 We have proved in Lemma 4.10 that va® = _, p]lR is the
primary decomposition of the radical ideal v aR. As

(OF )7 = 0% JY0) = (O, /a®)/(VaR /a®)) = Oga /v aE,

we deduce that pit//a®, ..., p®//aR are the minimal prime ideals of Oy, which
proves (i). By [11, 1.5.20]

—— =
(0% ) = Ogan VB =] Oga /o .
i=1
5V
Thus, we have only to check: r = s and, after reordering the indices, Opan /p]iR =
R
Oxv y,-
By [11, 1.5.20] we know

N
Ox.x =0ci/a =[[0ci./pi -
i=1
By [11, 4.4.8, 6.1.18, 6.3.7], we deduce r = s, Ox., = Oxvy X --- x Oxvy,
and after reordering the indices Ocn /piv = Oxv,y,. By Lemma 5.5, we conclude

S ——
Ogan x /p]l.R = O%u’ o which proves (ii) and consequently (iii). O

5.2 Global properties of the real underlying structure of the normalization

We are ready to afford the proof of Theorem 1.6.

Proof of Theorem 1.6 We prove the following implications:

(i) <= (i) follows from [16, II1.2.15] or [28, Prop.V.§1.8].

(i) = (iii) As (X", Oxv) is a normal complex analytic space, its irreducible com-
ponents are its connected components and they are pure dimensional, so the same
happens with X"®. By Lemma 5.3 the ring O%U‘x is normal for each x € X",

so the germ X R is irreducible for each x € X" E. By [28, V.§1.Prop. 8] the real
analytic space (X"F, O[)Ré‘,) is coherent, so it is a reduced C-analytic space.
Fix a point x € xR, As (X, Ox) is reduced and (XR, O%‘}) is coherent, O%,x =
(O%‘},X)”. By Theorem 5.2 the normalization of O]?},x is O]?é”,yl X oo X (‘)I}R}v’yr where
77 (x) ;== {y1, ..., y,}. Consequently,

—_ 1% Vv
Oﬁ&xv EO]%)C@R(C %O]%x Qg C

= (0%, ®&C) x - x (0%, , ®rC)

=0 x---x0
X"

(5.3)

X”R»yr '
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Letn®: X'R 5 XRpea complexification of 7R, By (5.3) we deduce (JTR)_I (X) =
XV. By Lemma 2.3 we may assume that 7% : X"® — XR is proper and surjective.
By [28, VI.§2.Thm. 3] the set of points at which a reduced complex analytic space

is normal is an open set, so we may assume that X" is a normal complex analytic
space. By [11, 6.1.8]

~

R ~
T O ~ =00~ XX O~
*( XUR)X XVR»)’] XVR»}’r

~

ifx € X®and @®)7'(x) := {y1,..., y}. If x € X%, we deduce nR*(OﬁR)x -~

Vv

XR,x ’
v

Let (Z, p) be the normalization of (X¥, O}?]R). By [11,6.1.8] px(0z), = O)?k .
X

Thus, the coherent sheaves 7 %,(O );/R) and p4(Oz) coincide at the points of X R, By

~

[8, §3.Prop. 2] we may assume shrinking XRif necessary that ”R*(OXTR) = p+(072)

on X If x € X®\ Sing(X®), then p~'(x) := {z} is a singleton and

~ -V ~
OZ,Z = 0x(02)x = OJ}VR!X = O)}ﬁg’xo

On the other hand,

~ TR0y A —
0z:=p0z)x =m *(oqu)x = OX"R,yl X X OX"R,yr

i/f\/(rrR)_l(x) = {¥1,..., ). As Oz is an integral domain, we have r = 1 and

R ~ ~ ~ ..
750 =) 20—~ =0z,=0~ .Thus, the restriction
*( XV]R)X XUR,YI Z,z XR,)C

7B x B\ B (Sing(x®)) - X®\ Sing(x®)

is a holomorphic diffeomorphism. Consequently, (X"®, 7®) is isomorphic to the

normalization (Z, p) of (XR, O;R).

(iii)) = (i) Let X; be an irreducible component of X and let X l" be the connected
component of X"V that satisfies 7(X;) = X;. It holds that (X}, Oxv Ixv, 7w]x»)
is the normalization of (X;, Ox|x;). Thus, we may assume X is irreducible.
Consequently, its normalization X" is connected and both X VR and XR are
irreducible [12, §5]. By [28,1V.§1.Cor. 3] both X" Rand xR are pure dimensional.

As (X"R, R, 7X) is the normalization of (XR, O)?ﬁ{) (after shrinking X'R and

—~

X® if needed) and the sets X" ® and X® are considered initially as ‘narrow’ as

needed around X% and YR, we deduce 7 1 (X®) = XVE. Consequently, X®
is by [16, IV.3.13] coherent, as required. O
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