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Abstract
We present a full geometric characterization of the
one-dimensional (semialgebraic) images 𝑆 of either 𝑛-
dimensional closed balls 𝑛 ⊂ ℝ𝑛 or 𝑛-dimensional
spheres 𝕊𝑛 ⊂ ℝ𝑛+1 under polynomial, regular, and reg-
ulous maps for some 𝑛 ⩾ 1. In all the previous cases,
one can find a new polynomial, regular, or regulousmap
with domain either 1 ∶= [−1, 1] or 𝕊1 such that 𝑆 is
the image under such map of either1 ∶= [−1, 1] or 𝕊1.
As a by-product, we provide a full characterization of
the images of 𝕊1 ⊂ ℂ ≡ ℝ2 under Laurent polynomials
𝑓 ∈ ℂ[𝚣, 𝚣−1], taking advantage of some previous works
of Kovalev-Yang and Wilmshurst. We also alternatively
prove that all polynomial maps 𝕊𝑘 → 𝕊1 are constant if
𝑘 ⩾ 2.
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1 INTRODUCTION

Amap 𝑓 ∶= (𝑓1, … , 𝑓𝑚) ∶ ℝ
𝑛 → ℝ𝑚 is a polynomial map if each of its components 𝑓𝑖 ∈ ℝ[𝚡] ∶=

ℝ[𝚡1, … , 𝚡𝑛] is a polynomial. Let 𝑇 ⊂ ℝ𝑛 and 𝑆 ⊂ ℝ𝑚. We say that 𝑆 is a polynomial image
of 𝑇 if there exists a polynomial map 𝑓 ∶ ℝ𝑛 → ℝ𝑚 such that 𝑆 = 𝑓(𝑇). A rational map 𝑓 ∶=
(𝑓1, … , 𝑓𝑚) ∶ ℝ

𝑛 ⤏ ℝ𝑚 is a regularmap on 𝑇 ⊂ ℝ𝑛 if each component 𝑓𝑖 ∈ ℝ(𝚡1, … , 𝚡𝑛) is a ratio-
nal function, that is, each 𝑓𝑖 ∶=

g𝑖
ℎ𝑖
is a quotient of polynomials, and the zero set of ℎ𝑖 does not

meet 𝑇. A subset 𝑆 of ℝ𝑚 is a regular image of 𝑇 if 𝑆 = 𝑓(𝑇) for some rational map 𝑓 ∶ ℝ𝑛 ⤏ ℝ𝑚

that is regular on 𝑇. A rational map 𝑓 ∶= (𝑓1, … , 𝑓𝑚) ∶ ℝ
𝑛 ⤏ ℝ𝑚 is a regulous map on 𝑇 ⊂ ℝ𝑛 if
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it extends to a continuous function on 𝑇 and the complement of the set of poles of 𝑓 meets 𝑇 in
a dense subset of 𝑇. A subset 𝑆 of ℝ𝑚 is a regulous image of 𝑇 if 𝑆 = 𝑓(𝑇) for some rational map
𝑓 ∶ ℝ𝑛 ⤏ ℝ𝑚 that is regulous on 𝑇.
A semialgebraic subset 𝑆 of ℝ𝑛 is a set that admits a description as a finite boolean combination

of polynomial equalities and inequalities. By elimination of quantifiers, 𝑆 is semialgebraic if it has
a description by a first-order formula possibly with quantifiers. Such a freedom provides semialge-
braic descriptions for topological operations. For instance: interiors, closures, borders, connected
components of semialgebraic sets are again semialgebraic sets. A map 𝑓 ∶ 𝑇 → 𝑆 between two
semialgebraic sets 𝑇 ⊂ ℝ𝑛 and 𝑆 ⊂ ℝ𝑚 is semialgebraic if its graph is a semialgebraic set.
A celebrated theorem of Tarski–Seidenberg [1, Thm.1.4] states that the image of a semialge-

braic set 𝑇 ⊂ ℝ𝑛 under a semialgebraic map 𝑓 ∶ 𝑇 → ℝ𝑚 (which include the case of polynomial,
regular, and regulous maps on 𝑇) is a semialgebraic subset 𝑆 of ℝ𝑚. In an Oberwolfachweek [23],
Gamboa proposed to characterize the (semialgebraic) sets ofℝ𝑚 that are polynomial images ofℝ𝑛
for some 𝑛 ⩾ 1. During the last 25 years, we have approached this problem and obtained several
results in two directions.

∙ General properties. We have found conditions [4, 9, 16, 34] that a semialgebraic subset must
satisfy to be either a polynomial, regular, or regulous image of ℝ𝑚. The most remarkable one
states that the set of points at infinity of a polynomial image of ℝ𝑚 is connected [16]. The one-
dimensional polynomial and regular images of ℝ𝑛 were fully described in [4]. In [7, Thm.17],
we proved the equality between the family of regular images of ℝ2 and the family of regulous
images of ℝ2.

∙ Representation of semialgebraic sets as polynomial or regular images of ℝ𝑛. We have performed
constructions to represent as either polynomial or regular images of ℝ𝑛 semialgebraic sets that
can be described by linear equalities and inequalities. In [4, 8, 11–15, 17–20, 35], we have analyzed
the cases of convex polyhedra and their interiors, together with their respective complements
and we have provided a full answer [20, Table 1].

In [26], Kubjas–Parrillo–Sturmfels proposed to describe explicitly the two-dimensional images
of 3 under a polynomial image 𝑓 ∶ ℝ3 → ℝ2. We have generalized the previous problem and
proposed in [21] to determine the semialgebraic subsets of ℝ𝑚 that are images of either an 𝑛-
dimensional closed ball 𝑛 ⊂ ℝ𝑛 (of center the origin and radius 1) or an 𝑛-dimensional sphere
𝕊𝑛 ⊂ ℝ𝑛+1 (of center the origin and radius 1) mainly under polynomial maps (but also under
regular maps). We have obtained full information for the case of unions of finitely many convex
polyhedra that provide semialgebraic sets connected by analytic paths [6, 21].We have also treated
in [21] more demanding cases, but we feel far from obtaining a full answer for semialgebraic sets
of arbitrary dimension.
The class of semialgebraic maps with more tools to attack this type of problems is the Nash

category. This is the only case for which we have a full geometric characterization for the images
underNashmaps of affine spaces, closed balls and spheres [2, 3, 5]. Recall here that aNash function
on an open semialgebraic subset 𝑈 ⊂ ℝ𝑚 is an analytic function on 𝑈 that satisfies a nontrivial
polynomial equation, that is, there exists a nonzero 𝑃 ∈ ℝ[𝚡, 𝚢] such that 𝑃(𝑥, 𝑓(𝑥)) = 0 for all
𝑥 ∈ 𝑈. If 𝑆 ⊂ ℝ𝑚 is a semialgebraic set, the ring (𝑆) of Nash functions on 𝑆 is the collection of
all functions on 𝑆 that admits a Nash extension to an open semialgebraic neighborhood𝑈 of 𝑆 in
ℝ𝑚 and it is endowed with the usual sum and product (for further details see [10]).
The interest of polynomial, regular, regulous, or Nash images of affine spaces, closed balls or

spheres arises because there are several problems inReal Algebraic Geometry that for such images
can be reduced to analyze themon the correspondingmodels: affine spaces, closed balls or spheres
[8, 9, 11, 17]. Examples of such problems are:
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∙ optimization of polynomial, regular, regulous, or Nash functions on 𝑆 (see also [33]),
∙ characterization of the polynomial, regular, regulous, or Nash functions that are positive
semidefinite on 𝑆 (Hilbert’s 17th problem and Positivstellensatz),

∙ constructing Nash paths on semialgebraic sets connected by analytic paths [6].

1.1 Invariants

Consider the families of models of semialgebraic sets: 𝔄 ∶= {ℝ𝑛 ∶ 𝑛 ⩾ 1} (affine spaces), 𝔅 ∶=

{𝑛 ∶ 𝑛 ⩾ 1} (closed balls), and 𝔖 ∶= {𝕊𝑛 ∶ 𝑛 ⩾ 1} (spheres). A semialgebraic set 𝑆 ⊂ ℝ𝑚 is a
polynomial image of an affine space (resp. a closed ball or a sphere) if there exist an element
ℝ𝑛 ∈ 𝔄 (resp. 𝑛 ∈ 𝔅 or 𝕊𝑛−1 ∈ 𝔖) and a polynomial map defined on ℝ𝑛 such that 𝑓(ℝ𝑛) = 𝑆

(resp. 𝑓(𝑛) = 𝑆 or 𝑓(𝕊𝑛−1) = 𝑆). The same definitions can be proposed for regular, regulous, and
Nash maps in the obvious way.
Let 𝔈 be either𝔄,𝔅 or𝔖 and define for a set 𝑆 ⊂ ℝ𝑚 the following invariants:

p𝔈(𝑆) ∶= inf {𝑝 ⩾ 1 ∶ 𝑆 is a polynomial image of 𝐸 ∈ 𝔈 and dim(𝐸) = 𝑝},

r𝔈(𝑆) ∶= inf {𝑟 ⩾ 1 ∶ 𝑆 is a regular image of 𝐸 ∈ 𝔈 and dim(𝐸) = 𝑟},

rs𝔈(𝑆) ∶= inf {𝑟 ⩾ 1 ∶ 𝑆 is a regulous image of 𝐸 ∈ 𝔈 and dim(𝐸) = 𝑟},

n𝔈(𝑆) ∶= inf {𝑛 ⩾ 1 ∶ 𝑆 is a Nash image of 𝐸 ∈ 𝔈 and dim(𝐸) = 𝑛}.

In case a subset 𝐴 ⊂ ℕ is empty, we write inf (𝐴) ∶= +∞. If one of the previous invariant val-
ues +∞, then 𝑆 is not an image of the corresponding type of semialgebraic maps. We have the
following initial inequalities:

max{rs𝔈(𝑆), n𝔈(𝑆)} ⩽ r𝔈(𝑆) ⩽ p𝔈(𝑆)

for each 𝑆 ⊂ ℝ𝑚 and each 𝔈 ∈ {𝔄,𝔅,𝔖}. If any of the previous invariants is finite, then 𝑆 is by
Tarski–Seidenberg theorem [1, Thm.1.4] a semialgebraic set and by [1, Thm.2.8.8] the dimension
dim(𝑆) of 𝑆 is less than or equal to any of them.
The closed ball 𝑛 is the projection of the sphere 𝕊𝑛 and 𝕊𝑛 is a regular image of 𝑛 (see [21,

Cor.2.9 & Lem.A.4]). In Example 2.2, we recall an explicit regular map 𝑓 ∶ ℝ → ℝ2 such that
𝑓(1) = 𝕊1. In addition, the closed ball𝑛 (and consequently the sphere 𝕊𝑛) is a regular image of
ℝ𝑛 by [4, Lem.3.1] and [21, Cor.2.9 & Lem.2.10]. Obviously, as both𝑛 and 𝕊𝑛 are compact sets,ℝ𝑛
is neither a polynomial, regular, regulous, nor a Nash image of either 𝑛 or 𝕊𝑛. In Lemma 2.1, we
show that the image of a compact subset of ℝ𝑛 with nonempty interior under a polynomial map
cannot be a compact algebraic subset of ℝ𝑚 of dimension ⩾ 1. In particular, a sphere 𝕊𝑚 cannot
be the image under a polynomial map of any closed ball 𝑛. In addition, polynomial images of
ℝ𝑛 are either unbounded or a singleton [8, Rem.1.3(3)]. We deduce the following extra relations
between the invariants:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

r𝔄(S) ⩽ r𝔅(S) = r𝔖(S),

rs𝔄(𝑆) ⩽ rs𝔅(𝑆) = rs𝔖(𝑆),

rs𝔄(𝑆) ⩽ 2 ⟹ rs𝔄(𝑆) = r𝔄(𝑆) by [7, Thm.1.7] (see Remark 1.3(ii) below),
p𝔖(𝑆) ⩽ p𝔅(𝑆),

p𝔖(𝑆) < +∞ or p𝔅(𝑆) < +∞, and 𝑆 is not a singleton⟹ p𝔄(𝑆) = +∞,

p𝔄(𝑆) < +∞ and 𝑆 is not a singleton⟹ p𝔅(𝑆) = +∞, p𝔖(𝑆) = +∞.
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TABLE 1 Notations: C:=Compact, I:=Irreducible, O:=Otherwise.

𝑺 ℝ or [𝟎, +∞) (𝟎, +∞) [0,1) (0,1) [0,1] 𝕊𝟏 Parabola Non-rational curves
p𝔄(𝑆) 1 2 +∞ +∞ +∞ +∞ 1 +∞

r𝔄(𝑆) 1 2 1 2 1 1 1 +∞

rs𝔄(𝑆) 1 2 1 2 1 1 1 +∞

n𝔄(𝑆) 1 1 1 1 1 1 1 1 (I) or +∞ (O)
p𝔅(𝑆) +∞ +∞ +∞ +∞ 1 +∞ +∞ +∞

r𝔅(𝑆) +∞ +∞ +∞ +∞ 1 1 +∞ +∞

rs𝔅(𝑆) +∞ +∞ +∞ +∞ 1 1 +∞ +∞

n𝔅(𝑆) +∞ +∞ +∞ +∞ 1 1 +∞ 1 (C, I) or +∞ (O)
p𝔖(𝑆) +∞ +∞ +∞ +∞ 1 1 +∞ +∞

r𝔖(𝑆) +∞ +∞ +∞ +∞ 1 1 +∞ +∞

rs𝔖(𝑆) +∞ +∞ +∞ +∞ 1 1 +∞ +∞

n𝔖(𝑆) +∞ +∞ +∞ +∞ 1 1 +∞ 1 (C, I) or +∞ (O)

The invariants n𝔄(𝑆), n𝔅(𝑆) and n𝔖(𝑆) only take the values dim(𝑆) (if 𝑆 is a Nash image) or +∞
(if 𝑆 is not a Nash image) and have been computed in [4] and [2, 3] for each semialgebraic set
𝑆 ⊂ ℝ𝑚. It holds dim(𝑆) ⩽ n𝔄(𝑆) ⩽ n𝔅(𝑆) = n𝔖(𝑆) for each semialgebraic set 𝑆 ⊂ ℝ𝑚.
As we have already pointed out in [8], there are some straightforward properties that a regular

image 𝑆 ⊂ ℝ𝑚 must satisfy: it has to be pure dimensional, connected, semialgebraic, and its Zariski
closure has to be irreducible. Furthermore, 𝑆 must be by [10, (3.1) (iv)] irreducible in the sense that
its ring (𝑆) of Nash functions on 𝑆 is an integral domain.

1.2 The one dimensional case

In this work, we focus our attention on the one-dimensional case and present a full geometric
characterization of the polynomial, regular, and regulous one-dimensional images of closed balls
and spheres. In fact, we compute the exact value of the invariants p𝔈, r𝔈, and rs𝔈 for all of them,
where 𝔈 = 𝔅,𝔖. We will see in this work that in the one-dimensional case, the only possible
values for the invariants p𝔈, r𝔈, and rs𝔈 (where 𝔈 = 𝔅,𝔖) are either 1 or +∞. In Table 1, we
illustrate the situation with several examples and compare the invariants p𝔈, r𝔈, and rs𝔈 (where
𝔈 = 𝔅,𝔖) with the invariants p𝔄, r𝔄, rs𝔄, and 𝔫𝔈 (where 𝔈 = 𝔄,𝔅,𝔖), which were mainly
computed in [2–5, 7].

1.3 Notations and terminology

Before stating our main results whose proofs are developed in Section 3, after the preparatory
work of Section 2, we recall some preliminary standard notations and terminology. We write 𝕂 to
refer indistinctly to ℝ or ℂ and denote the hyperplane at infinity of the projective space 𝕂ℙ𝑛 with
𝖧𝑛∞(𝕂) ∶= {𝚡0 = 0}. The projective space 𝕂ℙ𝑛 contains 𝕂𝑛 as the set 𝕂ℙ𝑛 ⧵ 𝖧𝑛∞(𝕂) = {𝚡0 = 1}. If
𝑛 = 1, the point of infinity of the projective line 𝕂ℙ1 is [0 ∶ 1].
For each 𝑛 ⩾ 1, denote the complex conjugation with

𝜎𝑛 ∶ ℂℙ
𝑛 → ℂℙ𝑛, 𝑧 ∶= [𝑧0 ∶ 𝑧1 ∶⋯ ∶ 𝑧𝑛] ↦ 𝑧 ∶= [𝑧0 ∶ 𝑧1 ∶⋯ ∶ 𝑧𝑛].
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Clearly,ℝℙ𝑛 is the set of fixed points of𝜎𝑛. A set𝐴 ⊂ ℂℙ𝑛 is called invariant if 𝜎𝑛(𝐴) = 𝐴. It is well
known that if 𝑍 ⊂ ℂℙ𝑛 is an invariant nonsingular (complex) projective variety, then 𝑍 ∩ ℝℙ𝑛 is
a nonsingular (real) projective variety. We also say that a rational map ℎ ∶ ℂℙ𝑛 ⤏ ℂℙ𝑚 is invari-
ant if ℎ◦𝜎𝑛 = 𝜎𝑚◦ℎ. Of course, ℎ is invariant if its components can be chosen as homogeneous
polynomials with real coefficients, so it provides by restriction a real rational map ℎ|ℝℙ𝑛 ∶ ℝℙ𝑛 ⤏
ℝℙ𝑚.
Given a semialgebraic set 𝑆 ⊂ ℝ𝑚 ⊂ ℝℙ𝑚 ⊂ ℂℙ𝑚, we denote its Zariski closure in 𝕂ℙ𝑚 with

Clzar
𝕂ℙ𝑚

(𝑆). Obviously, Clzar
ℂℙ𝑚

(𝑆) ∩ ℝℙ𝑚 = Clzar
ℝℙ𝑚

(𝑆) and Clzar(𝑆) = Clzar
ℝℙ𝑚

(𝑆) ∩ ℝ𝑚 is the Zariski
closure of 𝑆 in ℝ𝑚. Observe that Clzar

ℂℙ𝑚
(𝑆) is an invariant algebraic set. In addition, Cl𝕂ℙ𝑚(𝑆)

denotes the closure of 𝑆 in 𝕂ℙ𝑚 with respect to the quotient topology of 𝕂ℙ𝑚 induced by
the canonicalmap𝜋 ∶ 𝕂𝑚+1 ⧵ {0} → 𝕂ℙ𝑚, 𝑥 ∶= (𝑥0, 𝑥1, … , 𝑥𝑛) ↦ [𝑥] ∶= [𝑥0 ∶ 𝑥1 ∶⋯ ∶ 𝑥𝑛].We
endow the linear space 𝕂𝑚+1 for 𝕂 = ℝ or ℂ with the Euclidean topology (in the case 𝕂 = ℝ, it is
induced by the Euclidean norm,whereas in the case𝕂 = ℂ, it is induced by the norm associated to
its usual Hermitian inner product). The projective spaces𝕂ℙ𝑚 (endowed with the previous topol-
ogy) can be embedded as real algebraic submanifolds of ℝ𝑀 for some positive integer 𝑀 large
enough [1, §.3.4.1 & Prop.3.4.6].
A complex rational curve is the image ofℂℙ1 under a birational map, which is by [28, Prop.(7.1)]

in addition regular, because ℂℙ1 does not have singular points (see also Lemma 2.3). We denote
the set of points of the semialgebraic set 𝑆 that have local dimension 𝑘 with 𝑆(𝑘), which is a semial-
gebraic subset of 𝑆. If 𝑘 = dim(𝑆), then 𝑆(𝑘) is in addition closed in 𝑆. A real rational curve is a real
projective irreducible curve 𝐶 such that 𝐶(1) is the image of ℝℙ1 under a birational map, which
by Lemma 2.3 is in addition a regular map.
We also deal with the irreducibility of analytic set germs. A set germ𝑋𝑝 of𝕂ℙ𝑛𝑝 is analytic if there

exist finitelymany analytic functions𝑓1, … , 𝑓𝑠 on aneighborhood𝑈 of𝑝 (for instance, polynomial
or regular on {𝑝}) such that𝑋𝑝 is the set germ at 𝑝 of the common zero set of 𝑓1, … , 𝑓𝑠. An analytic
set germ 𝑋𝑝 is reducible if there exist analytic set germs 𝑋1,𝑝 and 𝑋2,𝑝 such that 𝑋𝑝 = 𝑋1,𝑝 ∪ 𝑋2,𝑝
and 𝑋𝑝 ≠ 𝑋𝑖,𝑝 for 𝑖 = 1, 2. Otherwise, we say that 𝑋𝑝 is irreducible. The analytic closure of a set
germ 𝑆𝑝 of 𝕂ℙ𝑛𝑝 is the smallest analytic set germ 𝑋𝑝 that contains 𝑆𝑝.

1.3.1 State of the art

We recall the geometric characterization of the one-dimensional polynomial images of affine
spaces proposed in [4, Thm.1.1 & Prop.1.2] (see also [9, Prop.2.1, Cor.2.2]) and the description of
those with p𝔄 = 1.

Theorem 1.1. Let 𝑆 ⊂ ℝ𝑚 be a one-dimensional semialgebraic set. The following conditions are
equivalent.

(i) p𝔄(𝑆) ⩽ 2.
(ii) p𝔄(𝑆) < +∞.
(iii) 𝑆 is irreducible, unbounded and Clzar

ℂℙ𝑚
(𝑆) is an invariant rational curve such that the set of

points at infinity Clzar
ℂℙ𝑚

(𝑆) ∩ 𝖧𝑚∞(ℂ) is a singleton {𝑝} and the analytic set germ Clzar
ℂℙ𝑚

(𝑆)𝑝 is
irreducible.

We also have: p𝔄(𝑆) = 1 if and only if p𝔄(𝑆) < +∞ and 𝑆 is closed in ℝ𝑚.
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6 of 25 FERNANDO

The counterpart of the previous results in the regular setting, already proved in [4, Thm.1.3 &
Prop.1.4], consists of the full geometric characterization of the one-dimensional regular images of
affine spaces and the description of those with r𝔄 = 1.

Theorem 1.2. Let 𝑆 ⊂ ℝ𝑚 be a one-dimensional semialgebraic set. The following conditions are
equivalent:

(i) r𝔄(𝑆) ⩽ 2.
(ii) r𝔄(𝑆) < +∞.
(iii) 𝑆 is irreducible and Clzar

ℝℙ𝑚
(𝑆) is a rational curve.

We also have: r𝔄(𝑆) = 1 if and only if r𝔄(𝑆) < +∞ and either

(1) Clℝℙ𝑚(𝑆) = 𝑆 or
(2) Clℝℙ𝑚(𝑆) ⧵ 𝑆 = {𝑝} is a singleton and the analytic closure of the set germ 𝑆𝑝 is irreducible.

Remarks 1.3.

(i) There is no one-dimensional semialgebraic set 𝑆 ⊂ ℝ𝑚 with p𝔄(𝑆) = 2 and r𝔄(𝑆) = 1, see [4,
Cor.1.5].

(ii) Let 𝑆 ⊂ ℝ𝑚 be a semialgebraic set of dimension 1. We claim: r𝔄(𝑆) = rs𝔄(𝑆).
As regular functions are regulous functions, rs𝔄(𝑆) ⩽ r𝔄(𝑆). Let us check: If rs𝔄(𝑆) < +∞,

then r𝔄(𝑆) < +∞. This implies the equivalence: rs𝔄(𝑆) < +∞ if and only if r𝔄(𝑆) < +∞. By
Theorem 1.2, we have to prove: Clzar

ℝℙ𝑚
(𝑆) is a rational curve and 𝑆 is irreducible.

Let 𝑛 ⩾ 1 and 𝑓 ∶ ℝ𝑛 → ℝ𝑚 be a regulous map such that 𝑓(ℝ𝑛) = 𝑆. By [4, Lem.2.2(i) &
Lem.2.3(i)], there exists a rational function g ∈ ℝ(𝚡1, … , 𝚡𝑛) and a regular map ℎ ∶ ℝ → ℝ𝑚

such that 𝑓 = ℎ◦g . Then, 𝑆 ⊂ 𝑇 ∶= im(ℎ). By [4, Lem.2.2(ii)], the Zariski closure Clzar
ℝℙ𝑚

(𝑇) is a
rational curve. As 𝑆 is one-dimensional and Clzar

ℝℙ𝑚
(𝑇) is irreducible, Clzar

ℝℙ𝑚
(𝑆) = Clzar

ℝℙ𝑚
(𝑇) is a

rational curve.
To prove that 𝑆 is irreducible, it is enough to show by [5, Main Thm.1.4 & Lem.7.3] that 𝑆 is

connected by analytic paths. Pick two different points 𝑦1, 𝑦2 ∈ 𝑆 and let 𝑥1, 𝑥2 ∈ ℝ𝑛 be such that
𝑓(𝑥𝑖) = 𝑦𝑖 for 𝑖 = 1, 2. Consider the line 𝐿 ⊂ ℝ𝑛 that passes through 𝑥1, 𝑥2 and let 𝜑 ∶ ℝ → ℝ𝑛 be
an affine parameterization of 𝐿 such that there exist values 𝑡1 < 𝑡2 inℝ satisfying 𝜑(𝑡𝑖) = 𝑥𝑖 for 𝑖 =
1, 2. Themap 𝑓◦𝜑 ∶ ℝ → ℝ𝑚 is regulous, so by [22, Cor.3.6], 𝑓 is a regular map, and consequently,
it is an analyticmap. Thus, 𝛼 ∶= (𝑓◦𝜑)|[𝑡1,𝑡2] ∶ [𝑡1, 𝑡2] → 𝑆 is an analytic path that connects 𝑦1 and
𝑦2, so 𝑆 is connected by analytic paths.
Suppose next that r𝔄(𝑆) < +∞. By Theorem 1.2, we have rs𝔄(𝑆) ⩽ r𝔄(𝑆) ⩽ 2. If rs𝔄(𝑆) = 2, then

2 = rs𝔄(𝑆) ⩽ r𝔄(𝑆) ⩽ 2, so rs𝔄(𝑆) = r𝔄(𝑆) = 2. Assume next rs𝔄(𝑆) = 1. As the regulousmaps on
ℝ coincide by [22, Cor.3.6] with the regular maps on ℝ, we deduce r𝔄(𝑆) = rs𝔄(𝑆) = 1.

In the Nash case, we have the following two conclusive results proved in [2, 3, 5].

Theorem1.4 [5, Prop.1.6]. Let 𝑆 ⊂ ℝ𝑚 be a one-dimensional semialgebraic set. The following
conditions are equivalent:

(i) n𝔄(𝑆) = 1.
(ii) n𝔄(𝑆) < +∞.
(iii) 𝑆 is irreducible.
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ON THE ONE DIMENSIONAL POLYNOMIAL, REGULAR AND REGULOUS IMAGES 7 of 25

Theorem1.5 [2, Prop.1.20], [3, Thm.1.10]. Let 𝑆 ⊂ ℝ𝑚 be a one-dimensional semialgebraic set. The
following conditions are equivalent:

(i) n𝔅(𝑆) = 1.
(ii) n𝔖(𝑆) = 1.
(iii) n𝔖(𝑆) < +∞.
(iv) n𝔅(𝑆) < +∞.
(v) 𝑆 is irreducible and compact.

1.4 Main results

The main results of this article, which will be proved in Section 3, are the following. We begin
with the invariants corresponding to regular and regulous cases.

Theorem 1.6. Let 𝑆 ⊂ ℝ𝑚 be a one-dimensional semialgebraic set. The following conditions are
equivalent:

(i) r𝔅(𝑆) = 1.
(ii) r𝔅(𝑆) < +∞.
(iii) rs𝔅(𝑆) = 1.
(iv) rs𝔅(𝑆) < +∞.
(v) r𝔖(𝑆) = 1.
(vi) r𝔖(𝑆) < +∞.
(vii) rs𝔖(𝑆) = 1.
(viii) rs𝔖(𝑆) < +∞.
(ix) 𝑆 is irreducible, compact and Clzar

ℝℙ𝑚
(𝑆) is a rational curve.

We present next the results for the polynomial case. We begin with the invariant corresponding
to closed balls, which is simpler.

Theorem 1.7. Let 𝑆 ⊂ ℝ𝑚 be a one-dimensional semialgebraic set. The following conditions are
equivalent:

(i) p𝔅(𝑆) = 1.
(ii) p𝔅(𝑆) < +∞.
(iii) 𝑆 is irreducible, compact and Clzar

ℂℙ𝑚
(𝑆) is an invariant rational curve such that the set of points

at infinity Clzar
ℂℙ𝑚

(𝑆) ∩ 𝖧𝑚∞(ℂ) is a singleton {𝑝} ⊂ 𝖧𝑚∞(ℝ) and the analytic set germ Clzar
ℂℙ𝑚

(𝑆)𝑝
is irreducible.

The case of polynomial images of spheres presents the following peculiarity, which contrast
with the polynomial images of affine spaces: The family of polynomial images of the circle 𝕊1 is
larger than the family of the polynomial images of the spheres 𝕊𝑘 of dimension 𝑘 ⩾ 2. This state-
ment is deduced from Theorem 1.8 and Proposition 1.12 below. In fact, the reader can check
using the quoted two results that 𝕊1 is an example of a one-dimensional semialgebraic set,
which is a polynomial image of 𝕊1, but it is not a polynomial image of 𝕊𝑘 for each 𝑘 ⩾ 2. (Hint:
Clzar

ℂℙ2
(𝕊1) ∩ 𝖧2∞(ℂ) = {[0 ∶ 1 ∶ 𝚒], [0 ∶ 1 ∶ −𝚒]}). We denote along this article 𝚒 ∶=

√
−1.

We characterize next the images of 𝕊1 in ℝ𝑚 under polynomial maps.

 14697750, 2025, 1, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.70241 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [21/07/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



8 of 25 FERNANDO

F IGURE 1 Gerono’s leminiscate

Theorem 1.8. Let 𝑆 ⊂ ℝ𝑚 be a one-dimensional semialgebraic set. The following conditions are
equivalent:

(i) p𝔖(𝑆) = 1.
(ii) 𝑆 is irreducible, compact and the Zariski closure Clzar

ℂℙ𝑚
(𝑆) is an invariant rational curve such

that one of the following three situations hold:
(1) Clzar

ℂℙ𝑚
(𝑆) ∩ 𝖧𝑚∞(ℂ) = {𝑝} is a singleton (which belongs to 𝖧𝑚∞(ℝ)) and the analytic set germ

Clzar
ℂℙ𝑚

(𝑆)𝑝 is irreducible.
(2) Clzar

ℂℙ𝑚
(𝑆) ∩ 𝖧𝑚∞(ℂ) = {𝑝} is a singleton (which belongs to 𝖧𝑚∞(ℝ)), the analytic set

germ Clzar
ℂℙ𝑚

(𝑆)𝑝 has exactly two irreducible components that are conjugated, and 𝑆 =

Clzar
ℝℙ𝑚

(𝑆)(1).
(3) Clzar

ℂℙ𝑚
(𝑆) ∩ 𝖧𝑚∞(ℂ) = {𝑞, 𝑞} (where the points 𝑞, 𝑞 ∉ 𝖧𝑚∞(ℝ)), the analytic set germs

Clzar
ℂℙ𝑚

(𝑆)𝑞 and Clzarℂℙ𝑚
(𝑆)𝑞 are irreducible and conjugated, and 𝑆 = Clzar

ℝℙ𝑚
(𝑆)(1).

Remarks and Examples 1.9. Let 𝑆 ⊂ ℝ𝑚 be a one-dimensional semialgebraic set.

(i) We will prove in Lemma 2.7 that if Clzar
ℂℙ𝑚

(𝑆) ∩ 𝖧𝑚∞(ℂ) = {𝑝} and Clzar
ℂℙ𝑚

(𝑆)𝑝 is irreducible,
then Clzar

ℂℙ𝑚
(𝑆) ∩ ℝ𝑚 is unbounded (case (ii.1) above).

An example of this situation is 𝑆 ∶= [−1, 1] × {0} ⊂ ℝ2. We have Clzar
ℂℙ2

(𝑆) = {𝚡2 = 0},
Clzar

ℂℙ2
(𝑆) ∩ 𝖧2∞(ℂ) = {𝑝 ∶= [0 ∶ 1 ∶ 0]}, and Clzar

ℂℙ2
(𝑆)𝑝 = {𝑥2 = 0}𝑝 is irreducible.

(ii) We will prove in Lemma 2.8 that if Clzar
ℂℙ𝑚

(𝑆) ∩ 𝖧𝑚∞(ℂ) = {𝑝} is a singleton and the ana-
lytic set germ Clzar

ℂℙ𝑚
(𝑆)𝑝 has exactly two irreducible components that are conjugated, then

Clzar
ℂℙ𝑚

(𝑆) ∩ ℝ𝑚 is bounded (case (ii.2) above).
An example of this situation is Gerono’s leminiscate 𝑆 ∶= {𝚡2

2
− 𝚡2

1
+ 𝚡4

1
= 0} ⊂ ℝ2

(Figure 1). Then Clzar
ℂℙ2

(𝑆) = {𝚡2
0
(𝚡2
2
− 𝚡2

1
) + 𝚡4

1
= 0}, Clzar

ℂℙ2
(𝑆) ∩ 𝖧2∞(ℂ) = {𝑝 ∶= [0 ∶ 0 ∶ 1]}

andClzar
ℂℙ2

(𝑆)𝑝 has two conjugated irreducible components parameterized by𝛼 ∶= [𝚒 𝚝2√
1−𝚝2

∶

𝚝 ∶ 1] and 𝛼 ∶= [−𝚒 𝚝2√
1−𝚝2

∶ 𝚝 ∶ 1]. Observe that Clzar
ℂℙ2

(𝑆) is the rational curve parameter-
ized by

Π ∶ ℂℙ1 → Clzar
ℂℙ2

(𝑆), [𝚝0 ∶ 𝚝1] ↦ [(𝚝20 + 𝚝21)
2 ∶ 𝚝41 − 𝚝40 ∶ 2𝚝0𝚝1(𝚝

2
1 − 𝚝20)]

and 𝑆 is the image of 𝕊1 under the polynomial map 𝑓 ∶ ℝ2 → ℝ2, (𝑥, 𝑦) ↦ (𝑥, 𝑥𝑦).
(iii) If Clzar

ℂℙ𝑚
(𝑆) ∩ 𝖧𝑚∞(ℂ) = {𝑞, 𝑞} (with 𝑞 ≠ 𝑞) and the analytic set germs Clzar

ℂℙ𝑚
(𝑆)𝑞 and

Clzar
ℂℙ𝑚

(𝑆)𝑞 are irreducible and conjugated, thenClzarℂℙ𝑚
(𝑆) ∩ ℝ𝑚 is bounded (case (ii.3) above).

As Clzar
ℂℙ𝑚

(𝑆) ∩ 𝖧𝑚∞(ℂ) = {𝑞, 𝑞}, we have Clzar
ℝℙ𝑚

(𝑆) ∩ 𝖧𝑚∞(ℝ) = ∅, so Clzar
ℝℙ𝑚

(𝑆) =

Clzar
ℝℙ𝑚

(𝑆) ∩ ℝ𝑚 is compact.
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ON THE ONE DIMENSIONAL POLYNOMIAL, REGULAR AND REGULOUS IMAGES 9 of 25

An example of this situation is 𝑆 ∶= {𝚡2
1
+ 𝚡2

2
− 1 = 0} ⊂ ℝ2. Then, Clzar

ℂℙ2
(𝑆) = {𝚡2

1
+ 𝚡2

2
−

𝚡2
0
= 0},Clzar

ℂℙ2
(𝑆) ∩ 𝖧2∞(ℂ) = {𝑞 ∶= [0 ∶ 1 ∶ 𝚒], 𝑞 ∶= [0 ∶ 1 ∶ −𝚒]} and the analytic set germs

Clzar
ℂℙ𝑚

(𝑆)𝑞 and Clzarℂℙ𝑚
(𝑆)𝑞 are irreducible, nonsingular, and conjugated. We have used that

Clzar
ℂℙ2

(𝑆) is a nonsingular invariant (complex) projective algebraic set.

1.4.1 Images of the unit circumference under Laurent polynomials

The polynomial images of 𝕊1 in ℝ2 coincide with the images of 𝕊1 under Laurent polynomials
𝑓 ∈ ℂ[𝚣, 𝚣−1] in one variable 𝚣with coefficients in ℂ. We refer the reader to [25, Thm.2.1] (whose
proof strongly relies on [36]) for a result that explores the algebraic structures of such images. This
result is not fully conclusive, but it is crucial to analyze situations (ii.2) and (iii.3) of Theorem 1.8.
As a consequence of Theorem 1.8, we provide the full characterization of the images of 𝕊1 under
Laurent polynomials completing the valuable information provided in [25, Thm.2.1].

Corollary 1.10. Let 𝑆 ⊂ ℂ ≡ ℝ2 be a one-dimensional semialgebraic set. The following conditions
are equivalent.

(i) There exists a Laurent polynomial 𝑓 ∈ ℂ[𝚣, 𝚣−1] such that 𝑓(𝕊1) = 𝑆.
(ii) 𝑆 is irreducible, compact and the Zariski closure Clzar

ℂℙ2
(𝑆) is an invariant rational curve such

that one of the following three situations hold:
(1) Clzar

ℂℙ2
(𝑆) ∩ 𝖧2∞(ℂ) = {𝑝} is a singleton (which belongs to 𝖧2∞(ℝ)) and the analytic set germ

Clzar
ℂℙ2

(𝑆)𝑝 is irreducible.
(2) Clzar

ℂℙ2
(𝑆) ∩ 𝖧2∞(ℂ) = {𝑝} is a singleton (which belongs to 𝖧2∞(ℝ)), the analytic set germ

Clzar
ℂℙ2

(𝑆)𝑝 has exactly two irreducible components that are conjugated, and 𝑆 = Clzar
ℝℙ2

(𝑆)(1).
(3) Clzar

ℂℙ2
(𝑆) ∩ 𝖧2∞(ℂ) = {𝑞, 𝑞} (where 𝑞, 𝑞 ∉ 𝖧2∞(ℝ)), the analytic set germs Cl

zar
ℂℙ2

(𝑆)𝑞 and
Clzar

ℂℙ2
(𝑆)𝑞 are irreducible and conjugated, and 𝑆 = Clzar

ℝℙ2
(𝑆)(1).

Remark 1.11. In reference to [25, Thm.2.1], observe that in case (ii.1) the Zariski closure Clzar
ℂℙ2

(𝑆) ∩

ℝ2 is unbounded (use Lemma 2.7), so the difference Clzar
ℝℙ2

(𝑆) ⧵ 𝑆 is an infinite (one-dimensional
semialgebraic) set (because 𝑆 is compact), whereas in cases (ii.2) and (ii.3), the Zariski closure
Clzar

ℂℙ2
(𝑆) ∩ ℝ2 is bounded (use Lemma 2.8 and Remark 1.9(iii)) and the difference Clzar

ℝℙ2
(𝑆) ⧵ 𝑆 =

Clzar
ℝℙ2

(𝑆)(0) is a finite set (maybe empty).

1.4.2 Images of the unit spheres of higher dimension

As a consequence of Theorem 1.7 and Proposition 1.12, if we consider spheres 𝕊𝑘 for some 𝑘 ⩾ 2

instead of the circumference 𝕊1, one realizes that the polynomial images of 𝕊𝑘 coincide with those
of a closed interval. By [37, Thm.2], all polynomial maps 𝑓 ∶ 𝕊2 → 𝕊1 are constant. Consequently,
by [1, Lem.13.1.1], all polynomial maps 𝑓 ∶ 𝕊𝑘 → 𝕊1 are constant for each 𝑘 ⩾ 2.

Proposition 1.12. Let 𝑆 ⊂ ℝ𝑚 be a one-dimensional semialgebraic set. The following conditions are
equivalent.

(i) 𝑆 is the image of 𝕊2 under a polynomial map 𝑓 ∶ ℝ3 → ℝ𝑚.
(ii) 𝑆 is the image of 𝕊𝑘 under a polynomial map 𝑓 ∶ ℝ𝑘+1 → ℝ𝑚 for some 𝑘 ⩾ 2.

 14697750, 2025, 1, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.70241 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [21/07/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



10 of 25 FERNANDO

(iii) 𝑆 is irreducible, compact, Clzar
ℝℙ𝑚

(𝑆) ∩ ℝ𝑚 is unbounded and Clzar
ℂℙ𝑚

(𝑆) is an invariant rational
curve such that the set of points at infinityClzar

ℂℙ𝑚
(𝑆) ∩ 𝖧𝑚∞(ℂ) is a singleton {𝑝} and the analytic

set germ Clzar
ℂℙ𝑚

(𝑆)𝑝 is irreducible.

Remarks 1.13. Proposition 1.12 alternatively proves that all polynomial maps 𝑓 ∶ 𝕊𝑘 → 𝕊1 are
constant if 𝑘 ⩾ 2 (see also [37, Thm.2] and [1, Lem.13.1.1]).

2 MAIN TOOLS

In this section, we present the main tools used to prove the results proposed in this article. We
will use usual concepts of (complex) Algebraic Geometry such as rational map, regular map, nor-
malization, and so on, and refer the reader to [28, 29, 32] for further details. We begin proving that
compact algebraic sets of dimension⩾ 1 are not images of compact subsets𝐾 ⊂ ℝ𝑛 withnonempty
interior under polynomial maps.

Lemma2.1.Let𝑋 ⊂ ℝ𝑚 be a compact algebraic set and𝑓 ∶= (𝑓1, … , 𝑓𝑚) ∶ ℝ
𝑛 → ℝ𝑚 apolynomial

map. Let 𝐾 ⊂ ℝ𝑛 be a compact set with non-empty interior in ℝ𝑛 such that 𝑓(𝐾) ⊂ 𝑋. Then, 𝑓(𝐾) is
a singleton contained in 𝑋.

Proof. Let  ⊂ 𝐾 be a nonempty open ball. We claim: The Zariski closures of both 𝑓(ℝ𝑛) and 𝑓()
coincide.
If g ∈ ℝ[𝚡1, … , 𝚡𝑚] satisfies g(𝑓()) = 0, then (g◦𝑓)| = 0, so by the Identity Principle, g◦𝑓 =

0 on ℝ𝑛 and g(𝑓(ℝ𝑛)) = 0. Thus, Clzar(𝑓(ℝ𝑛)) ⊂ Clzar(𝑓()) ⊂ Clzar(𝑓(ℝ𝑛)), so Clzar(𝑓(ℝ𝑛)) =
Clzar(𝑓()).
As 𝑓() ⊂ 𝑓(𝐾) ⊂ 𝑋 and 𝑋 is an algebraic set, 𝑓(ℝ𝑛) ⊂ Clzar(𝑓(ℝ𝑛)) = Clzar(𝑓()) ⊂ 𝑋. As 𝑋

is bounded, we deduce 𝑓(ℝ𝑛) is bounded, so it is by [8, Rem.1.3(3)] a singleton (contained in 𝑋),
as required. □

We will use freely along this work the existence of regular maps 𝑓 ∶ ℝ𝑛 → ℝ𝑛+1 such that
𝑓(𝑛) = 𝕊𝑛 (see [21, Cor.2.9 & Lem.A.4]). We recall here an explicit regular map 𝑓 ∶ ℝ → ℝ2 such
that 𝑓(1) = 𝕊1 for the case 𝑛 = 1.

Example 2.2. Let us show that 𝕊1 and ℝℙ1 are regular images of [−1, 1]. Since ℝℙ1 is the image
of 𝕊1 via the canonical projection 𝜋 ∶ 𝕊1 → ℝℙ1, it is enough to prove that 𝕊1 is a regular image
of [−1, 1]. To that end, we may take for instance the regular map

𝑓 ∶ ℝ → 𝕊1, 𝑡 ↦

((
2𝑡

𝑡2 + 1

)2

−

(
𝑡2 − 1

𝑡2 + 1

)2

, 2

(
2𝑡

𝑡2 + 1

)(
𝑡2 − 1

𝑡2 + 1

))
,

which satisfies 𝑓(1) = 𝑓([−1, 1]) = 𝕊1. The previous map 𝑓 is the composition of the inverse of
the stereographic projection

𝜑 ∶ ℝ → 𝕊1, 𝑡 ↦

(
2𝑡

𝑡2 + 1
,
𝑡2 − 1

𝑡2 + 1

)
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ON THE ONE DIMENSIONAL POLYNOMIAL, REGULAR AND REGULOUS IMAGES 11 of 25

of 𝕊1 from (0,1) with

g ∶ ℂ ≡ ℝ2 → ℂ ≡ ℝ2, 𝑧 = 𝑥 + 𝚒𝑦 ≡ (𝑥, 𝑦) ↦ 𝑧2 ≡ (𝑥2 − 𝑦2, 2𝑥𝑦).

We recall the following useful and well-known fact concerning the regularity of rational maps
defined on a nonsingular curve [28, Prop.(7.1)] that will be used several times. As a straightforward
consequence of the following result applied to 𝑍 = ℂℙ1, the reader can deduce (alternatively to
[22, Prop.3.5]) that each regulous map 𝑓 ∶ ℝ → ℝ𝑚 is in fact a regular map.

Lemma 2.3. Let 𝑍 ⊂ ℂℙ𝑛 be a nonsingular projective curve and 𝐹 ∶ 𝑍 ⤏ ℂℙ𝑚 a rational map.
Then,𝐹 can be (uniquely) extended to a regularmap𝐹′ ∶ 𝑍 → ℂℙ𝑚. Moreover, if𝑍, 𝐹 are invariant,
then also 𝐹′ is invariant.

2.1 Normalization of an algebraic curve

Amain tool to prove the results of this article will be the normalization of either affine or projec-
tive algebraic curves𝑋 of either ℂ𝑛 or ℂℙ𝑛. We refer the reader to [32, Ch.II.§5] and [29, III.§9] for
a detailed exposition. Let 𝑋 be an either affine or projective algebraic curve 𝑋 of either 𝔼𝑛

ℂ
∶= ℂ𝑛

or ℂℙ𝑛 and denote the set of singular points of𝑋 with Sing(𝑋). The normalization (𝑋,Π) of𝑋 is a
pair constituted by a nonsingular algebraic set 𝑋 ⊂ 𝔼𝑘

ℂ
and a (birational) regular mapΠ ∶ 𝑋 → 𝑋

such that the restriction Π|𝑋⧵Π−1(Sing(𝑋)) ∶ 𝑋 ⧵ Π−1(Sing(𝑋)) → 𝑋 ⧵ Sing(𝑋) is a biregular diffeo-
morphism. The normalization is unique up to a biregular diffeomorphism. Recall that all fibers
ofΠ ∶ 𝑋 → 𝑋 are finite and if 𝑥 ∈ 𝑋 is a nonsingular point, then the fiber of 𝑥 is a singleton. If 𝑋
is a complex algebraic curve, the cardinal of the fiber of a point 𝑥 ∈ 𝑋 coincides with the number
of irreducible components of the analytic set germ 𝑋𝑥. If Π−1(𝑥) ∶= {𝑧1, … , 𝑧𝑟}, the irreducible
components of the analytic set germ 𝑋𝑥 are Π(𝑋𝑧1), … ,Π(𝑋𝑧𝑟 ).
Denote the complex conjugation of 𝔼𝑛

ℂ
with 𝜎𝑛. If𝑋 is an invariant complex algebraic curve, we

may assume that both 𝑋 and Π are also invariant. To prove this, one can construct (𝑋,Π) as the
desingularization of 𝑋 via a finite chain of suitable invariant blowing-ups.
Denote with 𝔼𝑚

ℝ
either ℝ𝑚 or ℝℙ𝑚, let 𝑋 ⊂ 𝔼𝑚

ℝ
be a real algebraic curve and denote 𝑌 ∶=

Clzar
𝔼𝑚
ℂ

(𝑋). Let (𝑌 ⊂ 𝔼𝑘
ℂ
,Π) be an invariant normalization of 𝑌. We claim:

(∙) If 𝑍 ∶= 𝑌 ∩ 𝔼𝑘
ℝ
and 𝑍 ∶= Clzar

𝔼𝑚
ℝ

(𝑋), then Π(𝑍) = 𝑍(1).

Proof.Pick anonsingular point 𝑧 ∈ 𝑍. Then, there exists a unique point𝑤 ∈ 𝑌 such thatΠ(𝑤) = 𝑧.
AsΠ is invariant,Π(𝜎𝑘(𝑤)) = 𝜎𝑚(Π(𝑤)) = 𝜎𝑚(𝑧) = 𝑧, so𝑤 = 𝜎𝑘(𝑤) ∈ 𝑍 (because the fiber of 𝑧 is
a singleton). Thus, 𝑍(1) ⧵ Sing(𝑍) ⊂ Π(𝑍). AsΠ|𝑍 is proper and 𝑍(1) ⧵ Sing(𝑍) is dense in 𝑍(1), we
have𝑍(1) ⊂ Π(𝑍). As𝑌 is an invariant nonsingular projective algebraic curve, and the intersection
𝑍 ∶= 𝑌 ∩ 𝔼𝑘

ℝ
is a nonsingular projective real algebraic curve, so it is pure dimensional of dimen-

sion 1. As Π−1(Sing(𝑌)) is a finite set and Π|𝑌⧵Π−1(Sing(𝑌)) ∶ 𝑌 ⧵ Π−1(Sing(𝑌)) → 𝑌 ⧵ Sing(𝑌) is a
biregular isomorphism, we deduce that Π(𝑍 ⧵ Π−1(Sing(𝑌))) ⊂ 𝑍(1) (because 𝑍 is pure dimen-
sional of dimension 1 and Π−1(Sing(𝑌)) is a finite set). As 𝑍(1) is a closed semialgebraic set,
𝑍 ⧵ Π−1(Sing(𝑌)) is dense in 𝑍 and Π|𝑍 is continuous, we deduce Π(𝑍) ⊂ 𝑍(1), so Π(𝑍) = 𝑍(1),
as required. □
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12 of 25 FERNANDO

We recall the following result concerning normalizations of invariant rational curves.

Corollary 2.4. Let 𝑋 ⊂ ℂℙ𝑚 be an invariant rational curve. Let Π ∶ 𝑋 → 𝑋 be an invariant nor-
malization of 𝑋, where 𝑋 ⊂ ℂℙ𝑛 is an invariant non-singular algebraic curve. Then ℂℙ1 and 𝑋 are
biregularly diffeomorphic, so we may assume 𝑋 = ℂℙ1.

Proof. As 𝑋 is an invariant rational curve, 𝑋 is the image of ℂℙ1 under an invari-
ant birational (regular) map 𝜑 ∶ ℂℙ1 → 𝑋. Thus, there exists a birational map 𝜓 ∶=

(Π|Π−1(𝑋⧵Sing(𝑋)))−1◦𝜑|𝜑−1(𝑋⧵Sing(𝑋)) between ℂℙ1 and 𝑋. As both ℂℙ1 and 𝑋 are nonsingular, we
deduce by Lemma 2.3 that 𝜓 extends to ℂℙ1 as a regular map and 𝜓−1 extends to 𝑋 as a regular
map too. Consequently, ℂℙ1 and𝑋 are biregularly diffeomorphic, so wemay assume 𝑋 = ℂℙ1, as
required. □

The following two results borrowed from [4] (without proof) are crucial to prove the main
results stated in the Introduction.

Lemma2.5 [4, Lem.2.2]. Let 𝑓 ∶ ℝ → ℝ𝑚 be a nonconstant rational map and 𝑆 ∶= 𝑓(ℝ). Then

(i) 𝑓 can be (uniquely) extended to an invariant regularmap𝐹 ∶ ℂℙ1 → ℂℙ𝑚 such that𝐹(ℂℙ1) =
Clzar

ℂℙ𝑚
(𝑆).

(ii) Clzar
ℂℙ𝑚

(𝑆) is an invariant rational curve and if (ℂℙ1,Π) is an invariant normalization of
Clzar

ℂℙ𝑚
(𝑆), there exists an invariant surjective regular map 𝐹 ∶ ℂℙ1 → ℂℙ1 such that 𝐹 = Π◦𝐹.

(iii) If 𝑓 is polynomial, we may choose Π and 𝐹 such that 𝜋 ∶= Π|ℝ and 𝑓 ∶= 𝐹|ℝ are polyno-
mial. In particular, Clzar

ℂℙ𝑚
(𝑆) ∩ 𝖧𝑚∞(ℂ) is a singleton 𝑝 and the analytic set germ Clzar

ℂℙ𝑚
(𝑆)𝑝 is

irreducible.

Lemma2.6 [4, Lem.2.3]. Let 𝑓 ∶= (𝑓1, … , 𝑓𝑚) ∶ ℝ
𝑛 → ℝ𝑚 be a nonconstant rational map such

that its image 𝑓(ℝ𝑛) has dimension 1. Then

(i) 𝑓 factors through ℝ, that is, there exist a rational function g ∈ ℝ(𝚡) and a rational map ℎ ∶
ℝ → ℝ𝑚 such that 𝑓 = ℎ◦g .

(ii) If 𝑓 is in addition a polynomial map, we may also assume that g and ℎ are polynomial.

2.2 Branches at infinity of a real algebraic curve

We prove next two announced results in the Introduction (Remarks 1.9). Although they are surely
well known, we have not found any explicit reference to them in the literature, so we provide
explicit proofs of them here. For𝕂 = ℝ or ℂ, we denote the ring of convergent power series in one
variable and coefficients in 𝕂 with 𝕂{𝚝} and its field of fractions with 𝕂({𝚝}).

Lemma 2.7. Let 𝑆 ⊂ ℝ𝑚 be a semialgebraic set of dimension 1. If Clzar
ℂℙ𝑚

(𝑆) ∩ 𝖧𝑚∞(ℂ) = {𝑝} and
Clzar

ℂℙ𝑚
(𝑆)𝑝 is irreducible, then Clzarℂℙ𝑚

(𝑆) ∩ ℝ𝑚 is unbounded.

Proof. Consider the complex conjugation 𝜎𝑚 ∶ ℂℙ𝑚 → ℂℙ𝑚. Both the Zariski closure Clzar
ℂℙ𝑚

(𝑆)

and 𝖧𝑚∞(ℂ) are invariant (under the complex conjugation 𝜎𝑚). Observe that 𝜎𝑚(𝑝) ∈

Clzar
ℂℙ𝑚

(𝑆) ∩ 𝖧𝑚∞(ℂ) = {𝑝}, so 𝑝 = 𝜎𝑚(𝑝) and 𝑝 ∈ 𝖧𝑚∞(ℝ). After an invariant projective change
of coordinates that keeps invariant the hyperplane at infinity 𝖧𝑚∞(ℂ), we may assume that
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ON THE ONE DIMENSIONAL POLYNOMIAL, REGULAR AND REGULOUS IMAGES 13 of 25

𝑝 = [0 ∶ 1 ∶ 0 ∶ ⋯ ∶ 0]. Consider the chart {𝚡1 ≠ 0} of ℂℙ𝑚 and identify it with ℂ𝑚, so 𝑝 =

(0, … , 0). As Clzar
ℂℙ𝑚

(𝑆)𝑝 is irreducible, there exist, after a linear change of coordinates in ℂ𝑚, by
Rückert’s parameterization [31, Prop.3.4]:

∙ irreducible monic polynomials 𝑃𝑗 ∈ ℂ{𝚡0}[𝚡𝑗] of degree 𝑑𝑗 ⩾ 1 such that 𝑃𝑗(0, 𝚡𝑗) = 𝚡
𝑑𝑗
𝑗
for 𝑗 =

2,… ,𝑚,
∙ polynomials 𝑄𝑗 ∈ ℂ{𝚡0}[𝚡2] of degree < 𝑑2 for 𝑗 = 3,… ,𝑚,
∙ an open (small enough) neighborhood 𝑈 ⊂ ℂ𝑚 of the origin,

such that

Clzar
ℂℙ𝑚

(𝑆) ∩ 𝑈 = {(𝑥0, 𝑥2, … , 𝑥𝑚) ∈ 𝑈 ∶ 𝑃2(𝑥0, 𝑥2) = 0, 𝑥𝑗 =
𝑄𝑗(𝑥0,𝑥2)

Δ2(𝑥0)
for 𝑗 = 3,… ,𝑚}

⊂ {(𝑥0, 𝑥2, … , 𝑥𝑚) ∈ 𝑈 ∶ 𝑃𝑗(𝑥0, 𝑥𝑗) = 0 for 𝑗 = 2,… ,𝑚},

where Δ2 ∈ ℂ{𝚡0} ⧵ {0} is the discriminant of 𝑃2. By Newton–Puiseux theorem [31, Prop.4.5],
there exist 𝛼2 ∈ ℂ{𝚝} and an integer 𝓁 ⩾ 1 such that 𝛼2(0) = 0 and 𝑃2(𝚝𝓁 , 𝛼2) = 0. Define 𝛼𝑗 ∶=
𝑄𝑘(𝚝

𝓁 ,𝚝)

Δ2(𝚝
𝓁)

∈ ℂ({𝚝}) for 𝑗 = 3,… ,𝑚. As 𝑃𝑗(𝚝𝓁 , 𝛼𝑗(𝚝)) = 0 and 𝑃𝑗 ∈ ℂ{𝚡0}[𝚡𝑗] is a monic polynomial

such that 𝑃𝑗(0, 𝚡𝑗) = 𝚡
𝑑𝑗
𝑗
, we have 𝛼𝑗 ∈ ℂ{𝚝} (because ℂ{𝚝} is integrally closed in ℂ({𝚝}), as it is

a unique factorization domain) and 𝛼𝑗(0) = 0 for 𝑗 = 2,… ,𝑚. We may assume that each 𝛼𝑘 is
defined on a disc 𝐷 ⊂ ℂ centered at the origin. The fibers of 𝛼 ∶= [𝚝𝓁 ∶ 1 ∶ 𝛼2 ∶⋯ ∶ 𝛼𝑚] ∶ 𝐷 →

Clzar
ℂℙ𝑚

(𝑆) are (complex) analytic subsets of𝐷. As 𝛼 is nonconstant, we deduce that 𝛼−1(𝛼(𝑧)) have
dimension 0 for each 𝑧 ∈ 𝐷.We conclude by [30, Ch.VII.Prop.3, pag.131] thatClzar

ℂℙ𝑚
(𝑆)𝑝 = im(𝛼)𝑝,

because Clzar
ℂℙ𝑚

(𝑆)𝑝 is an irreducible analytic set germ of dimension 1.
As 𝑆 ⊂ ℝ𝑛 is a semialgebraic set, Clzar

ℂℙ𝑚
(𝑆) is invariant and there exist finitely many homoge-

neous polynomials 𝐹𝑘 ∈ ℝ[𝚡0, 𝚡1, … , 𝚡𝑚] such that Clzarℂℙ𝑚
(𝑆) = {𝐹1 = 0,… , 𝐹𝑠 = 0}. Write 𝛼𝑗 ∶=∑

𝑞⩾0 𝑎𝑗𝑞𝚝
𝑞 where each 𝑎𝑗𝑞 ∈ ℂ and define 𝛽𝑗 ∶=

∑
𝑞⩾0 𝑎𝑗𝑞𝚝

𝑞. As

0 = 𝐹𝑘(𝚝
𝓁 , 1, 𝛼2(𝚝), … , 𝛼𝑚(𝚝)) = 𝐹𝑘

(
𝚝
𝓁
, 1,

∑
𝑞⩾0

𝑎2𝑞𝚝
𝑞
, … ,

∑
𝑞⩾0

𝑎𝑚𝑞𝚝
𝑞

)

= 𝐹𝑘(𝚝
𝓁
, 1, 𝛽2(𝚝), … , 𝛽𝑚(𝚝)),

we deduce 𝛽 ∶= [𝚝𝓁 ∶ 1 ∶ 𝛽2 ∶⋯ ∶ 𝛽𝑚] ∶ 𝐷 → Clzar
ℂℙ𝑚

(𝑆) and 𝛽(0) = 𝑝 ∈ 𝖧𝑚∞(ℝ). As im(𝛼)𝑝 is an
irreducible analytic set germ of dimension 1, also im(𝛽)𝑝 is an irreducible analytic set germ of
dimension 1. As Clzar

ℂℙ𝑚
(𝑆)𝑝 is irreducible, im(𝛼)𝑝 = im(𝛽)𝑝.

Consequently, for each 𝑡 ∈ 𝐷 ⧵ {0}, there exists 𝑠 ∈ 𝐷 ⧵ {0} such that 𝑡𝓁 = 𝑠𝓁 and 𝛼(𝑡) = 𝛽(𝑠).
In particular, there exists an 𝓁th root of unity 𝜁(𝑡, 𝑠) such that 𝑠 = 𝜁(𝑡, 𝑠)𝑡 and 𝛼(𝑡) = 𝛽(𝜁(𝑡, 𝑠)𝑡).
As there are only 𝓁 possible values of 𝜁(𝑡, 𝑠), we deduce taking a sequence in 𝐷 converging to the
origin and the Identity Principle that there exists an𝓁th root of unity 𝜁 that does neither depend on
𝑡 nor on 𝑠 such that𝛼(𝑡) = 𝛽(𝜁𝑡) for 𝑡 ∈ 𝐷, so𝛼(𝚝) = 𝛽(𝜁𝚝). Thus, 𝑎𝑗𝑞 = 𝑎𝑗𝑞𝜁

𝑞 for each 𝑗 = 2,… ,𝑚

and each 𝑞 ⩾ 0. Write each nonzero 𝑎𝑗𝑞 = 𝜌𝑗𝑞𝜃𝑗𝑞 where 𝜌𝑗𝑞 ∈ ℝ is a positive real number and
𝜃𝑗𝑞 ∈ ℂ is a complex number of module 1. Consequently, 𝜌𝑗𝑞𝜃𝑗𝑞 = 𝜌𝑗𝑞𝜃𝑗𝑞𝜁

𝑞. As 𝜌𝑗𝑞 ≠ 0, we have
𝜃𝑗𝑞 = 𝜃𝑗𝑞𝜁

𝑞 and (multiplying the previous equality by 𝜃𝑗𝑞) we deduce 𝜃2𝑗𝑞 = 𝜁𝑞. Let 𝜉 ∈ ℂ be such
that 𝜉2 = 𝜁, so 𝜃2

𝑗𝑞
= 𝜉2𝑞 = (𝜉𝑞)2 for 𝑗 = 2,… ,𝑚 and each 𝑞 ⩾ 0 such that 𝑎𝑗𝑞 ≠ 0. Thus, there
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14 of 25 FERNANDO

exist 𝜀𝑗𝑞 ∈ {−1,+1} such that 𝜃𝑗𝑞 = 𝜀𝑗𝑞𝜉
𝑞 for each 𝑗 = 2,… ,𝑚 and each 𝑞 ⩾ 0 such that 𝑎𝑗𝑞 ≠ 0.

If 𝑎𝑗𝑞 = 0, we define 𝜌𝑗𝑞 ∶= 0 and 𝜀𝑗𝑞 ∶= 1, so 𝑎𝑗𝑞 = 𝜌𝑗𝑞𝜀𝑗𝑞𝜉
𝑞. We deduce

𝛼𝑗

(
𝚝

𝜉

)
=
∑
𝑞⩾0

𝑎𝑗𝑞
1

𝜉𝑞
𝚝𝑞 =

∑
𝑞⩾0

𝜌𝑗𝑞𝜀𝑗𝑞𝜉
𝑞 1

𝜉𝑞
𝚝𝑞 =

∑
𝑞⩾0

𝜌𝑗𝑞𝜀𝑗𝑞𝚝
𝑞 ∈ ℝ{𝚝}

for each 𝑗 = 2,… ,𝑚 and ( 𝚝
𝜉
)𝓁 = 𝜀𝚝𝓁 for some 𝜀 ∈ {−1, 1}, because (𝜉𝓁)2 = 𝜁𝓁 = 1. Conse-

quently, there exists 𝛿 > 0 such that 𝛾 ∶= 𝛼(𝚝
𝜉
) ∶ [−𝛿, 𝛿] → Clzar

ℂℙ𝑚
(𝑆) ∩ ℝℙ𝑚 and 𝛾(0) = 𝑝 ∈

𝖧𝑚∞(ℝ). AsCl
zar
ℂℙ𝑚

(𝑆) ∩ 𝖧𝑚∞(ℝ) = {𝑝}, we conclude im(𝛾) ⧵ {𝑝} ⊂ Clzar
ℂℙ𝑚

(𝑆) ∩ ℝ𝑚, soClzar
ℂℙ𝑚

(𝑆) ∩ ℝ𝑚

is unbounded, as required. □

Lemma 2.8. Let 𝑆 ⊂ ℝ𝑚 be a semialgebraic set of dimension 1. If Clzar
ℂℙ𝑚

(𝑆) ∩ 𝖧𝑚∞(ℂ) = {𝑝} and
the analytic set germ Clzar

ℂℙ𝑚
(𝑆)𝑝 has exactly two irreducible components that are conjugated, then

Clzar
ℂℙ𝑚

(𝑆) ∩ ℝ𝑚 is bounded.

Proof.As 𝑆 ⊂ ℝ𝑛 is a semialgebraic set, Clzar
ℂℙ𝑚

(𝑆) is invariant and there exist finitely many homo-
geneous polynomials 𝐹1, … , 𝐹𝑠 ∈ ℝ[𝚡0, 𝚡1, … , 𝚡𝑛] such that Clzar

ℂℙ𝑚
(𝑆) = {𝐹1 = 0,… , 𝐹𝑠 = 0}. As

Clzar
ℂℙ𝑚

(𝑆) ∩ 𝖧𝑚∞(ℂ) = {𝑝}, we deduce 𝐹𝑘(𝑝) = 𝐹𝑘(𝑝) = 0 for 𝑘 = 1,… , 𝑠. Thus, 𝑝 ∈ Clzar
ℂℙ𝑚

(𝑆) ∩

𝖧𝑚∞(ℂ) = {𝑝}, so 𝑝 = 𝑝 ∈ 𝖧𝑚∞(ℝ). If 𝑇 ∶= Clzar
ℂℙ𝑚

(𝑆) ∩ ℝ𝑚 is unbounded, 𝑝 ∈ Clℝℙ𝑚(𝑇). We embed
ℝℙ𝑚 as a real algebraic subset of ℝ(𝑚+1)2 , see [1, §3.4.2]. By the Nash curve selection lemma [1,
Prop.8.1.13], there exists a Nash map 𝛼 ∶ [−1, 1] → ℝℙ𝑚 such that 𝛼(0) = 𝑝 and 𝛼((0, 1)) ⊂ 𝑇. As
Clzar

ℝℙ𝑚
(𝑆) is a real algebraic set and 𝛼((0, 1)) ⊂ Clzar

ℝℙ𝑚
(𝑆), we deduce by the Identity Principle that

𝛼([−1, 1]) ⊂ Clzar
ℝℙ𝑚

(𝑆).
Let 𝐷 ⊂ ℂ be a disc centered in the origin such that there exists a holomorphic extension 𝛽 ∶

𝐷 → Clzar
ℂℙ𝑚

(𝑆) of 𝛼|(−𝜀,𝜀) for some 0 < 𝜀 < 1. As the components of 𝛼 are real analytic functions,
the coefficients of the Taylor expansions at the origin of the components of 𝛽 are real numbers.
The fibers of 𝛽 are (complex) analytic subsets of𝐷. As 𝛽 is nonconstant, we deduce 𝛽−1(𝛽(𝑧)) have
dimension 0 for each 𝑧 ∈ 𝐷. By [30, Ch.VII. Prop.3, pag. 131], the set germ im(𝛽)𝑝 ⊂ Clzar

ℂℙ𝑚
(𝑆)𝑝 is

a (complex) analytic set germ of dimension 1. In fact, it is irreducible, because 𝐷 is an irreducible
(complex) analytic set. AsClzar

ℂℙ𝑚
(𝑆)𝑝 has dimension 1, im(𝛽)𝑝 is one of the irreducible components

of the (complex) analytic set germ Clzar
ℂℙ𝑚

(𝑆)𝑝. As the coefficients of the Taylor expansions at the
origin of the components of 𝛽 are real numbers, im(𝛽)𝑝 is invariant under conjugation, which is
a contradiction, because Clzar

ℂℙ𝑚
(𝑆)𝑝 has exactly two irreducible components that are conjugated.

Consequently, Clzar
ℂℙ𝑚

(𝑆) ∩ ℝ𝑚 is bounded, as required. □

3 PROOFS OF THEMAIN RESULTS

Themain purpose of this section is to prove Theorems 1.6, 1.7, and 1.8.We also prove Corollary 1.10
and Proposition 1.12 at the end of the section.

3.1 Proof of Theorem 1.6

The chain of implications (i)⟹ (v)⟹ (vii)⟹ (iii)⟹ (i)⟹ (ii)⟹ (vi)⟹ (viii)⟹ (iv)
follows from the existence of regular surjective maps between 𝑛 and 𝕊𝑛 ⊂ ℝ𝑛+1 for each 𝑛 ⩾ 1

and vice versa and the fact that a regulous map on a nonsingular algebraic curve is a regular map.
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We prove next (iv)⟹ (ix). By [10, (3.1)(iv)] and [22, Thm.3.11], we deduce that 𝑆 is irreducible
and as 𝑓 is continuous and 𝑛 is compact, also 𝑆 is compact. Now let 𝑓 ∶ ℝ𝑛 ⤏ ℝ𝑚 be a ratio-
nal map such that 𝑓 extends continuously to 𝑛 and 𝑓(𝑛) = 𝑆. By Lemma 2.6, there exist a
rational function g ∈ ℝ(𝚡) and a rational map ℎ ∶= (

ℎ1
ℎ0
, … ,

ℎ𝑚
ℎ0
) ∶ ℝ → ℝ𝑚 such that 𝑓 = ℎ◦g . By

Lemma 2.5, we deduce that Clzar
ℝℙ𝑚

(𝑆) is a rational curve.
Let us prove (ix)⟹ (i). LetΠ ∶ ℂℙ1 → Clzar

ℂℙ𝑚
(𝑆) be the normalization of Clzar

ℂℙ𝑚
(𝑆). By §2.1(∙),

we haveΠ(ℝℙ1) = Clzar
ℝℙ𝑚

(𝑆)(1). If 𝑆 = Clzar
ℝℙ𝑚

(𝑆)(1), then 𝑆 is by Example 2.2 a regular image of 𝕊1

and consequently a regular image of 1. On the other hand, if 𝑆 ≠ Clzar
ℝℙ𝑚

(𝑆)(1), we may assume
(after a projective change of coordinates in ℝℙ1) that the image of the point at infinite [0 ∶ 1] of
ℝℙ1 under Π belongs to Clzar

ℝℙ𝑚
(𝑆)(1) ⧵ 𝑆. By [10, Cor.3.5], there exists an interval 𝐼 ⊂ ℝ = ℝℙ1 ⧵

{[0 ∶ 1]} that is the one-dimensional part of Π−1(𝑆) ∩ ℝℙ1. As 𝑆 is compact and Π|ℝℙ1 is proper,
the interval 𝐼 is compact, so we may assume 𝐼 = [−1, 1] = 1. Thus, 𝑆 is a regular image of 1,
as required.

3.2 Proof of Theorem 1.7

We first prove the equivalence (i) ⟺ (ii). The implication left to right is clear. Let us prove the
converse. Let 𝑓 ∶= (𝑓1, … , 𝑓𝑚) ∶ ℝ

𝑛 → ℝ𝑚 be a polynomial map such that 𝑓(𝑛) = 𝑆. As 𝑆 is one
dimensional, its Zariski closure 𝑍 in ℝ𝑚 is also one dimensional. As the interior in ℝ𝑛 of 𝑛 is
nonempty, we deduce by the Identity Principle𝑓(ℝ𝑛) ⊂ 𝑍. By Lemma 2.6, there exist a polynomial
function g ∈ ℝ[𝚡] and a polynomial map ℎ ∶ ℝ → ℝ𝑚 such that 𝑓 = ℎ◦g . Consequently, 𝑓(𝑛) =

ℎ(g(𝑛)). As 𝑛 is compact and connected, g(𝑛) is a compact (nontrivial) interval 𝐼 of ℝ and,
after a change of coordinates inℝ, wemay assume 𝐼 = [−1, 1]. Thus, 𝑆 is a polynomial image of1.
Let us prove (i)⟹ (iii). Let 𝑓 ∶ ℝ → ℝ𝑚 be a polynomial map such that 𝑓([−1, 1]) = 𝑆 and

define 𝑇 ∶= 𝑓(ℝ). As 𝑆 is one dimensional, its Zariski closure 𝑍 in ℝ𝑛 is also one dimensional.
As the interior in ℝ of [−1, 1] is nonempty, we deduce by the Identity Principle 𝑇 = 𝑓(ℝ) ⊂ 𝑍,
so 𝑇 is also one dimensional. By Theorem 1.1, we have that 𝑇 is irreducible, unbounded and
Clzar

ℂℙ𝑚
(𝑆) = Clzar

ℂℙ𝑚
(𝑍) = Clzar

ℂℙ𝑚
(𝑇) is an invariant rational curve such that the set of points at infin-

ity Clzar
ℂℙ𝑚

(𝑆) ∩ 𝖧𝑚∞(ℂ) is a singleton {𝑝} and the analytic set germ Clzar
ℂℙ𝑚

(𝑆)𝑝 is irreducible. In
addition, 𝑆 is by [10, (3.1)(iv)] irreducible and compact, because [−1, 1] is irreducible and compact.
We prove next (iii)⟹ (i). As the set of points at infinity Clzar

ℂℙ𝑚
(𝑆) ∩ 𝖧𝑚∞(ℂ) is a singleton {𝑝}

and the analytic set germClzar
ℂℙ𝑚

(𝑆)𝑝 is irreducible, the intersectionClzarℂℙ𝑚
(𝑆) ∩ ℝ𝑚 is by Lemma2.7

unbounded. Thus, the one-dimensional component 𝑇 of Clzar
ℂℙ𝑚

(𝑆) ∩ ℝ𝑚 is unbounded. In addi-
tion, 𝑇 is irreducible and Clzar

ℂℙ𝑚
(𝑇) = Clzar

ℂℙ𝑚
(𝑆) is an invariant rational curve such that the set

of points at infinity Clzar
ℂℙ𝑚

(𝑇) ∩ 𝖧𝑚∞(ℂ) is a singleton {𝑝} and the analytic set germ Clzar
ℂℙ𝑚

(𝑇)𝑝
is irreducible. Let Π ∶= [Π0 ∶ ⋯ ∶ Π𝑚] ∶ ℂℙ

1 → Clzar
ℂℙ𝑚

(𝑇) be an invariant normalization of the
rational curve Clzar

ℂℙ𝑚
(𝑇) such that Π([0 ∶ 1]) = 𝑝 ∈ 𝖧𝑚∞(ℂ). We claim: Π|ℝ is a polynomial map.

AsΠ is invariant, we may assume that the componentsΠ𝑘 ofΠ are real homogeneous polyno-
mials of certain common degree 𝑑. Thus, Π|ℝℙ1 ∶ ℝℙ1 → Clzar

ℝℙ𝑚
(𝑇) is a real polynomial map. As

Clzar
ℂℙ𝑚

(𝑇) ∩ 𝖧𝑚∞(ℂ) = {𝑝} and the analytic set germ Clzar
ℂℙ𝑚

(𝑇)𝑝 is irreducible,

{Π0 = 0} = Π−1(Clzar
ℂℙ𝑚

(𝑆) ∩ 𝖧𝑚∞(ℂ)) = Π−1({𝑝})

is a singleton (see §2.1). As Π([0 ∶ 1]) = 𝑝, we deduce {Π0 = 0} = {[0 ∶ 1]}. Thus, Π0 = 𝜆𝚝𝑑
0
for

some 𝜆 ∈ ℝ ⧵ {0} and, in fact, we may assume 𝜆 = 1. Consequently, Π|ℝ is a polynomial map
(recall that ℝ ≡ {𝚝0 = 1}), as claimed.
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16 of 25 FERNANDO

As 𝑆 is irreducible, there exists by [10, Thm.3.15] a one-dimensional connected component 𝐼
of Π−1(𝑆) ∩ ℝℙ1 such that Π(𝐼) = 𝑆. As Π([0 ∶ 1]) = 𝑝, we deduce 𝐼 ⊂ ℝ. As Π is proper and 𝑆
is compact, 𝐼 ⊂ ℝ is compact. We conclude that 𝐼 is a nontrivial compact interval. Thus, after a
change of coordinates in ℝ, we may assume 𝐼 ∶= [−1, 1] = 1, so 𝑆 = Π|ℝ(1) is a polynomial
image of 1, as required.

3.3 Polynomial maps on the circle and complex laurent polynomials

Before proving Theorem 1.8, we recall that the restriction to 𝕊1 ⊂ ℝ2 of a polynomial map
g ∶= (g1, g2) ∶ ℝ

2 → ℝ2 coincides with the restriction to 𝕊1 ⊂ ℂ ≡ ℝ2 of a Laurent polynomial
Γ ∈ ℂ[𝚣, 𝚣−1]. Namely, if g1 ∶=

∑
𝑘,𝓁 𝑎𝑘𝓁𝚡

𝑘𝚢𝓁 and g2 ∶=
∑
𝑘,𝓁 𝑏𝑘𝓁𝚡

𝑘𝚢𝓁 , then

Γ ∶=
∑
𝑘,𝓁

(𝑎𝑘𝓁 + 𝚒𝑏𝑘𝓁)

(
𝚣 + 𝚣

2

)𝑘(
𝚣 − 𝚣

2𝚒

)𝓁

=
∑
𝑘,𝓁

(𝑎𝑘𝓁 + 𝚒𝑏𝑘𝓁)
(
𝚣

2
+

1

2𝚣

)𝑘( 𝚣

2𝚒
−

1

2𝚒𝚣

)𝓁
∈ ℂ[𝚣, 𝚣−1],

where𝚣 = 𝚡 + 𝚒𝚢 and𝚣𝚣 = 1. Conversely, ifΓ =
∑𝑛
𝑘=−𝑚 𝛼𝑘𝚣

𝑘 ∈ ℂ[𝚣, 𝚣−1] is a Laurent polynomial
for some integers𝑚, 𝑛 ⩾ 0 and 𝛼𝑘 ∶= 𝑎𝑘 + 𝚒𝑏𝑘 where 𝑎𝑘, 𝑏𝑘 ∈ ℝ for each 𝑘, the restriction Γ|𝕊1 ∶
𝕊1 → ℂ equals

𝑛∑
𝑘=−𝑚

𝛼𝑘𝚣
𝑘 =

𝑛∑
𝑘=0

𝛼𝑘𝚣
𝑘 +

𝑚∑
𝑘=0

𝛼−𝑘𝚣
𝑘
=

𝑛∑
𝑘=0

(𝑎𝑘 + 𝚒𝑏𝑘)(𝚡 + 𝚒𝚢)𝑘 +

𝑚∑
𝑘=0

(𝑎−𝑘 + 𝚒𝑏−𝑘)(𝚡 − 𝚒𝚢)𝑘.

Considering the real and imaginary parts of the previous expression, we find g1, g2 ∈ ℝ[𝚡, 𝚢] such
that the polynomial map g ∶= (g1, g2) ∶ ℝ

2 → ℝ2 satisfies g|𝕊1 = Γ|𝕊1 after identifying ℂ ≡ ℝ2.

3.4 Proof of Theorem 1.8

(i) ⟹ (ii) Suppose first 𝑆 is a polynomial image of 𝕊1. As 𝕊1 is compact, 𝑆 is a compact
semialgebraic set and by [10, (3.1)(iv)] 𝑆 is irreducible.
Let g ∶= (g1, … , g𝑚) ∶ ℝ

2 → ℝ𝑚 be a polynomial map, where g𝑖 ∈ ℝ[𝚡1, 𝚡2], such that g(𝕊1) =
𝑆. Let 𝑑 ∶= max{deg(g𝑖) ∶ 𝑖 = 1, … ,𝑚} and define 𝐺𝑖 ∶= g𝑖(

𝚡1
𝚡0
,
𝚡2
𝚡0
)𝚡𝑑
0
for 𝑖 = 1, … ,𝑚 and 𝐺0 ∶=

𝚡𝑑
0
. Consider the polynomial map 𝐺 ∶= [𝐺0 ∶ 𝐺1 ∶⋯ ∶ 𝐺𝑚] ∶ ℂℙ

2 ⤏ ℂℙ𝑚 and its restriction to
𝑋 ∶= {𝚡2

1
+ 𝚡2

2
− 𝚡2

0
= 0} ⊂ ℂℙ2, which is the Zariski closure of 𝕊1 in ℂℙ2. By Lemma 2.3, 𝐺|𝑋

extends to 𝑋 as a (unique) invariant regular map that we denote with 𝐺. As 𝐺 is continuous for
the Zariski topology, we deduce 𝐺(𝑋) ⊂ Clzar

ℂℙ𝑚
(𝑆). By [28, Prop.(2.31)], it contains a nonempty

Zariski open subset of Clzar
ℂℙ𝑚

(𝑆). As 𝐺 is proper and Clzar
ℂℙ𝑚

(𝑆) is irreducible, we conclude by [28,
Thm.(2.33)] 𝐺(𝑋) = Clzar

ℂℙ𝑚
(𝑆).

Consider the parameterization Φ ∶ ℂℙ1 → 𝑋, [𝚝0 ∶ 𝚝1] → [𝚝2
0
+ 𝚝2

1
∶ 2𝚝0𝚝1 ∶ 𝚝

2
1
− 𝚝2

0
], which

is the regular extension to ℂℙ1 of the inverse of the stereographic projection

𝜑 ∶ ℝ → 𝕊1, 𝑡 ↦

(
2𝑡

1 + 𝑡2
,
𝑡2 − 1

1 + 𝑡2

)
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whose image is 𝕊1 ⧵ {(0, 1)}. Consider the composition 𝐹 ∶= [𝐹0 ∶⋯ ∶ 𝐹𝑚] = 𝐺◦Φ ∶ ℂℙ1 →

Clzar
ℂℙ𝑚

(𝑆), which is surjective, and observe that 𝐹0 = (𝚝2
0
+ 𝚝2

1
)𝑑. The gcd(𝐹0, … , 𝐹𝑚) is an invari-

ant divisor of (𝚝2
0
+ 𝚝2

1
)𝑑. After dividing each 𝐹𝑖 by such greatest common divisor, we assume

𝐹0 = (𝚝2
0
+ 𝚝2

1
)𝑝 for some integer 𝑝 ⩾ 1 and gcd(𝐹0, … , 𝐹𝑚) = 1.

Let (𝑌 ⊂ ℂℙ𝑘,Π) be an invariant normalization of 𝑌 ∶= Clzar
ℂℙ𝑚

(𝑆). The composition Π−1◦𝐹 ∶

ℂℙ1 ⤏ 𝑌 defines an invariant rational map that can be extended to an invariant surjective regular
map 𝐹 ∶ ℂℙ1 → 𝑌 such that 𝐹 = Π◦𝐹. Observe that 𝑌 is by [28, Cor.(7.6), Cor.(7.20)] a nonsingu-
lar curve of arithmetic genus 0, that is, a nonsingular rational curve [28, Cor.(7.17)]. Consequently,
we may take 𝑌 = ℂℙ1 and Clzar

ℂℙ𝑚
(𝑆) is an invariant rational curve. Thus, Π(ℝℙ1) = Clzar

ℝℙ𝑚
(𝑆)(1)

(see §2.1(∙)).
WriteΠ ∶= (Π0, … ,Π𝑚) and 𝐹 ∶= (𝐹0, 𝐹1)whereΠ𝑖, 𝐹𝑗 ∈ ℝ[𝚡0, 𝚡1] are homogeneous polyno-

mials and 𝐹0, 𝐹1 are relatively prime. We claim: One of the following situations hold:

(1) 𝐹 is an invariant projective change of coordinates in ℂℙ1, so we assume 𝐹 = Π and Π0 = 𝐹0 =

(𝚡2
0
+ 𝚡2

1
)𝑝.

(2) After an invariant projective change of coordinates in ℂℙ1, we haveΠ0 = 𝚡𝑒
0
for some 𝑒 ⩾ 1 and

𝐹0 = (𝚡2
0
+ 𝚡2

1
)𝓁 where 𝓁 ⩾ 1 and 𝑝 = 𝓁𝑒.

(3) After an invariant projective change of coordinates in ℂℙ1, we have Π0 = (𝚡2
0
+ 𝚡2

1
)𝑒0 , 𝐹1 −

𝚒𝐹0 = 𝜆1(𝚡0 + 𝚒𝚡1)
𝑘, 𝐹1 + 𝚒𝐹0 = 𝜆1(𝚡0 − 𝚒𝚡1)

𝑘 for some positive integers 𝑒0, 𝑘 such that 𝑝 =
𝑘𝑒0 and some 𝜆1 ∈ ℂ ⧵ {0}.

Observe first that 𝐹 is not constant, because it is surjective. Factorize

Π0 = 𝑢

𝑒∏
𝑖=1

(𝑎𝑖𝚡1 − 𝑏𝑖𝚡0) ∈ ℂ[𝚡0, 𝚡1]

where 𝑢 ∈ ℝ ⧵ {0}, 𝑎𝑖 ∈ {0, 1}, 𝑏𝑖 ∈ ℂ, 𝑏𝑖 = 1 if 𝑎𝑖 = 0 and (𝑎𝑖, 𝑏𝑖) ≠ (0, 0) for 𝑖 = 1, … ,𝑚. Denote
𝚙𝑖 ∶= 𝐹𝑖(1, 𝚡1) ∈ ℝ[𝚡1] and observe

𝑒∏
𝑖=1

(𝑎𝑖𝚙1 − 𝑏𝑖𝚙0) = Π0(𝚙0, 𝚙1) = 𝐹0(1, 𝚡1) = (1 + 𝚡21)
𝑝 = (1 + 𝚒𝚡1)

𝑝(1 − 𝚒𝚡1)
𝑝. (3.1)

We proceed in several steps:
Step 1. Suppose first 𝑎1 = 1 and 𝑏1 ∈ ℂ ⧵ ℝ. As all the involved rational maps are invariant, we

may assume 𝑎2 = 1 and 𝑏2 = 𝑏1. As 𝚙0, 𝚙1 are relatively prime (and at least one of them is non
constant), we deduce: {

𝚙𝟷 − 𝚋𝟷𝚙𝟶 = ⥧𝟷(𝟷 + 𝚒𝚡𝟷)
𝚔𝟷 ,

𝚙1 − 𝑏1𝚙0 = 𝜆1(1 − 𝚒𝚡1)
𝑘1

for some 𝑘1 ⩾ 1 and 𝜆1 ∈ ℂ ⧵ {0}.
Otherwise, either 𝑘1 = 0, which is a contradiction, because at least one between 𝚙0, 𝚙1 is not

constant, or (1 + 𝚡2
1
) divides both 𝚙1 − 𝑏1𝚙0 and 𝚙1 − 𝑏1𝚙0, so (1 + 𝚡2

1
) divides both 𝚙0 and 𝚙1,

which is a contradiction, because 𝚙0, 𝚙1 are relatively prime. We have the system:{
𝚙𝟷 − 𝚋𝟷𝚙𝟶 = ⥧𝟷(𝟷 + 𝚒𝚡𝟷)

𝚔𝟷 ,

𝚙1 − 𝑏1𝚙0 = 𝜆1(1 − 𝚒𝚡1)
𝑘1 .
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18 of 25 FERNANDO

Consequently,

𝚙0 =
𝜆1(1 + 𝚒𝚡1)

𝑘1 − 𝜆1(1 − 𝚒𝚡1)
𝑘1

𝑏1 − 𝑏1

and 𝚙1 =
𝑏1𝜆1(1 + 𝚒𝚡1)

𝑘1 − 𝑏1𝜆1(1 − 𝚒𝚡1)
𝑘1

𝑏1 − 𝑏1

. (3.2)

Step 2. Suppose that there exists a root [𝑎3 ∶ 𝑏3] ∈ ℂℙ1 of Π0 different from [1 ∶ 𝑏1] and [1 ∶
𝑏1]. Then, 𝑎3𝚙1 − 𝑏3𝚙0 = 𝜆3(1 + 𝚒𝚡1)

𝑘3(1 − 𝚒𝚡1)
𝑘′
3 for some 𝑘3, 𝑘′3 ⩾ 0 and 𝜆3 ∈ ℂ ⧵ {0}. Suppose

first 𝑘3 > 0 and consider the system:{
𝚙𝟷 − 𝚋𝟷𝚙𝟶 = ⥧𝟷(𝟷 + 𝚒𝚡𝟷)

𝚔𝟷 ,

𝑎3𝚙1 − 𝑏3𝚙0 = 𝜆3(1 + 𝚒𝚡1)
𝑘3(1 − 𝚒𝚡1)

𝑘′
3 .

Then, 𝚙0, 𝚙1 share the irreducible factor 1 + 𝚒𝚡1, which is a contradiction. Consequently, 𝑘3 = 0.
If 𝑘′

3
> 0, we consider the system:{

𝚙𝟷 − 𝚋𝟷𝚙𝟶 = ⥧𝟷(𝟷 − 𝚒𝚡𝟷)
𝚔𝟷 ,

𝑎3𝚙1 − 𝑏3𝚙0 = 𝜆3(1 − 𝚒𝚡1)
𝑘′
3 ,

and we conclude that 𝚙0, 𝚙1 share the irreducible factor 1 − 𝚒𝚡1, which is a contradiction.
Consequently, 𝑘′

3
= 0 and 𝑎3𝚙1 − 𝑏3𝚙0 = 𝜆3. By (3.2),

𝜆3(𝑏1 − 𝑏1) = (𝑎3𝚙1 − 𝑏3𝚙0)(𝑏1 − 𝑏1) = (𝑎3𝑏1𝜆1 − 𝑏3𝜆1)(1 + 𝚒𝚡1)
𝑘1 − (𝑎3𝑏1𝜆1 − 𝑏3𝜆1)(1 − 𝚒𝚡1)

𝑘1 .

We substitute 𝚡1 = 0, 𝚡1 = 𝚒 and 𝚡1 = −𝚒 and obtain:

⎧⎪⎪⎨⎪⎪⎩
𝜆3(𝑏1 − 𝑏1) = (𝑎3𝑏1𝜆1 − 𝑏3𝜆1) − (𝑎3𝑏1𝜆1 − 𝑏3𝜆1),

𝜆3(𝑏1 − 𝑏1) = −(𝑎3𝑏1𝜆1 − 𝑏3𝜆1)2
𝑘1 ,

𝜆3(𝑏1 − 𝑏1) = (𝑎3𝑏1𝜆1 − 𝑏3𝜆1)2
𝑘1 .

Thus, using second and third equations, we have (𝑎3𝑏1𝜆1 − 𝑏3𝜆1) = −(𝑎3𝑏1𝜆1 − 𝑏3𝜆1). Using
now the first equation, we deduce 𝜆3(𝑏1 − 𝑏1) = 2(𝑎3𝑏1𝜆1 − 𝑏3𝜆1). As 𝜆3(𝑏1 − 𝑏1) ≠ 0, we have
𝑎3𝑏1𝜆1 − 𝑏3𝜆1 ≠ 0. Thus,

2(𝑎3𝑏1𝜆1 − 𝑏3𝜆1) = (𝑎3𝑏1𝜆1 − 𝑏3𝜆1)((1 + 𝚒𝚡1)
𝑘1 + (1 − 𝚒𝚡1)

𝑘1)

⇝ 2 = (1 + 𝚒𝚡1)
𝑘1 + (1 − 𝚒𝚡1)

𝑘1 .

If we substitute 𝚡1 = 2𝚒, we deduce 2 = (−1)𝑘1 + 3𝑘1 , which only holds if 𝑘1 = 1. This means by
(3.2)

𝚙0 =
𝜆1(1 + 𝚒𝚡1) − 𝜆1(1 − 𝚒𝚡1)

𝑏1 − 𝑏1

and 𝚙1 =
𝑏1𝜆1(1 + 𝚒𝚡1) − 𝑏1𝜆1(1 − 𝚒𝚡1)

𝑏1 − 𝑏1

, (3.3)
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ON THE ONE DIMENSIONAL POLYNOMIAL, REGULAR AND REGULOUS IMAGES 19 of 25

so [𝐹0 ∶ 𝐹1] ∶ ℂℙ1 → ℂℙ1 is an invariant projective change of coordinates. We may assume, after
changing Π by 𝐹, that Π = 𝐹, which corresponds to situation (1) above.
Step 3. Assume next that no root [𝑎3 ∶ 𝑏3] ∈ ℂℙ1 of Π0 is different from either [1 ∶ 𝑏1] or [1 ∶

𝑏1]. Thus, the degree 𝑒 of Π0 is even, say 𝑒 = 2𝑒0, and

Π0 = 𝑢(𝚡1 − 𝑏1𝚡0)
𝑒0(𝚡1 − 𝑏1𝚡0)

𝑒0 .

After an invariant projective change of coordinates inℂℙ1 thatmaps [1 ∶ 𝑏1] to [1 ∶ 𝚒] and [1 ∶ 𝑏1]
to [1 ∶ −𝚒], we may assume Π0 = 𝑢(𝚡2

0
+ 𝚡2

1
)𝑒0 , Π0(𝚙0, 𝚙1) = 𝑢(𝚙2

0
+ 𝚙2

1
)𝑒0 = (1 + 𝚡2

1
)𝑝 and{

𝚙𝟷 − 𝚒𝚙𝟶 = ⥧𝟷(𝟷 + 𝚒𝚡𝟷)
𝚔𝟷 ,

𝚙1 + 𝚒𝚙0 = 𝜆1(1 − 𝚒𝚡1)
𝑘1 .

Consequently, {
𝐹1 − 𝚒𝐹0 = 𝜆1(𝚡0 + 𝚒𝚡1)

𝑘1 ,

𝐹1 + 𝚒𝐹0 = 𝜆1(𝚡0 − 𝚒𝚡1)
𝑘1 .

(3.4)

As Π0(𝐹0, 𝐹1) = (𝚡2
0
+ 𝚡2

1
)𝑝, we have 𝑘1𝑒0 = 𝑝. This means that we are in situation (3) above. In

Remark 3.1, we will use (3.4) to better understand the regular map 𝐹.
Step 4. Assume next the roots of Π0 belong to ℝℙ1. Suppose after interchanging the variables

𝚡0, 𝚡1 if necessary that 𝑎1 = 1 and [1 ∶ 𝑏1] ≠ [𝑎2 ∶ 𝑏2]. As 𝚙𝑖 ∈ ℝ[𝚡1] for 𝑖 = 0, 1, we have by (3.1)
the system: {

𝚙𝟷 − 𝚋𝟷𝚙𝟶 = ⥧𝟷(𝟷 + 𝚡𝟸
𝟷
)𝚔𝟷 ,

𝑎2𝚙1 − 𝑏2𝚙0 = 𝜆2(1 + 𝚡2
1
)𝑘2 ,

for some 𝜆1, 𝜆2 ∈ ℝ ⧵ {0} and 𝑘1, 𝑘2 ⩾ 0. As 𝚙0, 𝚙1 are relatively prime,we deduce that either 𝑘1 = 0

or 𝑘2 = 0. Suppose that there exists [𝑎3 ∶ 𝑏3] ∈ ℝℙ1 different from [1 ∶ 𝑏1] and [𝑎2 ∶ 𝑏2]. Then,
there exists 𝜆3 ∈ ℝ ⧵ {0} such that

𝑎3𝚙1 − 𝑏3𝚙0 = 𝜆3(1 + 𝚡21)
𝑘3

for some 𝑘3 ⩾ 0. As 𝚙0 and 𝚙1 are relatively prime, we deduce that in the triple 𝑘1, 𝑘2, 𝑘3, there
are two integers, which are zero. This implies solving the corresponding linear system that 𝚙𝟶
and 𝚙𝟷 are constant, which is a contradiction. Thus, Π0 has only two different roots [1 ∶ 𝑏1] and
[𝑎2 ∶ 𝑏2] of multiplicities 𝑒0 and 𝑒1 such that 𝑒0 + 𝑒1 = 𝑒. Consequently, after an invariant projec-
tive change of coordinates in ℂℙ1 that maps [1 ∶ 𝑏1] to [1 ∶ 0] and [𝑎2 ∶ 𝑏2] to [0 ∶ 1], we may
assume Π0 = 𝚡

𝑒0
0
𝚡
𝑒1
1
(where 𝑒0, 𝑒1 ⩾ 0). We have (𝚡2

0
+ 𝚡2

1
)𝑝 = 𝐹0 = Π0(𝐹0, 𝐹1) = 𝐹

𝑒0
0
𝐹
𝑒1
1
, which

is a contradiction, because 𝐹0, 𝐹1 ∈ ℝ[𝚡0, 𝚡1] are relatively prime. Thus, Π0 = 𝑢(𝑎1𝚡1 − 𝑏1𝚡0)
𝑒

and after an invariant projective change of coordinates in ℂℙ1, we may assume Π0 = 𝑢𝚡𝑒
0
. As

= (𝚡2
0
+ 𝚡2

1
)𝑝 = 𝐹0 = 𝐹𝑒

0
, we conclude that 𝐹0 = (𝚡2

0
+ 𝚡2

1
)𝓁 for some 𝓁 ⩾ 1 such that 𝑝 = 𝓁𝑒. This

corresponds to situation (2) above.
We deduceΠ−1(Clzar

ℂℙ𝑚
(𝑆) ∩ 𝖧𝑚∞(ℂ)) is either equal to [0 ∶ 1] (in situation (2)) or to {[1 ∶ 𝚒], [1 ∶

−𝚒]} (in situations (1) and (3)). We distinguish several cases:
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20 of 25 FERNANDO

Case 1.Π−1(Clzar
ℂℙ𝑚

(𝑆) ∩ 𝖧𝑚∞(ℂ)) = {[0 ∶ 1]}. Then Clzar
ℂℙ𝑚

(𝑆) ∩ 𝖧𝑚∞(ℂ) = {𝑝 ∶= Π([0 ∶ 1])}, so it
is a singleton that belongs to 𝖧𝑚∞(ℝ). As Cl

zar
ℂℙ𝑚

(𝑆)𝑝 = Π(ℂℙ1
[0∶1]

), the analytic set germ Clzar
ℂℙ𝑚

(𝑆)𝑝
is irreducible. Consequently, by Lemma 2.7, Clzar

ℝℙ𝑚
(𝑆)(1) ∩ ℝ

𝑚 is unbounded.
Case 2. Π−1(Clzar

ℂℙ𝑚
(𝑆) ∩ 𝖧𝑚∞(ℂ)) = {[1 ∶ 𝚒], [1 ∶ −𝚒]} and Π([1 ∶ 𝚒]) = Π([1 ∶ −𝚒]). Then,

Clzar
ℂℙ𝑚

(𝑆) ∩ 𝖧𝑚∞(ℂ) = {𝑝 ∶= Π([1 ∶ 𝚒])}, so it is a singleton that belongs to 𝖧𝑚∞(ℝ), because 𝑝 =
Π([1 ∶ 𝚒]) = Π(𝜎1([1 ∶ 𝚒])) = 𝜎𝑚(Π([1 ∶ 𝚒])) = 𝜎𝑚(𝑝). Observe that Clzarℂℙ𝑚

(𝑆)𝑝 = Π(ℂℙ1
[1∶𝚒]

) ∪

Π(ℂℙ1
[1∶−𝚒]

), so the analytic set germ Clzar
ℂℙ𝑚

(𝑆)𝑝 has exactly two irreducible components that are
conjugated, that is, 𝜎𝑚(Π(ℂℙ1[1∶𝚒])) = Π(𝜎1(ℂℙ

1
[1∶𝚒]

)) = Π(ℂℙ1
[1∶−𝚒]

), because Π is invariant. In
this case, Π(ℝℙ1) = Clzar

ℝℙ𝑚
(𝑆)(1) ⊂ ℝ𝑚 (see §2.1(∙)) is compact by Lemma 2.8.

Case 3. Π−1(Clzar
ℂℙ𝑚

(𝑆) ∩ 𝖧𝑚∞(ℂ)) = {[1 ∶ 𝚒], [1 ∶ −𝚒]} and 𝑞 ∶= Π([1 ∶ 𝚒]) ≠ Π([1 ∶ −𝚒]) = 𝑞.
Then Clzar

ℂℙ𝑚
(𝑆) ∩ 𝖧𝑚∞(ℂ) = {𝑞, 𝑞} and 𝑞, 𝑞 ∉ 𝖧𝑚∞(ℝ). Observe that Cl

zar
ℂℙ𝑚

(𝑆)𝑞 = Π(ℂℙ1
[1∶𝚒]

) and
Clzar

ℂℙ𝑚
(𝑆)𝑞 = Π(ℂℙ1

[1∶−𝚒]
) are irreducible and conjugated, because Π is invariant, so

𝜎𝑚(Cl
zar
ℂℙ𝑚

(𝑆)𝑞) = 𝜎𝑚(Π(ℂℙ
1
[1∶𝚒]

)) = Π(𝜎1(ℂℙ
1
[1∶𝚒]

))) = Π(ℂℙ1
[1∶−𝚒]

) = Clzar
ℂℙ𝑚

(𝑆)𝑞.

In this case, Π(ℝℙ1) = Clzar
ℝℙ𝑚

(𝑆)(1) ⊂ ℝ𝑚 (see §2.1(∙)) is compact, because Clzar
ℝℙ𝑚

(𝑆) ∩ 𝖧𝑚∞(ℝ) =

∅.
It remains to show for Cases 2 and 3 that 𝑆 = Clzar

ℝℙ𝑚
(𝑆)(1).We have already proved in both cases

that Π(ℝℙ1) = Clzar
ℝℙ𝑚

(𝑆)(1) ⊂ ℝ𝑚 is compact, so Clzar
ℂℙ𝑚

(𝑆) ∩ ℝ𝑚 = Clzar
ℝℙ𝑚

(𝑆)(1) ∪ (Cl
zar
ℝℙ𝑚

(𝑆)(0) ∩

ℝ𝑚) is a compact set. As 𝑆 = g(𝕊1) ⊂ Clzar
ℝℙ𝑚

(𝑆) ∩ ℝ𝑚 is a pure dimensional semialgebraic set of
dimension 1, we deduce 𝑆 ⊂ Clzar

ℝℙ𝑚
(𝑆)(1).

Denote 𝑍 ∶= Clzar
ℂℙ𝑚

(𝑆) ∩ ℂ𝑚, which is an irreducible algebraic set of ℂ𝑚 of dimension 1, and
let 𝜌 ∶ ℂ𝑚 → ℂ2 be an invariant generic projection such that 𝑍′ ∶= 𝜌(𝑍) ⊂ ℂ2 is an algebraic
curve and the restriction 𝜌|𝑍 ∶ 𝑍 → 𝑍′ is (surjective and) generically 1-1. To construct such a
projection use Finiteness of Noether’s normalization [24, Thm.1.5.19] and algebraicity of generic
projections [24, Lem.2.1.6, Thm.2.2.8]. As 𝜌|𝑍 is invariant and generically 1-1, only finitely many
points of 𝑍 ⧵ ℝ𝑚 are mapped onto 𝑍′ ∩ ℝ2 (because conjugated points have conjugated images).
Thus, as 𝑍 ∩ ℝ𝑚 = Clzar

ℂℙ𝑚
(𝑆) ∩ ℝ𝑚 is a compact set and (𝑍′ ∩ ℝ2)(1) ⧵ 𝜌(𝑍 ⧵ ℝ𝑚) is dense in the

pure dimensional semialgebraic set (𝑍′ ∩ ℝ2)(1), we deduce (𝑍′ ∩ ℝ2)(1) ⊂ 𝜌(𝑍 ∩ ℝ𝑚) ⊂ 𝑍′ ∩ ℝ2.
Consequently, (𝑍′ ∩ ℝ2)(1) is a compact set, so 𝑍′ ∩ ℝ2 is a compact (real) algebraic set.
Consider the polynomial map 𝜌◦g ∶ ℝ2 → ℝ2 and let Γ ∈ ℂ[𝚣, 𝚣−1] be a Laurent polyno-

mial such that Γ(𝕊1) = (𝜌◦g)(𝕊1) after identifying ℂ with ℝ2 (see §3.3). We have Γ(𝕊1) =

(𝜌◦g)(𝕊1) ⊂ 𝜌(𝑍 ∩ ℝ𝑚) ⊂ 𝑍′ ∩ ℝ2, which is a compact set. By [25, Thm.2.1], the difference (𝑍′ ∩
ℝ2) ⧵ (𝜌◦g)(𝕊1) is a finite set (maybe empty), so 𝜌(𝑍 ∩ ℝ𝑚) ⧵ 𝜌(g(𝕊1)) is also a finite set (maybe
empty). As 𝜌|𝑍 is generically 1-1, we deduce that (𝑍 ∩ ℝ𝑚) ⧵ g(𝕊1) is a finite set, so (𝑍 ∩ ℝ𝑚)(1) ⧵
g(𝕊1) is a finite set. As 𝕊1 is compact and (𝑍 ∩ ℝ𝑚)(1) is pure dimensional of dimension 1, we
conclude: 𝑆 = g(𝕊1) = (𝑍 ∩ ℝ𝑚)(1) = Clzar

ℝℙ𝑚
(𝑆)(1).

(ii)⟹ (i) As Clzar
ℂℙ𝑚

(𝑆) is an invariant rational curve, there exists by Corollary 2.4 an invari-
ant normalizationΠ ∶= [Π0 ∶⋯ ∶ Π𝑚] ∶ ℂℙ

1 → Clzar
ℂℙ𝑚

(𝑆), which is a surjective regular map. In
particular, Π(ℝℙ1) = Clzar

ℝℙ𝑚
(𝑆)(1) (see §2.1(∙)). We distinguish three cases:

Case 1. Clzar
ℂℙ𝑚

(𝑆) ∩ 𝖧𝑚∞(ℂ) = {𝑝} is a singleton and the analytic set germ Clzar
ℂℙ𝑚

(𝑆)𝑝 is
irreducible. Thus, we may assume

{Π0 = 0} = Π−1(Clzar
ℂℙ𝑚

(𝑆) ∩ 𝖧𝑚∞(ℂ)) = {[0 ∶ 1]}.

 14697750, 2025, 1, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.70241 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [21/07/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



ON THE ONE DIMENSIONAL POLYNOMIAL, REGULAR AND REGULOUS IMAGES 21 of 25

Consequently, Π0 = 𝜆𝚝𝑑
0
for some 𝑑 ⩾ 1 and some 𝜆 ∈ ℝ ⧵ {0} (recall that Π is invariant), so we

may assume 𝜆 = 1. This means that the restriction

Π|ℝ ∶ ℝ ≡ ℝℙ1 ⧵ {[0 ∶ 1]} → Clzar
ℂℙ𝑚

(𝑆) ∩ ℝ𝑚

is a polynomial map. As 𝑆 is irreducible and one dimensional, 𝑆 ⊂ Clzar
ℝℙ𝑚

(𝑆)(1) ⧵ 𝖧
𝑚
∞(ℝ) = Π(ℝ)

(the last equality holds, because Π−1(Clzar
ℝℙ𝑚

(𝑆)(1) ∩ 𝖧
𝑚
∞(ℝ)) = {[0 ∶ 1]}). As 𝑆 is irreducible,

the one-dimensional component 𝐼 of Π−1(𝑆) is by [10, Thm.3.15] connected, 𝐼 ⊂ ℝ (because
Π−1(Clzar

ℂℙ𝑚
(𝑆) ∩ 𝖧𝑚∞(ℂ)) = {[0 ∶ 1]}) andΠ(𝐼) = 𝑆. As 𝑆 is compact andΠ is proper, also 𝐼 is com-

pact, so 𝐼 is a compact interval. After an affine change of coordinates, we may assume 𝐼 = [−1, 1].
As 𝐼 is a polynomial image of 𝕊1, the same happens to 𝑆.
Case 2. Clzar

ℂℙ𝑚
(𝑆) ∩ 𝖧𝑚∞(ℂ) = {𝑝} is a singleton that belongs to 𝖧𝑚∞(ℝ), the analytic set germ

Clzar
ℂℙ𝑚

(𝑆)𝑝 has exactly two irreducible components that are conjugated and 𝑆 = Clzar
ℝℙ𝑚

(𝑆)(1).
Case 3.Clzar

ℂℙ𝑚
(𝑆) ∩ 𝖧𝑚∞(ℂ) = {𝑞, 𝑞} (where 𝑞, 𝑞 ∉ 𝖧𝑚∞(ℝ)), both germsCl

zar
ℂℙ𝑚

(𝑆)𝑞 andClzarℂℙ𝑚
(𝑆)𝑞

are irreducible and conjugated and 𝑆 = Clzar
ℝℙ𝑚

(𝑆)(1).
We prove both Cases 2 and 3 simultaneously. Recall that Π ∶= [Π0 ∶ ⋯ ∶ Π𝑚] ∶ ℂℙ

1 →

Clzar
ℂℙ𝑚

(𝑆) is an invariant normalization of Clzar
ℂℙ𝑚

(𝑆). Both in Cases 2 and 3 we may assume

{Π0 = 0} = Π−1(Clzar
ℂℙ𝑚

(𝑆) ∩ 𝖧𝑚∞(ℂ)) = {[1 ∶ 𝚒], [1 ∶ −𝚒]}.

AsΠ is invariant,we deduceΠ0 ∶= 𝜆(𝚡0 + 𝚒𝚡1)
𝑝(𝚡0 − 𝚒𝚡1)

𝑝 = 𝜆(𝚡2
0
+ 𝚡2

1
)𝑝 for some integer𝑝 ⩾ 1

and some 𝜆 ∈ ℝ ⧵ {0}, so we may assume 𝜆 = 1. As all the components of Π are homogeneous
polynomials of the same degree, we deduce that such degree is 2𝑝. In addition, by §2.1(∙), we
have Π(ℝℙ1) = Clzar

ℝℙ𝑚
(𝑆)(1) = 𝑆.

Consider the regular map

Ψ ∶ {𝚡21 + 𝚡22 − 𝚡20 = 0} → ℂℙ1, [𝑥0 ∶ 𝑥1 ∶ 𝑥2] ↦ [𝑥1 ∶ 𝑥2],

which is surjective, it is well defined and Ψ(𝕊1) = ℝℙ1. Define

𝐹 ∶= [𝐹0 ∶⋯ ∶ 𝐹𝑚] = Π◦Ψ ∶ {𝚡21 + 𝚡22 − 𝚡20 = 0} → ℂℙ𝑚

and observe that𝐹0 = (𝚡2
1
+ 𝚡2

2
)𝑝 = 𝚡

2𝑝
0
on the set {𝚡2

1
+ 𝚡2

2
− 𝚡2

0
= 0}, so wemay assume𝐹0 = 𝚡

2𝑝
0
.

As 𝕊1 = {𝚡2
1
+ 𝚡2

2
− 𝚡2

0
= 0, 𝚡0 = 1}, the restriction map

𝑓 ∶= 𝐹|𝕊1 ∶= [1 ∶ 𝐹1 ∶ … ∶ 𝐹𝑚] ∶ 𝕊
1 → ℝ𝑚

is the restriction of a polynomial map to 𝕊1 and 𝑓(𝕊1) = Π(ℝℙ1) = 𝑆, as required.

Remark 3.1. The invariant regular map 𝐹 ∶= (𝐹0, 𝐹1) ∶ ℂℙ
1 → ℂℙ1 of (3.4) satisfies

⎧⎪⎨⎪⎩
𝐹0 = 𝚒

𝜆1
2
(𝚡0 + 𝚒𝚡1)

𝑘1 − 𝚒
𝜆1
2
(𝚡0 − 𝚒𝚡1)

𝑘1

𝐹1 =
𝜆1
2
(𝚡0 + 𝚒𝚡1)

𝑘1 +
𝜆1
2
(𝚡0 − 𝚒𝚡1)

𝑘1 .
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22 of 25 FERNANDO

We have 𝐹|ℝℙ1 ∶ ℝℙ1 → ℝℙ1, [𝑥0 ∶ 𝑥1] ↦ [−ℑ(𝜆1(𝑥0 + 𝚒𝑥1)
𝑘1) ∶ ℜ(𝜆1(𝑥0 + 𝚒𝑥1)

𝑘1)] and we
may assume that 𝜆1𝜆1 = 1. We refer the reader to [27, Ch.VIII.§2] for the concept and main
properties of the topological degree of a continuous map 𝑓 ∶ 𝕊1 → 𝕊1. Consider the regular
maps 𝜓 ∶ 𝕊1 → ℝℙ1, (𝑥, 𝑦) ↦ [𝑥 ∶ 𝑦], which has topological degree 2, 𝜙 ∶ ℝℙ1 → 𝕊1, [𝑡0 ∶

𝑡1] ↦ (
𝑡2
1
−𝑡2

0

𝑡2
0
+𝑡2

1

, −
2𝑡0𝑡1
𝑡2
0
+𝑡2

1

), which has topological degree 1 (because it is a homeomorphism), and the
composition

𝜙◦𝐹|ℝℙ1◦𝜓 ∶ 𝕊1 → 𝕊1, (𝑥, 𝑦) ≡ 𝑥 + 𝚒𝑦 =∶ 𝑧 ↦ 𝜆21𝑧
2𝑘1 = 𝜆21(𝑥 + 𝚒𝑦)2𝑘1

≡ (ℜ(𝜆21(𝑥0 + 𝚒𝑥1)
2𝑘1), ℑ(𝜆21(𝑥0 + 𝚒𝑥1)

2𝑘1),

which has topological degree 2𝑘1. Consequently, 𝐹|ℝℙ1 ∶ ℝℙ1 → ℝℙ1 has topological degree
𝑘1 ⩾ 1.

Proof of Corollary 1.10. It is enough to apply Theorem 1.8 for𝑚 = 2 using the equivalence between
the restrictions to 𝕊1 of Laurent polynomials in ℂ[𝚣, 𝚣−1] and polynomial maps ℝ2 → ℝ2 already
seen in §3.3. □

Proof of Proposition 1.12. The implication (i)⟹ (ii) is clear, so let us prove (ii)⟹ (iii). Let 𝑘 ⩾ 2

and let 𝑓 ∶ ℝ𝑘+1 → ℝ𝑚 be a polynomial map such that 𝑓(𝕊𝑘) = 𝑆. Let 𝐹 ∶ ℂ𝑘+1 → ℂ𝑚 be the
(invariant) polynomial extension of 𝑓 to ℂ𝑘+1. Let 𝑌 ∶= {𝚡2

1
+⋯ + 𝚡2

𝑘+1
− 𝚡2

0
= 0} ⊂ ℂℙ𝑘+1 be

the Zariski closure of 𝕊𝑘 in ℂℙ𝑘+1, which is a nonsingular complex projective algebraic set, and
let𝑋 ∶= Clzar

ℂℙ𝑚
(𝑆), which is irreducible, because 𝑆 is by [10, (3.1)(iv)] an irreducible semialgebraic

set. As 𝐹 is continuous for the Zariski topology, 𝐹 is a polynomial map and 𝐹(𝕊𝑘) = 𝑆, we deduce
𝐹(𝑌 ∩ ℂ𝑘+1) ⊂ 𝑋 ∩ ℂ𝑚. By Chevalley’s elimination theorem [28, Thm.(2.31)], 𝐹(𝑌 ∩ ℂ𝑘+1) is an
invariant constructible subset of 𝑋 ∩ ℂ𝑚. As 𝑆 has (real) dimension 1, the intersection 𝑋 ∩ ℂ𝑚

has (complex) dimension 1. As 𝑋 is irreducible, there exists an invariant (nonempty) finite set
𝐸 ⊂ ℂℙ𝑚 such that 𝑋 ∩ 𝖧𝑚∞(ℂ) ⊂ 𝐸 and 𝐹(𝑌 ∩ ℂ𝑘+1) = 𝑋 ⧵ 𝐸 ⊂ ℂ𝑚.
Let 𝐻 ⊂ ℝ𝑘+1 be any two-dimensional plane through the origin. Then, 𝐻 ∩ 𝕊𝑘 is a circle of

center the origin and radius 1 and there exists an affine isomorphism 𝜂 ∶ 𝕊1 → 𝐻 ∩ 𝕊𝑘. As 𝐹 is
nonconstant (and for each pair of points of 𝕊𝑘, there exists a two-dimensional plane through
such points and the origin), there exists 𝐻 such that 𝑓|𝐻∩𝕊𝑘 ∶ 𝐻 ∩ 𝕊𝑘 → 𝑆 is nonconstant, so
𝑇 ∶= 𝑓(𝐻 ∩ 𝕊𝑘) is a one-dimensional semialgebraic subset of 𝑆. As 𝑆 and 𝑇 are by [10, (3.1)(iv)]
irreducible, both have dimension 1 and 𝑇 ⊂ 𝑆, we deduce 𝑋 = Clzar

ℂℙ𝑚
(𝑆) = Clzar

ℂℙ𝑚
(𝑇). As 𝑇 is the

image of 𝕊1 under g ∶= 𝑓◦𝜂, we conclude by Theorem 1.8 that the Zariski closure 𝑋 = Clzar
ℂℙ𝑚

(𝑇)

is an invariant rational curve such that one of the following three cases hold:

(1) Clzar
ℂℙ𝑚

(𝑇) ∩ 𝖧𝑚∞(ℂ) = {𝑝} is a singleton (which belongs to 𝖧𝑚∞(ℝ)) and the analytic set germ
Clzar

ℂℙ𝑚
(𝑇)𝑝 is irreducible.

(2) Clzar
ℂℙ𝑚

(𝑇) ∩ 𝖧𝑚∞(ℂ) = {𝑝} is a singleton (which belongs to 𝖧𝑚∞(ℝ)), the analytic set germ
Clzar

ℂℙ𝑚
(𝑇)𝑝 has exactly two irreducible components that are conjugated, and 𝑇 = Clzar

ℝℙ𝑚
(𝑇)(1).

(3) Clzar
ℂℙ𝑚

(𝑇) ∩ 𝖧𝑚∞(ℂ) = {𝑞, 𝑞} (where 𝑞, 𝑞 ∉ 𝖧𝑚∞(ℝ)), the analytic set germs Clzar
ℂℙ𝑚

(𝑇)𝑞 and
Clzar

ℂℙ𝑚
(𝑇)𝑞 are irreducible and conjugated, and 𝑇 = Clzar

ℝℙ𝑚
(𝑇)(1).

Let us discard cases (2) and (3). In such cases, 𝑇 ⊂ 𝑆 ⊂ Clzar
ℝℙ𝑚

(𝑆)(1) = Clzar
ℝℙ𝑚

(𝑇)(1) = 𝑇, so 𝑇 = 𝑆 =

Clzar
ℝℙ𝑚

(𝑆)(1).
Let 𝑋 ∶= {𝚡2

1
+ 𝚡2

2
− 𝚡2

0
= 0} ⊂ ℂℙ2 and let 𝐺 ∶ 𝑋 ⤏ Clzar

ℂℙ𝑚
(𝑇) be the regular extension of g to

𝑋. Consider the parameterizationΦ ∶ ℂℙ1 → 𝑋, [𝚝0 ∶ 𝚝1] → [𝚝2
0
+ 𝚝2

1
∶ 2𝚝0𝚝1 ∶ 𝚝

2
1
− 𝚝2

0
] and the
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composition 𝑃 ∶= 𝐺◦Φ ∶ ℂℙ1 → Clzar
ℂℙ𝑚

(𝑆). LetΠ ∶ ℂℙ1 → 𝑋 be an invariant normalization of 𝑋
and let 𝑃 ∶ ℂℙ1 → ℂℙ1 be an invariant regular map such that 𝑃 = Π◦𝑃 (see the beginning of the
proof of Theorem 1.8 for further details concerning the construction of the previous regularmaps).
The restriction 𝑃|ℝℙ1 ∶ ℝℙ1 → ℝℙ1 is either idℝℙ1 and has topological degree 1 or 𝑃|ℝℙ1 ≠ idℝℙ1

and has by Remark 3.1 topological degree ⩾ 1.
By §2.1(∙), we have Π(ℝℙ1) = Clzar

ℝℙ𝑚
(𝑆)(1) = 𝑆. As Π ∶ ℂℙ1 → 𝑋 is a proper finite map and

𝐸 ≠ ∅ is invariant, we deduce that 𝐸′ ∶= Π−1(𝐸) is also an invariant finite (nonempty) set and
Π ∶ ℂℙ1 ⧵ 𝐸′ → 𝑋 ⧵ 𝐸 is proper, finite, and surjective. Thus, Π|ℂℙ1⧵𝐸′ ∶ ℂℙ1 ⧵ 𝐸′ → 𝑋 ⧵ 𝐸 is the
normalization of𝑋 ⧵ 𝐸. As𝑌 ∩ ℂ𝑘+1 is nonsingular, it is a normal affine complex algebraic set. By
the universal property of normalization [32, Ch.2.§5.Thm.5(ii), pag.130], there exists an invariant
regular map 𝐹∙ ∶ 𝑌 ∩ ℂ𝑘+1 → ℂℙ1 ⧵ 𝐸′ such that 𝐹|𝑌∩ℂ𝑘+1 = Π|ℂℙ1⧵𝐸′◦𝐹∙. Let 𝐸 ∶ 𝑋 → 𝑌 be a
regular extension of 𝜂 ∶ 𝕊1 → 𝕊𝑘 and observe that Π◦𝑃 = 𝐹◦𝐸◦Φ = Π◦𝐹∙◦𝐸◦Φ outside a finite
subset of ℂℙ1, so 𝑃 = 𝐹∙◦𝐸◦Φ outside a finite subset of ℂℙ1. We have 𝑃|ℝℙ1 = 𝐹∙|𝕊𝑘◦𝜂◦Φ|ℝℙ1 ∶
ℝℙ1 → 𝕊1 → 𝕊𝑘 → ℝℙ1. Fix a point 𝑐 ∈ ℝℙ1 and consider the induced chain of homomorphisms
between the homotopy groups (see [27, Ch.II.§4] for further details)

(𝑃|ℝℙ1)∗ = (𝐹∙|𝕊𝑘 )∗◦𝜂∗◦(Φ|ℝℙ1)∗ ∶ 𝜋1(ℝℙ1, 𝑐) → 𝜋1(𝕊
1, Φ(𝑐)) → 𝜋1(𝕊

2, 𝜂(Φ(𝑐))) → 𝜋1(ℝℙ
1, 𝑃(𝑐)).

As 𝜋1(𝕊2, 𝜂(Φ(𝑐))) = 0, we deduce (𝑃|ℝℙ1)∗ = 0, which is a contradiction, because 𝑃|ℝℙ1 has
topological degree ⩾ 1, as we have explained above.
Consequently, only case (1) is possible and assertion (iii) holds.
We finally check (iii)⟹ (i). By Theorem 1.7, there exists a polynomial map g ∶ ℝ → ℝ𝑚 such

that g([−1, 1]) = 𝑆. The projection 𝜌 ∶ ℝ3 → ℝ, (𝑥, 𝑦, 𝑧) ↦ 𝑥 satisfies 𝜌(𝕊2) = [−1, 1]. Thus, the
composition 𝑓 ∶= g◦𝜌 ∶ ℝ3 → ℝ𝑚 is a polynomial map such that (g◦𝜌)(𝕊2) = g([−1, 1]) = 𝑆, as
required. □
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