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In this work we analyze some topological properties of the remainder ∂M :=
β∗

s M \M of the semialgebraic Stone–Cěch compactification β∗
s M of a semialgebraic 

set M ⊂ Rm in order to ‘distinguish’ its points from those of M . To that end 
we prove that the set of points of β∗

s M that admit a metrizable neighborhood in 
β∗

s M equals Mlc ∪ (Clβ∗
s M

(M≤1) \ M≤1) where Mlc is the largest locally compact 
dense subset of M and M≤1 is the closure in M of the set of 1-dimensional points 
of M . In addition, we analyze the properties of the sets ∂̂M and ∂̃M of free maximal 
ideals associated with formal and semialgebraic paths. We prove that both are dense 
subsets of the remainder ∂M and that the differences ∂M \ ∂̂M and ∂̂M \ ∂̃M are 
also dense subsets of ∂M . It holds moreover that all the points of ∂̂M have countable 
systems of neighborhoods in β∗

s M .
© 2017 Elsevier B.V. All rights reserved.

1. Introduction

A semialgebraic set M ⊂ Rm is a (finite) boolean combination of sets defined by polynomial equalities 
and inequalities. In order to make the presentation lighter, all along this paper a map f : M → N is 
semialgebraic if its graph is a semialgebraic set (in particular, both M and N are semialgebraic sets) and if 
in addition it is continuous. As usual f is a semialgebraic function if N = R. Denote the set of (continuous) 
semialgebraic maps from M to N with S(M, N). The sum and product of functions defined pointwise 
endow the set S(M) := S(M, R) of (continuous) semialgebraic functions on M with a natural structure of 
a unital commutative ring. In fact S(M) is an R-algebra and the subset S∗(M) of bounded semialgebraic 
functions on M is an R-subalgebra of S(M). Write S�(M) to refer indistinctly either to S(M) or S∗(M). 
We denote the Zariski spectrum of S�(M) with Spec�s (M) and the maximal spectrum of S�(M) with β�

sM . 
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The maximal spectra βsM and β∗
s M are always homeomorphic but the involved homeomorphism is not 

natural from a categorical point of view [10, 3.6]. We use the symbol Cl(·) to denote the closure of a subset 
of a topological space X and we include a subindex if we want to stress the topological space X. In the 
following M ⊂ Rm and N ⊂ Rn always denote semialgebraic sets.

A point p of a topological space X is an endpoint of X if it has an open neighborhood U ⊂ X equipped 
with a homeomorphism f : U → [0, 1) that maps p onto 0. In case X is a semialgebraic set we may assume 
that the previous homeomorphism is semialgebraic. We denote the set of endpoints of X with η(X). Recall 
briefly how the ring S(M) (resp. S∗(M)) determine M (resp. M besides the finite set η(M) of endpoints 
of M) up to semialgebraic homeomorphism. More generally the Zariski spectrum Specs(M) determines M
up to homeomorphism while Spec∗s (M) classifies topologically M \ η(M).

1.1. Rings of semialgebraic functions

It is natural to wonder whether the ring S(M) determines the semialgebraic set M . Let N ⊂ Rn be a semi-
algebraic set, let ϕ : S(N) → S(M) be a homomorphism of R-algebras and let πi be the restriction to N of 
the ith projection. Recall that: the image of the semialgebraic map f := (f1, . . . , fn) := (ϕ(π1), . . . , ϕ(πn)) :
M → Rn is contained in N and ϕ(g) = g ◦ f for each g ∈ S(N).

Proof. Fix a ∈ M and let ga ∈ S(N) be given by ga(x1, . . . , xn) :=
∑n

i=1(xi − fi(a))2. Observe that ϕ(ga)
vanishes at a, so ϕ(ga) is not a unit of S(M). Consequently, ga has a (unique) zero in N , which is f(a). 
Thus, f(a) ∈ N . Denote ma the maximal ideal of S(M) associated with a and nf(a) the maximal ideal of 
S(N) associated with f(a). As ϕ(ga) ∈ ma, also g2

a + h2 ∈ ϕ−1(ma) for each h ∈ ϕ−1(ma). As g2
a + h2 is not 

a unit, it vanishes at the unique zero f(a) of ga. Thus, ϕ−1(ma) ⊂ nf(a), so ϕ(h)(a) = 0 implies h(f(a)) = 0
for each h ∈ S(N). Consequently, as ϕ is an R-algebra homomorphism, ϕ(g) = g ◦ f for each g ∈ S(N), as 
claimed. �

Consider the natural map

(·)∗ : S(M,N) → HomR-alg(S(N),S(M)), f �→ f∗

where f∗ : S(N) → S(M), g �→ g◦f . We have proved before: (·)∗ is a bijection. Consequently, M and N are 
semialgebraically homeomorphic if and only if the rings S(M) and S(N) are isomorphic. This argument goes 
back to the pioneer work of Schwartz [15–17]. Consequently, the category of semialgebraic sets is faithfully 
reflected in the full subcategory of real closed rings consisting of all R-algebras of the form S(M).

1.2. Rings of bounded semialgebraic functions

The next step is to wonder whether the ring S∗(M) determines the semialgebraic set M . Recall that 
S�(M) is a real closed ring [16,20]. In [23, §11] it is shown that for every real closed ring A there exists a 
largest real closed ring B such that A is convex in B. In [18] it is shown how the Zariski spectrum of a real 
closed ring lies in the Zariski spectrum of any convex subring. Schwartz proved in [19, §5] that S(M \η(M))
is the convex closure of S∗(M) = S∗(M \ η(M)). If S∗(N) and S∗(M) are isomorphic as R-algebras, then 
their convex closures S(N \ η(N)) and S(M \ η(M)) are also isomorphic as R-algebras. Consequently, the 
semialgebraic sets M \ η(M) and N \ η(N) are by 1.1 semialgebraically homeomorphic.

In addition, if S(M) and S∗(N) are isomorphic, all semialgebraic functions on M are bounded. Thus, 
S∗(N) ∼= S(M) = S∗(M). This implies that M is compact and the semialgebraic sets M \ η(M) and 
N \ η(N) are semialgebraically homeomorphic.
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1.3. Homeomorphisms between Zariski spectra

Homeomorphisms between Zariski spectra induced by R-algebra isomorphisms are quite restrictive and 
it is natural to wonder what happens when dealing with general homeomorphisms. Let us recall first how 
the Zariski spectrum Specs(M) determines M up to homeomorphism. To that end we need the following 
topological property that distinguishes the points of M from those of Specs(M) \M :

1.3.1. The maximal ideals ma of S(M) associated with points a ∈ M can be characterized topologically 
as those points that are isolated for the inverse topology of Specs(M) within the set of closed points of the 
Zariski topology of Specs(M) (the inverse topology has the open and quasi-compact sets of Specs(M) as a 
basis of closed sets). In algebraic terms this means that the maximal ideals ma associated with points a ∈ M

are exactly those maximal ideals that are the Jacobson radical of a principal ideal (the ideal generated by 
the distance function to a point a ∈ M restricted to M has Jacobson radical ma). Recall that the Jacobson 
radical of an ideal a of a ring A is the intersection of all the maximal ideals of A that contain a. If m is a 
maximal ideal of S(M) that is not associated to a point of M and f ∈ m, then its zero set is not empty, 
so there exists a point a ∈ M such that f ∈ ma. Thus, m is not the Jacobson radical of the principal ideal 
generated by f . Consequently,

1.3.2. Every homeomorphism γ : Specs(N) → Specs(M) restricts to homeomorphisms γ|βsN : βsN →
βsM and γ|N : N → M .

There are other topological properties of M that can be explicitly encoded in Specs(M), see [23, §4]. For 
an approach to these questions in the frame of rings of definable continuous functions on definable sets in 
o-minimal expansions of fields we refer the reader to [22].

1.3.3. With the Zariski spectrum Spec∗s (M) one can proceed analogously using the inverse topology, so 
we have to determine the set E of maximal ideals (that is, closed points for the Zariski topology) m∗ that 
are the Jacobson radical of a principal ideal of S∗(M). We prove in Corollary 4.11 that E = M ∪ η(β∗

s M). 
As η(M) = η(β∗

s M) ∩ M , the Zariski spectrum Spec∗s (M) classifies topologically β∗
s M and M \ η(M). In 

this case S∗(M) = S∗(M \ η(M)), so we cannot distinguish topologically the endpoints of M from those of 
β∗

s M that are not in M . Consequently,

1.3.4. Every homeomorphism γ : Spec∗s (N) → Spec∗s (M) restricts to homeomorphisms γ|βsN : βsN →
βsM and γ|N\η(N) : N \ η(N) → M \ η(M).

1.3.5. We prove in Corollary 3.5 that M\η(M) is the set of closed branching points of Spec∗s (M). A prime 
ideal p of S∗(M) is a branching point of Spec∗s (M) if there exist two prime ideals q1, q2 of S∗(M) different 
from p such that p ∈ Cl(qi) for i = 1, 2 but qi /∈ Cl(qj) if i 
= j. The condition ‘to be a closed branching 
point’ provides an alternative topological characterization of the points of M \ η(M) inside Spec∗s (M) that 
only involves its Zariski topology and makes no use of the inverse topology.

1.3.6. As a consequence of 1.3.3, it holds also that a homeomorphism γ : β∗
s N → β∗

s M restricts to 
a homeomorphism γ|N\η(N) : N \ η(N) → M \ η(M). On the contrary there are many homeomorphisms 
between semialgebraic sets that do not extend to their semialgebraic Stone–Cěch compactifications (see 
Examples A.1). Consequently, they admit neither extensions to the Zariski spectra Specs(M) and Spec∗s (M). 
In addition Shiota–Yokoi proposed in [21] a pair of compact homeomorphic semialgebraic sets that are not 
semialgebraically homeomorphic.
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1.4. Topological properties of maximal spectra

Recall that a semialgebraic compactification of M is a pair (X, j) where j : M ↪→ X is a semialgebraic 
embedding such that j(M) is a dense subset of X and X is a compact semialgebraic subset of some 
Euclidean space. Given two compactifications (X1, j1) and (X2, j2) of a semialgebraic set M ⊂ Rn, we 
say that (X2, j2) dominates (X1, j1), and we write (X1, j1) � (X2, j2), if there exists a semialgebraic 
surjective map ρ : X2 → X1 such that ρ ◦ j2 = j1. In [11, 4.6] we proved that the semialgebraic Stone–Cěch 
compactification β∗

s M is the inverse limit of the family of all semialgebraic compactifications of M , whereas 
in [13, 3.A.7] we proved that for each prime ideal of S∗(M) there exists a semialgebraic compactification 
(X, j) of M such that qf(S∗(M)/p) = qf(S(X)/(p ∩ S(X))). In fact, certain topological properties of β∗

s M

and of the remainder ∂M := β∗
s M \M arise from the properties of semialgebraic compactifications of M . 

For instance, the number of connected components of ∂M is finite and it coincides with the maximum of the 
number of connected components of the remainder X \ j(M) of any semialgebraic compactification (X, j)
of M , see [11, Lem. 5.6 & Thm. 5.8]. In addition, we prove in [11] that ∂M is always locally connected 
and it is locally compact if and only if the set M \Mlc of points of M at which M is non-locally compact 
is a compact set, see also Proposition 2.1. Thus, both β∗

s M and its remainder ∂M provide algebraic and 
topological information about M .

Even if β∗
s M and ∂M are objects of abstract nature, they are useful to solve problems concerning a 

semialgebraic set M ⊂ Rm and its rings of semialgebraic and bounded semialgebraic functions: (1) to 
obtain a Nullstellensatz and a Lojasiewicz’s inequality for the ring of bounded semialgebraic functions 
S∗(M), when M is an arbitrary semialgebraic set [12, Thm. 3.1], which needs not to be locally compact 
[1, §2.6]; (2) to prove that dim(S∗(M)) = dim(S(M)) = dim(M), see [13]; (3) to characterize surjective 
proper semialgebraic maps using remainders, see Remark 4.2; (4) to characterize the semialgebraic maps that 
are (simultaneously) open, proper and surjective using the semialgebraic Stone–Cěch compactification [9]; 
(5) to determine the cardinality of the fibers of spectral maps induced by semialgebraic embeddings [8].

As we have pointed above, in order to use the full strength of β∗
sM = M � ∂M (which is the set of 

closed points of Spec∗s (M)), it is useful to find topological conditions (with respect to the Zariski topology 
of β∗

s M) that distinguish the points of M from those of ∂M . In [14, 9.6-7] the authors prove that if X is 
a metrizable space, then X is the set of Gδ-points of the Stone–Čech compactification βX of X. It would 
seem reasonable to follow a similar strategy. As we show in Lemma 4.8, all points of M have a countable 
basis of neighborhoods in β∗

sM . However, we prove in Theorem 4.9 that the same happens for the dense 
subset ∂̂M of the remainder ∂M := β∗

s M \M constituted by the free maximal ideals associated with formal 
paths, that we study with care in Section 4. We study also some properties of the set ∂̃M constituted by 
the free maximal ideals associated with semialgebraic paths. In addition, we prove that this set is dense in 
∂M and that ∂̂M \ ∂̃M and ∂M \ ∂̂M are respectively dense in ∂̂M and ∂M .

An almost satisfactory topological property to distinguish the points of ∂M from those of M is ‘to admit a 
metrizable neighborhood in β∗

sM ’. We characterized the semialgebraic sets M whose maximal spectrum β∗
s M

is a metrizable space in [11, 5.17]: this happens for those semialgebraic sets whose maximal spectrum β∗
s M

is homeomorphic to a semialgebraic set. In Theorem 4.12 we prove that the set of points of β∗
sM that admit 

a metrizable neighborhood in β∗
sM is Mlc ∪ η(β∗

s M). In addition, η(β∗
sM) = η(M) ∪ (Clβ∗

s M (M≤1) \M≤1)
where M≤1 is the closure in M of the set of 1-dimensional points of M . Thus, if M = Mlc is a locally 
compact semialgebraic set, the set M \ η(M) is characterized as the set of points of β∗

sM that admit a 
metrizable neighborhood in β∗

sM .

Structure of the article. In Section 2 we compile the preliminary terminology and results concerning Zariski 
and maximal spectra of rings of semialgebraic and bounded semialgebraic functions that we use along this 
work. Most of the results in Section 2 are collected from [6,10,11,13] and presented without proofs. The 
reading can be started directly in Section 3 and referred to the preliminaries only when needed. In Section 3
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we study algebraic properties of points of the remainder associated with formal paths and semialgebraic 
paths and we analyze as a consequence some announced properties of η(M) and M \ η(M). In Section 4
we analyze the main properties of the remainder ∂M quoted above: density of ∂̂M in ∂M , density of 
∂̂M \ ∂̃M and ∂M \ ∂̂M in ∂̂M and ∂M respectively, the points of ∂̂M are first-countable in β∗

s M and the 
characterization of the points of β∗

sM with metrizable neighborhoods.

2. Preliminaries on spectra of rings of semialgebraic functions

In the following M ⊂ Rm denotes a semialgebraic set. For each f ∈ S�(M) the semialgebraic set 
Z(f) := {x ∈ M : f(x) = 0} is the zero set of f and D(f) := M \ Z(f) is its complement. The dimension
dim(M) of M is the dimension of its algebraic Zariski closure [1, §2.8]. The local dimension dim(Mx) of 
M at a point x ∈ Cl(M) is the dimension dim(U) of a small enough open semialgebraic neighborhood 
U ⊂ Cl(M) of x. The dimension of M coincides with the maximum of those local dimensions. For any 
fixed d the set of points x ∈ M such that dim(Mx) = d is a semialgebraic subset of M .

2.1. Locally closed semialgebraic sets

Locally closed subsets of a locally compact topological space coincide with locally compact ones [2, §9.7, 
Props. 12–13]. The sets Cl(M) and U := Rm \ (Cl(M) \M) are semialgebraic. If M is locally compact, U is 
open and M = Cl(M) ∩ U is the intersection of a closed and an open semialgebraic subsets of Rm. The 
construction of the largest locally compact and dense subset Mlc of M is the main goal of [5, 9.14–9.21]. 
Define ρ0(M) := Cl(M) \M and ρ1(M) := ρ0(ρ0(M)) = Cl(ρ0(M)) ∩M .

Proposition 2.1. The semialgebraic set Mlc := M \ρ1(M) = Cl(M) \Cl(ρ0(M)) is the largest locally compact 
and dense subset of M and coincides with the set of points of M that have a compact neighborhood in M .

Remarks 2.2. (i) If M has dimension ≤ 1, then M is locally compact.
(ii) Denote the set of points of M of local dimension ≥ 2 with M≥2 and recall that M≤1 is the closure 

in M of the set of 1-dimensional points of M . We have M = M≥2 ∪M≤1 and M≥2 ∩M≤1 is a finite set.
(iii) If M≥2 is compact, M is locally compact. Indeed,

ρ0(M) = Cl(M≥2 ∪M≤1) \ (M≥2 ∪M≤1) = Cl(M≤1) \ (M≥2 ∪M≤1) = ρ0(M≤1) \M≥2

is a finite set, so ρ1(M) is empty. Thus, M = Mlc is locally compact.

2.2. Zariski spectra of rings of semialgebraic functions

We recall some results concerning the Zariski spectra of rings of semialgebraic functions and bounded 
semialgebraic functions [10, §3–§6]. The Zariski spectrum Spec�s(M) is endowed with the Zariski topology, 
which has the family of sets DSpec�s (M)(f) := {p ∈ Spec�s(M) : f /∈ p} as a basis of open sets where 
f ∈ S�(M). We denote ZSpec�s (M)(f) := Spec�s(M) \DSpec�s (M)(f). Recall that S�(M) is a Gelfand ring, so 
each prime ideal of S�(M) is contained in a unique maximal ideal.

2.2.1. If a ∈ M , we denote the maximal ideal of all functions in S�(M) vanishing at a with m�
a. The 

map φ : M → Spec�s(M), a �→ m�
a embeds M endowed with the Euclidean topology into Spec�s (M) as a 

dense subspace.
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2.2.2. Given a semialgebraic map ϕ : N → M , there exists a unique continuous map Spec�s (ϕ) :
Spec�s(N) → Spec�s(M) that extends ϕ. In addition, if N ⊂ M and N is closed in M , then Spec�s(N) ∼=
ClSpec�s (M)(N) via Spec�s(j) where j : N ↪→ M is the inclusion map.

2.2.3. Semialgebraic depth. Let p ⊂ q be two prime ideals of S�(M). The coheight of p in q is the 
maximum of the integers r ≥ 0 such that there exists a chain of prime ideals p := p0 � · · · � pr =: q. We 
define the coheight of a prime ideal p of S�(M) as the coheight of p in the unique maximal ideal of S�(M)
containing p.

An ideal a of S(M) is a z-ideal if given f, g ∈ S(M) such that Z(f) ⊂ Z(g) and f ∈ a, then g ∈ a. If M
is locally compact, all prime ideals of S(M) are z-ideals by [1, 2.6.6].

The semialgebraic depth of a prime ideal p of S(M) is dM (p) := min{dimZ(f) : f ∈ p}. If p ⊂ q are 
prime z-ideals of S(M), the coheight of p in q is ≤ dM (p) − dM (q) (see [6, 4.14(i)]).

2.3. Maximal spectra of rings of semialgebraic functions

Denote the collection of all maximal ideals of S�(M) with β�
sM and consider in β�

sM the topology induced 
by the Zariski topology of Spec�s(M). Given f ∈ S�(M), we denote Dβ�

s M
(f) := DSpec�s (M)(f) ∩ β�

sM and 
Zβ�

s M (f) := β�
sM \ Dβ�

s M (f) = ZSpec�s (M)(f) ∩ β�
sM . By [1, 7.1.25(ii)] β�

sM is a Hausdorff compactification 
of M .

2.3.1. The map Φ : βsM → β∗
s M that associates with each maximal ideal m of S(M) the unique 

maximal ideal m∗ of S∗(M) that contains the prime ideal m ∩ S∗(M) is a homeomorphism. In particular, 
Φ(ma) = m∗

a for each a ∈ M . We denote the maximal ideals of S∗(M) with m∗ where m is the unique 
maximal ideal of S(M) such that m ∩ S∗(M) ⊂ m∗.

2.3.2. The inclusion map R ↪→ S∗(M)/m∗, r �→ r + m∗ is an isomorphism of ordered fields because 
S∗(M)/m∗ is an Archimedean extension of R. As R admits a unique automorphism, there is no ambiguity 
to refer to f +m∗ as a real number for each f ∈ S∗(M). In particular, we identify f +m∗

a with f(a) for each 
a ∈ M . Thus, each f ∈ S∗(M) defines a (unique) natural extension f̂ : β∗

s M → R, m∗ → f + m∗, which is 
continuous because given real numbers r < s, we have f̂−1((r, s)) = Dβ∗

s M ((f − r+ |f − r|)(s − f + |s − f |)).

2.3.3. If ϕ : N → M is a semialgebraic map between semialgebraic sets N and M , then Spec∗s (ϕ) :
Spec∗s (N) → Spec∗s (M) maps β∗

s N into β∗
s M , so we denote the restriction of Spec∗s (ϕ) to β∗

s N with β∗
s ϕ :

β∗
s N → β∗

s M . Let C, C1, C2 be closed semialgebraic subsets of the semialgebraic set M and j : C ↪→ M the 
inclusion map. Then

(i) The space β∗
s C is homeomorphic to Clβ∗

s M (C) ⊂ β∗
s M via β∗

s j : β∗
s C → β∗

s M .
(ii) Clβ∗

s M (C1 ∩ C2) = Clβ∗
s M (C1) ∩ Clβ∗

s M (C2).

2.3.4. The zero set of a prime ideal p of S�(M) provides no substantial information about p because it 
is either a singleton or the empty set. An ideal a of S�(M) is said to be fixed if all functions in a vanish 
simultaneously at some point of M . Otherwise the ideal a is free. The fixed maximal ideals of the ring S�(M)
are those of the form m�

a where a ∈ M . The equality m ∩ S∗(M) = m∗ characterizes the fixed maximal 
ideals of S�(M) (see [11, 3.7]). Namely,

m∗ is a fixed ideal ⇐⇒ m is a fixed ideal ⇐⇒ m ∩ S∗(M) = m∗ ⇐⇒ ht(m) = ht(m∗).

Consequently, a semialgebraic set M is compact if and only if all the maximal ideals of S(M) (resp. S∗(M)) 
are fixed or, equivalently, if S(M) = S∗(M).
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3. Points of the remainder associated with formal and semialgebraic paths

In this section we analyze some topological properties of the set of points of the remainder ∂M := β∗
sM\M

associated with formal paths. For simplicity we assume M ⊂ Rm bounded.

3.1. Extension of coefficients

Let F be a real closed field containing R. There exists a (unique) semialgebraic subset MF ⊂ Fm called 
extension of M to F that satisfies M = MF ∩Rm. The extension of semialgebraic sets depicts the expected 
behavior with respect to boolean and topological operations, Transfer Principle, etc. [1, §5.1-3]. Given a 
semialgebraic map f : M → N , there exists a unique semialgebraic map fF : MF → NF called extension 
of f to F that fulfills fF |M = f . The extension of semialgebraic maps enjoys the expected behavior with 
respect to composition, direct and inverse images, injectivity, surjectivity, continuity, etc. [1, §5.1-3]. By [1, 
7.3.1] the extension of semialgebraic functions to F induces a well-defined R-monomorphism iM,F : S(M) ↪→
S(MF ), f �→ fF . Composing it with the evaluation homomorphism evMF ,p : S(MF ) → F, g �→ g(p) for 
p ∈ MF , we get the R-homomorphism

ψp := evMF ,p ◦ iM,F : S(M) → F, f �→ fF (p).

Denote the restriction of the linear projection onto the ith coordinate to M with πi : M → R. In [7, Intr. 
Lem. 1, p. 3] it is proved that if p := (p1, . . . , pm) ∈ MF , the R-homomorphism ψp is the unique one 
satisfying πi �→ pi for i = 1, . . . , m.

3.2. Formal paths

As usual R[[t]] stands for the ring of formal power series in one variable with coefficients in R and R((t))
for its field of fractions. We say that a formal power series is algebraic if it is algebraic over the field of 
rational functions R(t) := qf(R[t]). The subring (resp. subfield) of R[[t]] (resp. R((t))) of all algebraic series 
is denoted with R[[t]]alg (resp. R((t))alg). Given a formal power series ξ ∈ R((t)), we denote its order with 
ω(ξ) and the k-th power of the maximal ideal (t) of R[[t]] with (t)k. We endow the previous rings with 
their respective unique orderings ≤ in which t is positive and infinitesimal with respect to R. We denote 
the real closed field of Puiseux series with F1 := R((t∗)) and the real closed field of algebraic Puiseux 
series with F0 := R((t∗))alg. A formal path is a tuple α := (α1, . . . , αm) ∈ R[[t]]m. If α ∈ R[[t]]malg, there 
exists ε > 0 such that the map [0, ε] → Rm, t �→ α(t) is semialgebraic. Conversely, each semialgebraic map 
α : [0, 1] → Rm defines an element α ∈ R[[t]]malg. The elements of R[[t]]malg are called semialgebraic paths.

3.3. Free maximal ideals associated with formal and semialgebraic paths

Let α ∈ MF1 be a formal path. Observe that α(0) ∈ Cl(M). By 3.1 there exists a unique homomorphism 
ψα : S(M) → F1 such that ψα(πi) = αi. It holds: ψα(S∗(M)) ⊂ R[[t∗]].

Proof. Let f ∈ S∗(M) and L > 0 be a constant such that |f | < L. Then L − f > 0 and f + L > 0. Pick 
h1, h2 ∈ S∗(M) such that h2

1 = L − f and h2
2 = f + L. Then

L− ψα(f) = ψα(h2
1) = ψα(h1)2 ≥ 0 and ψα(f) + L = ψα(h2

2) = ψα(h2)2 ≥ 0,

so |ψα(f)| ≤ L. Consequently, ψα(f) ∈ R[[t∗]]. �
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3.3.1. Free maximal ideals associated with formal paths
Consider the ‘evaluation’

ev0 : R[[t∗]] → R, ζ �→ ζ(0)

and the R-epimorphism

ϕα := ev0 ◦ ψα|S∗(M) : S∗(M) → R, f �→ (ev0 ◦ ψα)(f) = ψα(f)(0).

Then m∗
α := ker(ϕα) is a maximal ideal of S∗(M). As one can expect, m∗

α = m∗
α(0) if α(0) ∈ M and m∗

α is a 
free maximal ideal of S∗(M) when α(0) ∈ Cl(M) \M . In the latter case we call m∗

α the free maximal ideal 
of S∗(M) associated with α. We denote the collection of all free maximal ideals of S∗(M) associated with 
formal paths with ∂̂M ⊂ ∂M .

Let us find the maximal ideal mα of S(M) corresponding to m∗
α via the homeomorphism Φ introduced 

in 2.3.1. We call mα the free maximal ideal of S(M) associated with α.

Proposition 3.1. Let α ∈ MF1 be a formal path such that α(0) /∈ M . Then mα = ker(ψα) is the free maximal 
ideal of S(M) satisfying mα ∩ S∗(M) ⊂ m∗

α. In addition, the real closed field S(M)/mα has transcendence 
degree dM (mα), which is equal to tr deg

R
(R(α)).

Proof. It is straightforward to check that pα := ker(ψα) is a prime z-ideal and pα∩S∗(M) ⊂ ker(ϕα) = m∗
α. 

Let us show next that pα is a maximal ideal. Otherwise let q be a prime ideal of S(M) such that pα � q

and choose f ∈ q \ pα. Taking f/(1 + |f |) instead of f , we may assume that f is bounded on M . Denote 
p := α(0).

As ψα(f) ∈ R[[t∗]] \ {0}, we write ψα(f)(t) := atb + · · · where a 
= 0, b := ω(ψα(f)) ∈ Q+ and 
‖α(t) − p‖ := ctd + · · · where c 
= 0 and d := ω(‖α(t) − p‖) ∈ Q+. Consider

Z :=
{
x ∈ M : |a|

2cb/d
‖x− p‖b/d ≤ |f(x)|

}
and pick g := dist(·, Z) ∈ S(M), which satisfies Z(g) = Z. Observe

|a|
2cb/d

‖α(t) − p‖b/d = |a|
2 tb + · · · and ψα(|f |)(t) = |a|tb + · · · ,

so α ∈ ZF1 . Consequently, ψα(g) = gF1(α) = 0 or equivalently g ∈ pα ⊂ q.
As p /∈ M , the zero set of h := f2 + g2 ∈ q is the empty-set, so h ∈ q is a unit in S(M), which is a 

contradiction. Thus, mα := pα is the maximal ideal of S(M) satisfying mα ∩ S∗(M) ⊂ m∗
α. The last part of 

the statement follows from [7, (1.B.2)]. �
Remarks 3.2. (i) If M is a non-compact and pure dimensional semialgebraic set, there exists a free maximal 
ideal mα of S(M) associated to a formal path α ∈ R[[t]]m such that the real closed field S(M)/mα has tran-
scendence degree � for each � = 1, . . . , d := dim(M). To that end, it is enough to find, using a semialgebraic 
triangulation of M , a formal path α ∈ R[[t]]m ∩MF1 such that α(0) ∈ Cl(M) \M and tr deg

R
(R(α)) = �.

(ii) If α ∈ MF1 is a formal path such that α(0) ∈ M , the ideal pα = ker(ψα) is a prime z-ideal of S(M)
of coheight 1 contained in mα(0). For that purpose, one finds, using a semialgebraic triangulation of M , a 
semialgebraic compact set K ⊂ M such that α(0) ∈ K and α ∈ KF1 . The homomorphism φ : S(M) → S(K)
induced by the inclusion of K in M is by [4] surjective and ker(φ) ⊂ pα. Thus, if q is a prime ideal of S(M)
that contains pα, we have q = φ−1(φ(q)). By [10, 4.1] q = φ−1(φ(q)) is a prime z-ideal of S(M), because 
φ(q) is a prime z-ideal of S(K). Proceeding as above in the proof of Proposition 3.1 one finds h ∈ q such 
that Z(h) = {α(0)}. Consequently, q = mα(0), so pα is a prime z-ideal of coheight one.
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Corollary 3.3. Let α ∈ MF1 be a formal path such that α(0) ∈ Cl(M) \M . Then there does not exist a prime 
ideal between mα ∩ S∗(M) and m∗

α.

Proof. Let p0 := mα ∩S∗(M) � · · · � pr = m∗
α be the collection of all prime ideals of S∗(M) containing p0. 

By [13, 1.A.2] there exist a semialgebraic compactification (X, j) of M and a chain of prime ideals q0 �

· · · � qr of S(X) such that qi = pi ∩ S(X). Assume X ⊂ Rm and notice that q0 = ker(ψj◦α) where 
j ◦α ∈ R[[t∗]]m. After reparameterizing α if necessary, we may assume j ◦α ∈ R[[t]]m. Proceeding similarly 
to the proof of Proposition 3.1 one finds a semialgebraic function h ∈ q1 such that Z(h) = {(j ◦ α)(0)}, so 
q1 is the maximal ideal of S(X) associated with the point (j ◦ α)(0) and r = 1, as required. �
3.3.2. Free maximal ideals associated with semialgebraic paths

The collection of all free maximal ideals m∗
α of S∗(M) corresponding to semialgebraic paths α ∈ MF0 is 

denoted with ∂̃M . We have ∂̃M ⊂ ∂̂M ⊂ ∂M and in general both inclusions are strict and the differences 
are ‘large’ (see 4.2). The uniqueness (see 3.1) of the homomorphism ψα guarantees that if α ∈ MF0 is a 
semialgebraic path, the R-homomorphism ψα : S(M) → F0 is defined by f �→ f ◦ α. If α ∈ MF0 and 
α(0) ∈ Cl(M) \M , then

m∗
α = {f ∈ S∗(M) : lim

t→0+
(f ◦ α)(t) = 0},

mα = {f ∈ S(M) : ∃ ε > 0 such that (f ◦ α)|(0, ε] = 0}.

Remarks 3.4. (i) The prime z-ideals of S(M) whose semialgebraic depth is equal to 1 are the prime ideals 
pα := ker(ψα) where α ∈ MF0 is a semialgebraic path.

Let p be a prime z-ideal of S(M) such that dM (p) = 1 and pick f ∈ p such that dim(Z(f)) = 1. 
Using [1, 2.9.10] and the primality of p we may assume that N := Z(f) is semialgebraically homeomorphic 
to either I := (0, 1] or I := [0, 1] via a semialgebraic homeomorphism α : I → N . The homomorphism 
θ : S(M) → S(N) is by [4] surjective, ker(θ) ⊂ p and there exists a prime ideal q of S(N) such that 
S(M)/p ∼= S(N)/q. By [6, 4.1] q is a minimal prime ideal of S(N). As the rings S(I) and S(N) are 
isomorphic, we may assume by [6, 4.1] that q = {g ∈ S(N) : ∃ ε > 0, g ◦ α|(0,ε] = 0}. This provides a 
semialgebraic path α ∈ R[[t]]malg ∩MF0 such that p = pα.

(ii) Let α ∈ R[[t]]alg ∩ MF0 be a non-constant semialgebraic path. We have tr deg
R
(R(α)) = 1. By 

[13, Thm. 1.3] qf(S∗(M)/pα) is isomorphic to R((t∗))alg, because qf(S∗(M)/pα) is a real closed field of 
transcendence degree 1 over R.

3.4. Set of endpoints of a semialgebraic set

We finish this section with some properties of the sets η(M) and η(β∗
s M) of endpoints of a semialgebraic 

set M and its semialgebraic Stone–Cěch compactification β∗
sM .

Corollary 3.5. We have:

(i) η(β∗
s M) = η(M) ∪ (Clβ∗

s M
(M≤1) \M≤1) is a finite set.

(ii) For each point p ∈ η(M) the maximal ideal m∗
p of S∗(M) contains properly only one prime ideal 

of S∗(M).
(iii) M \ η(M) is the set of closed branching points of Spec∗s (M).

Proof. (i) As M = M≥2 ∪ M≤1, it holds β∗
s M = Clβ∗

s M
(M≥2) ∪ Clβ∗

s M
(M≤1). Notice that no point of 

Clβ∗M (M≥2) has a neighborhood homeomorphic to [0, 1). Now, one shows (following the proof of [11, 4.19]) 

s
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that the set of endpoints of β∗
sM equals (Clβ∗

s M
(M≤1) \M≤1) ∪ η(M) and (Clβ∗

s M
(M≤1) \M≤1) is a finite 

set. In addition, η(M) is a semialgebraic set of dimension 0, so it is also a finite set.
(ii) Let Z ⊂ M be a compact semialgebraic neighborhood of p equipped with a (semialgebraic) homeo-

morphism Z → [0, 1] that maps p onto 0. Let T := Cl(M \Z) ∩M and note that p /∈ T and M = T ∪Z. Then 
Spec∗s (M) = ClSpec∗s (M)(T ) ∪ClSpec∗s (M)(Z). We have p ≡ m∗

p ∈ Spec∗s (M) \ClSpec∗s (M)(T ) = ClSpec∗s (M)(Z) \
ClSpec∗s (M)(T ).

Next, ClSpec∗s (M)(Z) is by 2.2.2 homeomorphic to Spec∗s (Z) ∼= Spec∗s ([0, 1]) and m∗
p is mapped to the 

maximal ideal m∗
0 of Spec∗s ([0, 1]). As I := [0, 1] is locally compact, we know by 2.2.3 that 0 = dI(m∗

0) <
dI(p) ≤ 1 for each prime ideal p of S(I) (properly) contained in m∗

0. Thus, dI(p) = 1 and p is by [6, 4.5]
a minimal prime ideal contained in m∗

0. As 0 is an endpoint of [0, 1], we deduce that p is the unique prime 
ideal (properly) contained in m∗

0. Therefore m∗
p contains only one prime ideal of S(M).

(iii) Fix a ∈ M \ η(M). By the curve selection lemma [1, 2.5.5] there exist two semialgebraic paths 
α1, α2 : [0, 1] → Rm such that αi(0) = a, αi((0, 1]) ⊂ M and α1((0, 1]) ∩ α2((0, 1]) = ∅. Let W := {g ∈
S∗(M) : Z(g) = ∅}. As S(M) = S∗(M)W and ma∩S∗(M) = m∗

a, there exists a one-to-one correspondence 
that preserves inclusions between the prime ideals of S(M) contained in ma and those of S∗(M) contained 
in m∗

a. Consider the prime z-ideals

pαi
:= {f ∈ S(M) : ∃ ε > 0 | (f ◦ αi)|(0, ε) = 0}.

By Remark 3.4(i) dM (pαi
) = 1 while dM (ma) = 0. Thus, pαi

has coheight 1 in ma by 2.2.3, so pαi
∩S∗(M)

has coheight 1 in m∗
a. Consequently, m∗

a is a closed branching point of Spec∗s (M).
Conversely, let m∗ ∈ Spec∗s (M) be a closed branching point. By (ii) m∗ /∈ η(M), so we have to check 

m∗ ∈ M . Suppose by contradiction m∗ ∈ Spec∗s (M) \ M . By 2.3.4 the unique maximal ideal m of S(M)
with m ∩ S∗(M) ⊂ m∗ satisfies m ∩ S∗(M) � m∗. By [6, 5.2(i)] the subchain of prime ideals of S∗(M)
containing m ∩ S∗(M) is the same for any non-refinable chain of prime ideals in S∗(M) ending at m∗. As m ∩
S∗(M) � m∗, the maximal ideal m∗ only contains one prime ideal of coheight 1, which is a contradiction. �
4. Topological properties of the remainder

We study the topological properties of the remainder announced in the Introduction.

4.1. Density of ∂̃M in ∂M

We prove first that ∂̃M is dense in ∂M .

Lemma 4.1. (i) Let fi ∈ S∗(M) and f̂i : β∗
s M → R be the unique continuous extension of fi to β∗

s M for 
i = 1, . . . , r. Then (f̂1, . . . , f̂r)(∂̃M) = (f̂1, . . . , f̂r)(∂M).

(ii) A function f ∈ S∗(M) is a unit if and only if Z(f) = ∅ and f /∈ m∗
α for each m∗

α ∈ ∂̃M .
(iii) The set ∂̃M is dense in ∂M .

Proof. (i) Assume M is bounded, so Cl(M) is a semialgebraic compactification of M . Thus, there exists 
by [11, 4.6] a surjective continuous map ρ : β∗

s M → Cl(M) that is the identity on M . Fix m∗ ∈ ∂M and 
observe that by [11, 4.3(i)] p := ρ(m∗) ∈ Cl(M) \M . Consider the proper map Ψ := (ρ, f̂) : β∗

s M → Rm+r, 
where we abbreviate f := (f1, . . . , fr) and f̂ := (f̂1, . . . , f̂r), and denote a := f̂(m∗). Clearly, Ψ(M) is the 
graph Γ of f and since Ψ is proper,

im Ψ = Ψ(Clβ∗
s M

(M)) = ClRm+r(Ψ(M)) = ClRm+r(Γ).

Again by [11, 4.3(i)] q := Ψ(m∗) = (ρ(m∗), f̂(m∗)) = (p, a) ∈ ClRm+r(Γ) \ Γ ⊂ Rm × Rr.
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By the curve selection lemma there exist semialgebraic paths α : [0, 1] → Rm and μ : [0, 1] → Rr such 
that α((0, 1]) ⊂ M , μ|(0, 1] = (f ◦ α)|(0, 1] and (α(0), μ(0)) = q. Consequently,

f̂(m∗) = a = μ(0) = lim
t→0+

μ(t) = lim
t→0+

(f ◦ α)(t) = f̂(m∗
α)

where m∗
α ∈ ∂̃M because limt→0+ α(t) = p /∈ M .

(ii) Observe that f ∈ S∗(M) is a unit if and only if 0 /∈ f̂(β∗
s M) = f(M) ∪ f̂(∂M) = f(M) ∪ f̂(∂̃M) (see 

assertion (i)), which proves the statement.
(iii) We have to check that for each f ∈ S∗(M) such that Dβ∗

s M (f) 
⊂ M the intersection Dβ∗
s M (f) ∩ ∂̃M

is non-empty. Otherwise, ∂̃M ⊂ Zβ∗
s M

(f) and by part (i) we obtain {0} = f̂(∂̃M) = f̂(∂M) or equivalently 
Dβ∗

s M (f) ⊂ M , which is a contradiction. �
Remark 4.2. As a consequence of the previous result one can show the following well-known fact [3, 2.1, 
2.2]: A surjective semialgebraic map g : N → M is proper if and only if β∗

s g(∂N) = ∂M .
The ‘if’ part is clear. For the converse assume M bounded. Denote ĝ := (ĝ1, . . . , ĝm) : β∗

s N → Rm where 
ĝi is the (unique continuous) extension of the component gi of g to β∗

s N . Suppose there exists a point 
n∗ ∈ ∂N such that p := β∗

s g(n∗) ∈ M . By Lemma 4.1(i) there exists n∗α ∈ ∂̃N such that ĝ(n∗α) = p, so 
β∗

s g(n∗α) = limt→0+(g ◦ α)(t) = ĝ(n∗α) = p ∈ M . As g is proper, α(0) = limt→0+ α(t) belongs to N , which 
contradicts the fact that n∗α ∈ ∂̃N . Consequently, β∗

s g(∂N) ⊂ ∂M . The converse inclusion follows because 
β∗

s g is surjective.

4.2. Differences between the sets ∂̃M , ∂̂M and ∂M

We prove next that the non-empty differences ∂M \ ∂̂M and ∂̂M \ ∂̃M are respectively dense in ∂M and 
∂̂M under mild conditions.

Theorem 4.3. Assume that M = M≥2 is not compact. Then ∂M \ ∂̂M is dense in ∂M and ∂̂M \ ∂̃M is 
dense in ∂̂M .

We begin with some preliminary results.

Lemma 4.4. Assume that M is bounded. Then ∂M \ ∂̂M 
= ∅ if and only if M≥2 is not compact. In addition, 
if M≥2 is compact, then ∂̃M = ∂M is a finite set.

Proof. Suppose first that M≥2 is compact. The finiteness of ∂M follows from [11, 5.17], so by Lemma 4.1(iii) 
∂̃M = ∂M . Conversely, suppose that M≥2 is not compact. By [6, 7.1(i)] there exists a point p ∈ Cl(M≥2) \
(Cl(ρ1(M≥2)) ∪ M≥2). Notice that ρ1(M) = ρ1(M≥2). In addition, M≥2 is closed in M , so p ∈ Cl(M) \
(Cl(ρ1(M)) ∪M) and dimp(Cl(M)) ≥ 2. By [6, 7.1(ii)] there exists a maximal ideal m∗ of S∗(M) of height 
≥ 2 such that ht(m) = 0. This implies by Corollary 3.3 that m∗ ∈ ∂M \ ∂̂M , as required. �
Lemma 4.5 (Behavior of the operators ∂̃ and ∂̂). Assume that M is bounded and let Y ⊂ M be a closed 
semialgebraic subset of M . As the semialgebraic sets Y , M≥2 and M≤1 are closed in M , we identify 
Clβ∗

s M (Y ) ≡ β∗
s Y , Clβ∗

s M (M≥2) ≡ β∗
s M≥2 and Clβ∗

s M (M≤1) ≡ β∗
s M≤1. Then

(i) ∂̂Y = ∂̂M ∩ ∂Y and ∂̃Y = ∂̃M ∩ ∂Y .
(ii) ∂M = ∂M≥2 � ∂M≤1.
(iii) ∂̂M = ∂̂M≥2 � ∂̂ M≤1 and ∂̃M = ∂̃M≥2 � ∂̃ M≤1.
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Proof. (i) Let us check first ∂̂Y = ∂̂M ∩ ∂Y . For the non-obvious inclusion let m∗
α ∈ ∂̂M ∩ ∂Y . Suppose 

by contradiction m∗
α /∈ ∂̂Y , that is, α /∈ YF1 . Thus, α ∈ (M \ Y )F1 and there exists g ∈ S∗(M) such that 

α ∈ (D(g))F1 ⊂ (M \ Y )F1 . In particular, g|Y ≡ 0 and ψα(g) 
= 0. Write ψα(g) := atp + · · · for some a 
= 0
and a non-negative rational number p and ‖α(t) − α(0)‖ := btq + · · · for some b 
= 0 and a positive q ∈ Q. 
Recall that α(0) /∈ M because m∗

α ∈ ∂Y and consider the bounded semialgebraic function

f : M → R, x �→ g2(x)
g2(x) + ‖x− α(0)‖2(p/q)+1 ,

which vanishes identically on Y and satisfies ψα(f)(0) = 1. Thus, f ∈ ker(φ) \ m∗
α where φ : S∗(M) →

S∗(Y ), h �→ h|Y . This contradicts the fact that m∗
α ∈ ∂Y ≡ Clβ∗

s M (Y ) \ Y because Clβ∗
s M (Y ) is by [10, 6.3]

the collection of those maximal ideals of S∗(M) containing ker(φ).
The second equality in (i) follows from the equality already proved above because the semialgebraic 

character of a formal path does not depend on the semialgebraic set where it is considered. Statement (ii) 
follows by considering the connected components of ∂M and observing that the union of those that are 
singletons is contained in ∂M≤1. Statement (iii) follows from (i) and (ii). �
Remark 4.6. The assumption M = M≥2 in Theorem 4.3 is not restrictive. As dim(M≤1) ≤ 1, we deduce 
from Lemma 4.4 that ∂̃ M≤1 = ∂̂ M≤1 = ∂M≤1. By Lemma 4.5 we obtain

∂M \ ∂̂M = ∂M≥2 \ ∂̂M≥2 and ∂̂M \ ∂̃M = ∂̂M≥2 \ ∂̃M≥2,

so Theorem 4.3 is conclusive.

Proof of Theorem 4.3. We prove first the following:

4.2.1. The sets ∂T \ ∂̂T and ∂̂T \ ∂̃T are not empty for the punctured triangle

T := {(x, y) ∈ R2 : 0 ≤ y ≤ x ≤ 1} \ {(0, 0)}.

By Lemma 4.4 we obtain ∂T \ ∂̂T 
= ∅. In order to prove ∂̂T \ ∂̃T 
= ∅ choose the formal series α1(t) = t
and α2(t) =

∑
n≥2 n!tn ∈ R[[t]] \ R[[t]]alg and the formal path α := (α1, α2) ∈ R[[t]]2. Note that α ∈ TF1

and α(0) = (0, 0). Thus, m∗
α ∈ ∂̂T and let us show m∗

α /∈ ∂̃T .
For each k ≥ 2 consider the semialgebraic function fk ∈ S∗(T ) given by the formula

fk(x, y) := (y − pk(x))2

(y − pk(x))2 + x2k where pk(x) :=
k∑

n=2
n!xn.

We have ψα(fk)(0) = 0, so fk ∈ m∗
α for each k ≥ 2 (see 3.3.1). Suppose now that m∗

α = m∗
μ for some 

μ ∈ R[[t]]2alg with μ ∈ TF1 . To obtain a contradiction, it is enough to check that fk /∈ m∗
μ for some k ≥ 2. 

Without loss of generality and after reparameterizing μ, we may assume μ(t) = (tj , μ2(t)) for some integer 
j ≥ 1 and some analytic series μ2(t) ∈ R[[t]]alg whose order is ≥ j. As the series α2(tj) is not algebraic, 
α2(tj) − μ2(t) 
= 0 and its order is p ≥ 1. Thus, ψμ(fk)(0) 
= 0 for k = p + 1, so fk /∈ m∗

μ, as needed.

4.2.2. We show the statement under the assumption that M is bounded.
Let f ∈ S∗(M) be such that Dβ∗

s M (f) meets ∂M and f̂ : β∗
s M → R be the (unique) continuous extension 

of f to β∗
s M . As ∂̃M is dense in ∂M , there exists a semialgebraic path α such that m∗

α ∈ ∂̃M ∩ Dβ∗
s M

(f). 
Write c := f̂(m∗

α) 
= 0 and assume c > 0. Thus, m∗
α ∈ Dβ∗

s M (f − c
2 + |f − c

2 |). Substituting M by graph(f), 
we may assume that f can be extended continuously to X := Cl(M). Denote such extension with f . 
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By [11, 4.3&4.6] there exists a continuous surjective map ρ : β∗
s M → X that is the identity on M and 

ρ(∂M) = X \M . In addition, f̂ = f ◦ ρ and p := ρ(m∗
α) ∈ X \M satisfies f(p) = c.

Define Y0 := {p}, Y1 := {f − c
2 > 0} and Y2 := M ∩ Y1. By [1, 9.2.1] there exists a finite simplicial 

complex K and a semialgebraic homeomorphism Φ : |K| → X such that each semialgebraic set Yj is the 
union of some Φ(σ0) where each σ0 is the open simplex associated with a simplex σ ∈ K. We identify X
with |K| and choose a simplex τ of K of dimension ≥ 2 that has p as a vertex and whose associated open 
simplex τ0 is contained in Y2. Let p1, p2 ∈ τ0 be two points that are not colinear with p. For the closed 
triangle T1 with vertices p, p1, p2 it holds that T1 \ {p} ⊂ τ ⊂ Y2 is a closed semialgebraic subset of M . In 
addition, ∂T1 ⊂ Dβ∗

s M
(f). Thus, the differences ∂T1 \ ∂̂T1 and ∂̂T1 \ ∂̃T1 are by 4.2.1 non-empty and the 

open set Dβ∗
s M (f) meets the differences ∂M \ ∂̂M and ∂̂M \ ∂̃M by Lemma 4.5, as required. �

4.3. Points of the maximal spectrum with countable basis of neighborhoods

We show next that all points of M have countable basis of neighborhoods in β∗
sM . This is trivially true 

for the points of Mlc as Mlc is open in β∗
s M . The points of ρ1(M) require a careful analysis.

Lemma 4.7. Let f ∈ S∗(M) and f̂ : β∗
s M → R be its unique continuous extension to β∗

sM . Let m ∈ β∗
s M be 

such that c := f̂(m) > 0. Then Clβ∗
s M

(f−1(( c
2 , +∞))) = Clβ∗

s M
(f̂−1( c

2 , +∞)).

Proof. It is enough to check f̂−1(( c
2 , +∞)) ⊂ Clβ∗

s M
(f−1( c

2 , +∞)). Fix n ∈ f̂−1(( c
2 , +∞)) and let V be a 

neighborhood of n in β∗
s M . Then V ∩ f̂−1(( c

2 , +∞)) is also a neighborhood of n in β∗
s M . As M is dense 

in β∗
s M ,

V ∩ f−1(( c
2 ,+∞)) = V ∩ f̂−1(( c

2 ,+∞)) ∩M 
= ∅.

Thus, n ∈ Clβ∗
s M (f−1(( c

2 , +∞))), as required. �
Proposition 4.8. Let p ∈ M and {Uk}k be a countable basis of neighborhoods of p in M . Then {Clβ∗

s M
(Uk)}k

is a countable basis of neighborhoods of p in β∗
s M .

Proof. Let W be an open neighborhood of p in β∗
s M . Then there exists f ∈ S∗(M) such that p ∈

Dβ∗
s M

(f) ⊂ W . Let f̂ : β∗
s M → R be the unique continuous extension of f to β∗

s M . We may assume 
f̂(p) = c > 0 and observe that f−1(( c

2 , +∞)) is an open neighborhood of p in M . Thus, there exists k ≥ 1
such that p ∈ Uk ⊂ f−1(( c

2 , +∞)). Therefore

Clβ∗
s M (Uk) ⊂ Clβ∗

s M (f−1(( c
2 ,+∞))) = Clβ∗

s M (f̂−1(( c
2 ,+∞))) ⊂ f̂−1([ c2 ,+∞)) ⊂ W.

To finish, let us see that each set Clβ∗
s M (Uk) is a neighborhood of p in β∗

s M . Let Wk be a neighborhood 
of p in β∗

s M such that Uk = Wk∩M . Let g ∈ S∗(M) be such that p ∈ Dβ∗
s M

(g) ⊂ Wk. Then p ∈ D(g) ⊂ Uk. 
We may assume r = g(p) > 0, so p ∈ ĝ−1((r/2, +∞)) ⊂ Wk. Thus, p ∈ g−1((r/2, +∞)) ⊂ Wk ∩M = Uk

and by Lemma 4.7

p ∈ ĝ−1((r/2,+∞)) ⊂ Clβ∗
s M (ĝ−1((r/2,+∞))) = Clβ∗

s M (g−1((r/2,+∞))) ⊂ Clβ∗
s M (Uk).

Consequently, Clβ∗
s M (Uk) is a neighborhood of p in β∗

s M , as required. �
We prove next that there exist a lot of points in ∂M that have a countable basis of neighborhoods 

in β∗
s M . We denote the open ball of Rm with center x and radius ε > 0 with B(x, ε).
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Theorem 4.9. Each point of ∂̂M has a countable basis of neighborhoods in β∗
sM .

Proof. Let α := (α1, . . . , αm) ∈ MF1 be a formal path such that α(0) ∈ Cl(M) \M . Our aim is to construct 
a countable basis of neighborhoods for m∗

α in β∗
s M .

4.3.1. We may assume: M ⊂ {x1 > 0}, α(0) = 0 and α1(t) = t.
After a change of coordinates in Rm we may assume α(0) = 0 and that α1 is not a constant. Considering 

the embedding of Rm in Rm+1 given by

(x1, . . . , xm) �→ (x2
1 + · · · + x2

m, x1, . . . , xm) = (y1, . . . , ym+1),

we can suppose M ⊂ {y1 > 0}. After reparameterizing α, we assume α1(t) = tp for some integer p ≥ 1. 
This in combination with the new change of coordinates

h : (0,+∞) × Rm → (0,+∞) × Rm, (y1, y2, . . . , ym+1) �→ ( p
√
y1, y2, . . . , ym+1)

allows us to suppose α1(t) = t.

4.3.2. For each integer � ≥ 1 consider polynomials γ2�, . . . , γm� ∈ R[t] such that αj−γj� ∈ (t)�+2 ⊂ R[[t]]
and let L� > 0 be such that |γj�(t)| < L� for |t| ≤ 1 and j = 2, . . . , m. Denote γ�(t) := (t, γ2�(t), . . . , γm�(t))
and consider the family of semialgebraic functions on M⎧⎨⎩f�(x) := x2�+2

1 − ‖x− γ�(x1)‖2 = x2�+2
1 −

∑m
j=2(xj − γj�(x1))2 for � ≥ 1,

hk(x) := 1
k2 − x2

1 for k ≥ 1

and the family of open subsets U�,k := Dβ∗
s M

((f� + |f�|)(hk + |hk|)) of β∗
s M . Note that m∗

α ∈ U�,k for each 
�, k ≥ 1.

4.3.3. Our goal is to see: {U�,k}�,k is a basis of neighborhoods of m∗
α in β∗

s M .
Fix g ∈ S∗(M) such that m∗

α ∈ Dβ∗
s M (g) and assume ĝ(m∗

α) = c > 0. We write V := g−1(( c
2 , +∞)). 

Notice that α ∈ VF1 and choose polynomials g1, . . . , gr ∈ R[x] such that V1 := {g1 > 0, . . . , gr > 0} satisfies 
α ∈ (V1 ∩M)F1 ⊂ VF1 .

Consider the new variables s, y := (y1, . . . , ym) and z := (z1, . . . , zm), write x = y + sz and

gi(x) = gi(y + sz) = gi(y) + sHi(s, y, z)

where Hi(s, y, z) :=
∑si−1

j=1 hij(y, z)sj for some polynomials hi1, . . . , hi,si−1 ∈ R[y, z]. Let C� > 0 be a large 
enough real number such that

|Hi(s, y, z)| < C� for |s| ≤ 1, |zj | ≤ 1, |y1| ≤ 1, |y2| ≤ L�, . . . , |ym| ≤ L�,

j = 1, . . . , m and i = 1, . . . , r.

4.3.4. As the positivity of a finite family of polynomials on a formal path depends only on finitely many 
terms of its components, there exists �0 ≥ 1 such that for each � ≥ �0 every formal path η ∈ R[[t]]m with 
‖η(t) − α(tp)‖2 ∈ (t)2�p for some p ≥ 1 satisfies gi(η(t)) > 0 for i = 1, . . . , r. In particular: If � ≥ �0, each 
series gi(γ�(t)) is positive.
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4.3.5. Denote � := 1 + max{�0, ω(gi(α(t))) : i = 1, . . . , r} and choose k0 ≥ 1 such that gi(γ�(t)) > 0
for i = 1, . . . , r if 0 < t < 1/k0. Since � > ω(gi(α(t))) for i = 1, . . . , r, there exists k ≥ k0 such that 
gi(γ�(t)) − t�+1C� > 0 for 0 < t ≤ 1/k and i = 1, . . . , r.

4.3.6. For our purposes it is enough to check: U�,k ⊂ ĝ−1([ c2 , +∞)).
Fix a point x ∈ U�,k∩M . Then 0 < x1 < 1/k and 

∑m
j=2(xj−γj�(x1))2 < x2�+2

1 . Thus, |xj−γj�(x1)| < x�+1
1

for j = 2, . . . , m and so xj = γj�(x1) + ρjx
�+1
1 for some ρj ∈ R such that |ρj | < 1. Write ρ := (0, ρ2, . . . , ρm)

and observe that by 4.3.5

gi(x) = gi(γ�(x1)) + x�+1
1 Hi(x�+1

1 , γ�(x1), ρ) > gi(γ�(x1)) − x�+1
1 C� > 0;

hence, x ∈ {g1 > 0, . . . , gr > 0} ∩M ⊂ V ⊂ ĝ−1([ c2 , +∞)).
Now we check U�,k∩∂M ⊂ ĝ−1([ c2 , +∞)). As U�,k is open in β∗

s M and ∂̂M is dense in ∂M (see Lemma 4.1), 
it is enough to show that U�,k ∩ ∂̂M is contained in ĝ−1([ c2 , +∞)). To that end it is sufficient to prove that 
μ ∈ {g1 > 0, . . . , gr > 0}F1 for each formal path μ ∈ (U�,k ∩ M)F1 . Indeed, μ1(t) > 0 because μ ∈ MF1

and M ⊂ {y1 > 0}. After reparameterizing we may assume μ1(t) = tp for some p ≥ 1. Since μ ∈ (U�,k)F1 , 
we get ‖μ(t) − γ�(tp)‖2 < t2(�+1)p, so ‖μ(t) − γ�(tp)‖2 ∈ (t)2(�+1)p. As ‖α(t) − γ�(t)‖2 ∈ (t)2(�+1), we 
deduce ‖μ(t) − α(tp)‖2 ∈ (t)2(�+1)p and therefore by 4.3.4 gi(μ(t)) > 0 for each index i = 1, . . . , r, that is, 
μ ∈ {g1 > 0, . . . , gr > 0}F1 .

We conclude U�,k = (U�,k ∩M) ∪ (U�,k ∩ ∂M) ⊂ ĝ−1([ c2 , +∞)) ⊂ Dβ∗
s M (g), as required. �

Corollary 4.10. Let h ∈ S∗(M), ĥ : β∗
s M → R be its unique continuous extension to β∗

sM and H := ĥ|∂M :
∂M → R. Then

(i) The set Z∂M (H) is a closed neighborhood in ∂M of each free maximal ideal m∗
α ∈ (∂̂M \

Clβ∗
s M (ρ1(M))) ∩ Z∂M (H).

(ii) Z∂M (H) = Cl∂M (Int∂M (Z∂M (H))).
(iii) If Z∂M (H) is a singleton {m∗}, then m∗ is an endpoint of β∗

s M and it belongs to Clβ∗
s M (M≤1) \M≤1.

Proof. (i) Consider the map β∗
s j : β∗

s Mlc → β∗
s M induced by the inclusion j : Mlc ↪→ M . Recall that if 

Y := ρ1(M), then by [10, 6.7(ii)] the restriction

β∗
s j| : β∗

s Mlc \ (β∗
s j)−1(Clβ∗

s M
(Y )) → β∗

s M \ Clβ∗
s M

(Y )

is a homeomorphism. Consequently, it holds

∂̂M \ Clβ∗
s M

(Y ) = β∗
s j(∂̂Mlc \ (β∗

s j)−1(Clβ∗
s M

(Y ))).

Let ĥ ◦ j = ĥ ◦ (β∗
s j) : β∗

s Mlc → R be the (unique) continuous extension of h ◦ j to β∗
s Mlc and consider 

its restriction

ĥ ◦ j|∂Mlc = ĥ ◦ (β∗
s j)|∂Mlc : ∂Mlc → R.

By Corollary 3.3 and [6, 6.1] we deduce that Z∂Mlc(ĥ ◦ j|∂Mlc) is a neighborhood of n∗α := (β∗
s j)−1(m∗

α)
in ∂Mlc. In addition, n∗α /∈ (β∗

s j)−1(Clβ∗
s M (Y )) because m∗

α /∈ Clβ∗
s M (Y ). Therefore Z∂Mlc(ĥ ◦ (β∗

s j)|∂Mlc) \
(β∗

s j)−1(Clβ∗
s M (Y )) is a neighborhood of n∗α in ∂Mlc \ (β∗

s j)−1(Clβ∗
s M (Y )). Taking images under β∗

s j, we 
conclude: Z∂M (H) is a closed neighborhood of m∗

α in ∂M .
(ii) We prove the non-obvious inclusion in (ii). Let m∗ ∈ Z∂M (H) and g ∈ S∗(M) be such that m∗ ∈

Dβ∗M (g). We must prove that Dβ∗M (g) meets Int∂M (Z∂M (H)). By [11, 4.10] there exists b ∈ S∗(M) whose 

s s
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continuous extension b̂ to β∗
s M satisfies b̂(m∗) = 1 and b̂|Clβ∗

s M (Y ) = 0. Let ĝ : β∗
s M → R be the unique 

continuous extension of g to β∗
s M . By Lemma 4.1(i) there exists m∗

α ∈ ∂̃M such that ĥ(m∗
α) = ĥ(m∗) = 0, 

ĝ(m∗
α) = ĝ(m∗) 
= 0 and b̂(m∗

α) = b̂(m∗) = 1. Consequently, m∗
α ∈ ∂̃M \ Clβ∗

s M
(Y ) ⊂ ∂̂M \ Clβ∗

s M
(Y ) and 

m∗
α ∈ Dβ∗

s M (g) ∩ Z∂M (H). Using (i), this implies m∗
α ∈ Int∂M (Z∂M (H)) and we are done.

(iii) We assume that M is bounded. By Lemma 4.1(i) there exists a semialgebraic path α ∈ R[[t]]alg such 
that m∗ = m∗

α. We may assume that α defines a semialgebraic embedding α : [0, 1] → M ∪ {α(0)}. By (ii) 
we know that {m∗

α} is an open and closed subset of ∂M , so it is a connected component of ∂M . Let U be 
a closed neighborhood of m∗

α in β∗
s M such that ∂M ∩ U = {m∗

α} and U ∩ M is a semialgebraic set. We 
have U = (U ∩M) ∪ {m∗

α} and ∂U = {m∗
α}. Let N := α([0, 1)) and assume N ⊂ U . As ∂U ⊂ Clβ∗

s M (N), 
we conclude by [11, 5.7] that after shrinking U , we may assume U = N ∪ {m∗

α}. Consequently, m∗
α is an 

endpoint of β∗
s M and by Corollary 3.5(i) m∗

α ∈ Clβ∗
s M

(M≤1) \M≤1, as required. �
Corollary 4.11. The set E of maximal ideals of S∗(M) that are the Jacobson radical of a principal ideal of 
S∗(M) equals M ∪ η(β∗

s M).

Proof. Assume M is bounded. The inclusion E ⊂ M ∪ η(β∗
s M) follows from Corollary 4.10(iii). To prove 

the converse inclusion observe that M ⊂ E (the Jacobson radical of the ideal generated by the restriction 
to M of the distance function to a point a ∈ M is m∗

a). Pick a point m∗ ∈ η(β∗
s M) \ M . By Corol-

lary 4.10(iii) m∗ ∈ Clβ∗
s M

(M≤1) \M≤1. Let U ⊂ β∗
s M be a compact neighborhood of m∗ equipped with a 

homeomorphism ξ : U → [0, 1] such that ξ(m∗) = 0, the difference U \ {m∗} ⊂ M is a semialgebraic set and 
(U \{m∗}) ∩Cl(M \U) ∩M = {q} is a singleton. Observe that ξ|U\{m∗} : U \{m∗} → (0, 1] is a semialgebraic 
homeomorphism and ξ(q) = 1. Consequently, the bounded function g : M → [0, 1] given by the formula

g(x) :=
{
ξ(x) if x ∈ U \ {m∗},
1 if x ∈ M \ U

is (continuous) semialgebraic. The Jacobson radical of gS∗(M) is m∗, as required. �
4.4. Points of the maximum spectrum with metrizable neighborhoods

We end this section with the announced characterization of the points of the semialgebraic Stone–Cěch 
compactification β∗

s M that have metrizable neighborhoods.

Theorem 4.12. The set of points of β∗
s M that have a metrizable neighborhood in β∗

s M equals Mlc ∪
(Clβ∗

s M (M≤1) \M≤1).

Proof. Let T be the set of points of β∗
sM that have a metrizable neighborhood in β∗

sM . Each point in 
Clβ∗

s M (M≤1) \M≤1 has by Corollary 3.5(i) an open neighborhood in β∗
sM that is homeomorphic to [0, 1), 

which is a metrizable space. On the other hand, Mlc is open in β∗
s M and a metrizable neighborhood of 

all its points. Therefore Mlc ∪ (Clβ∗
s M (M≤1) \ M≤1) ⊂ T. Let us prove T ⊂ Mlc ∪ (Clβ∗

s M (M≤1) \ M≤1)
next.

Let p ∈ T and W be a metrizable neighborhood of p in β∗
s M . Let f ∈ S∗(M) be such that 

p ∈ Dβ∗
s M (f) ⊂ W . We may assume that the unique continuous extension f̂ : β∗

s M → R of f to β∗
s M satis-

fies f̂(p) = c > 0 and we consider the closed semialgebraic subset Z := f−1([ c2 , +∞)) = f̂−1([ c2 , +∞)) ∩M

of M .
By 2.3.3(i) β∗

s Z is homeomorphic to Clβ∗
s M

(Z) and by Lemma 4.7 Clβ∗
s M

(Z) ∼= β∗
s Z is a neighborhood 

of p in β∗
s M . It contains p and is metrizable because it is a subset of W . Hence, by [11, 5.17] the subset 

Z≥2 of points of local dimension ≥ 2 of Z is compact. We write Z = Z≥2 ∪ Z≤1. Observe that Z≤1 is a 
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closed subset of M . By 2.3.3(i) we can identify β∗
sZ = β∗

s Z≥2 ∪ β∗
s Z≤1 = Z≥2 ∪ β∗

s Z≤1. We distinguish 
two cases:

Case 1. If p ∈ Z≥2, then p ∈ M and f(p) = c. As Z≥2 is compact, Z is by Remark 2.2(iii) a locally 
compact neighborhood of p in M . By Proposition 2.1 p ∈ Mlc.

Case 2. If p /∈ Z≥2, then p ∈ β∗
s Z≤1 \ Z≥2 and β∗

s Z≤1 \ Z≥2 is a neighborhood of p in β∗
s M . There are 

two possibilities:
(a) p ∈ Z≤1, so Z≤1 \ Z≥2 = (β∗

s Z≤1 \ Z≥2) ∩ M is a locally compact neighborhood of p in M and 
p ∈ Mlc.

(b) p ∈ ∂Z≤1 = β∗
s Z≤1 \Z≤1 ⊂ β∗

s M \M . As ∂Z≤1 is by [11, 5.17] a finite set, {p} is a connected compo-
nent of ∂M , that is, p is a closed point of β∗

sM that is isolated for the inverse topology of Spec∗s (M). By 1.3.3
and Corollary 4.11 p ∈ M∪η(β∗

s M). As p /∈ M , we conclude by Corollary 3.5(i) that p ∈ Clβ∗
s M (M≤1) \M≤1, 

as required. �
Appendix A. Non-semialgebraic homeomorphism between semialgebraic sets

The behavior of a non-semialgebraic homeomorphism between semialgebraic sets can turn out to be 
unpredictable with respect to its possible extensions to the semialgebraic Stone–Čech compactification. 
In fact, semialgebraic paths become useless in the absence of semialgebraicity.

Examples A.1. (i) Let M := R2 \{(0, 0)} and consider the smooth path γ : (0, 1] → M, t �→ (t, λ exp(−1/t))
where λ is a fixed positive real number. Then

(1) For all f ∈ S∗(M) there exists limt→0+ (f ◦ γ)(t) ∈ R.
(2) The set m∗ := {f ∈ S∗(M) : limt→0+ (f ◦ γ)(t) = 0} is a maximal ideal of S∗(M).
(3) m∗ = m∗

α where α : (0, 1] → M, t �→ (t, 0).

Proof. Let f ∈ S∗(M) and f̂ : β∗
s M → R be the unique continuous extension of f to β∗

s M . Assume 
f̂(m∗

α) = 0 and observe that statements (1), (2) and (3) are straightforward consequences of the following 
equality that we prove next:

lim
t→0+

(f ◦ γ)(t) = 0 = lim
t→0+

(f ◦ α)(t) = f̂(m∗
α). (A.1)

By Corollary 4.10 the set Z∂M (f̂) is a closed neighborhood of m∗
α in ∂M = β∗

s M \M . Thus, there exists 
g ∈ S∗(M) such that m∗

α ∈ Dβ∗
s M (g) ∩ ∂M ⊂ Z∂M (f̂). We may also assume c := ĝ(m∗

α) > 0. Consider the 
closed semialgebraic subset Z := g−1([ c2 , +∞)) ∩{x2 +y2 ≤ 1} of M . As ĝ(m∗

α) > c
2 , there exists ε > 0 such 

that Yε := (0, ε] × {0} ⊂ Z.
Otherwise, as Z is semialgebraic, there exists ε > 0 such that the closed semialgebraic subsets Z and 

Y := Yε of M are disjoint. Then there exists by [4] a semialgebraic function h ∈ S∗(M) such that h|Z = 0
and h|Y = 1. Thus, ĥ(m∗

α) = 1 and by 2.3.3(i)&(ii) and Lemma 4.7 we obtain

m∗
α /∈ Zβ∗

s M (h) ⊃ Clβ∗
s M (Z) = Clβ∗

s M (ĝ−1([ c2 ,+∞)) ∩ Clβ∗
s M ({x2 + y2 ≤ 1}),

which is a contradiction.
As the Taylor series at the origin of λ exp(−1/t) is identically zero, the image of γ| : (0, δ] → M for δ > 0

small enough is contained in Z. As ĝ−1([ c2 , +∞)) ∩ ∂M ⊂ Z∂M (f̂), the closure of the graph T of f |Z in R3

is T ∪ {(0, 0, 0)}. Consequently, equality (A.1) holds, as required. �
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(ii) Let M := R2 \ {(0, 0)} and consider the homeomorphism ϕ : M → M given by

(x, y) �→

⎧⎪⎪⎨⎪⎪⎩
(x, (1 − exp(−1/x)

x )(2y − x) + exp(−1/x)) if 0 ≤ 1
2x ≤ y ≤ x,

(x, 2 exp(−1/x)
x y) if 0 ≤ y ≤ 1

2x,
(x, y) if y ≤ 0 or x ≤ y.

Note that ϕ(t, μt) = (t, 2μ exp(−1/t)) for 0 ≤ μ ≤ 1/2 and t > 0. Thus, the homeomorphism ϕ : M → M

cannot be extended to a homeomorphism ϕ̂ : β∗
s M → β∗

s M because by (i) such an extension would map the 
(distinct) maximal ideals m∗

μ := {f ∈ S∗(M) : limt→0+ f(t, μt) = 0}, where 0 ≤ μ ≤ 1/2, onto the maximal 
ideal m∗

α described in (i.3).
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