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Positive semidefinite germs in real analytic surfaces

Jog F. Fernando
Received: 9 January 2001 / Published online: 24 Septembdr-2@0Springer-Verlag 2001

Abstract. We find all real analytic surface germs]R?’ on which every positive semidefinite
function germ is a sum of squares (in fact, of two squares) of analytic function germs.

1 Introduction and statement of the result

In the study of positive semidefinite functions |fsd and sums of squares (=

s09 one main problem is to know whether every positive semidefinite function

is a sum of squares. As is well known, the interest on questions of this type stems
from the famous Hilbert's 17th problem, and has been one of the streamlines of
research in real algebra and real geometry. The history of psd’s and sos’s is long
and rich, and we refer the reader to [BoCoRo] and [ChDLR]. One particular case
which is receiving more attention lately is that of local rings, see for instance
[Sch2]. Here real algebra and the techniques of real spectra appear in essential
ways. In fact, psd’s are defined over arbitrary commutative rings by means of the
theory of the real spectrum.

In this paper, we will be dealing with the most geometric illustration of local
rings: real analytic germs. Our goal is to determine when psd = s@nfdytic
function germs. Of course, this is always true foeromorphidunction germs
(see for instance [Rz2]), but in the analytic setting things are very different. For
curve germs we know that it is true only for unions of independent lines; this is
easy to see for curves in the plane, and in any case follows from a general result
due to Scheiderer ([Sch2]). In higher dimensions only five germs are known to
have that property: the plane, the Brieskorn singularity, the union of two planes,
Whitney’s umbrella and the cone, and in fact, very few more are expected to
appear in the list (see [FeRz]).
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Before further comments, we need some notation and terminologyx bet
an analytic set germ (at the origin &f); we denote by)(X) the ring of germs
of analytic functions orX and by M (X) its total ring of fractions. For instance,
O@R") is the ringR{x} of convergent power series n = (x1,...,x,), and
M(@R") is the field of fraction®R({x}) of R{x}. As X C R" we haveO(X) =
R{x}/1, wherel is the ideal of all analytic function germs vanishing EnA
germ f € O(X) is positive semidefiniter psdif it is > 0 on X; we denote by
P(X) the set of all psd’s ok . We will denote byX' (X) (resp.X»(X)) the set of
all sums of squares (resp. of 2 squares) of element¥(&f).

As was said before, we can introduce these notions for an arbitrary commuta-
tivering A: P(A) isthe set of allf € A such thatf («) > O for every prime cone
a € Spec(A). The fact thatP(A) = P(X) for A = O(X) is a consequence
of the Artin-Lang property for germs (see [AnBrRz]). Also, we &8tX) (resp.
2> (X)) for the set of all sums of squares (resp. of 2 squares) of elements of

We have the following general result for dimensier8.

Theorem 1.1. ([Schl]) Let A be a local regular ring of dimensior 3. Then
Y (A) #P(A).

From this we easily deduce:
Corollary 1.2. LetX c R" have dimensiod > 4. ThenX (X) # P(X).

Proof. Indeed, ifX, is an irreducible component &f of dimensiond, the curve
selection lemma gives a curve geynmC X not contained in Sing and the ideal
of y is a prime ideap C O(X) of heightd — 1, such thatA = O(X), is local
regular of dimensihd —1 > 3. By 1.1thereisf/g € P(A)\ X (A) with g & p.
Leth € O(X) be an equation for the union of all irreducible components of
X which do not contairy (i.e. those distinct fronX ;) plus the singular locus of
X,. The elemenfF = h?g?f/g is clearly in?(A), and consequently, positive in
every ordering otf (A), which is in fact the field of meromorphic functions of
X4. Thus,F > 0 onX, \ SingX and 0 on any other irreducible component of
X; we concludeF € P(X).ButF ¢ ¥ (X), because otherwise, sinkg ¢ p is
a unitin A, we would havef/g € X (A). O

Itis thought that this should also be true for dimensiofl, and consequently
the germs for whichx' = P should be looked for in dimension 2. However, we
know many examples witlh’ # P and very few withY = P (the five surface
germs already mentioned). Then, one starts by searching the surface germs in
R3 with P = X. In this framework, our main result is the following:

Theorem 1.3. The singular surface germ¥ c RS2 with P(X) = X (X) are
exactly the following



Positive semidefinite germs in real analytic surfaces 51

(i)  z? —x®— y® = 0 (Brieskorn’s singularity)
(ii) ZZ _ x3 _ xy3 =0
(i) z2—x*—y*=0
(iv) z%2 —x? =0 (Two transversal planes)
(v) z?>—x?—y2=0(Cone)
(vi) z2—x?—yk =0, k > 3 (Deformations of two planes)
(vii) z? — x2y = 0 (Whitney’s umbrella)
(viii) z2—x%y+y3=0
2

(iX) z?—x%y — (=Dkyk =0, k > 4 (Deformations of Whitney’s umbrella)
Furthermore, in all these caseR(X) = X1 (X).

The first part of this statement, that iB(X) = X(X) putsX in the list,
was partially proved in [Rz3]. Indeed, there it is shown tRKais in the list if
P(X) = X2(X). We extend this to any number of squares in secjihn

The second part of the statement 1.3, and the hardest, is to pPreveX,
for all germs in the list. This is done in [Rz3] for Brieskorn’s singularity, the
two planes, and Whitney’s umbrella, and in [FeRz] for the cone. The proof for
Brieskorn'’s singularity is a transcription of the old argument for the plane, using
the fact that the singularity and its complexification are both factorial (a property
that characterizes this singularity). The proof for the other three surface germs
are particular of each case, although that of the cone contains some hints for
the more systematic method we develop in this paper. Indeed, we will prove
P = X, for all germs in the list, starting always from the factorial situation.
To that end, we reduce the problem to a mixed polynomial case, by means of
M. Artin’s Approximation Theorem ([Ku et al], [M.Ar]) and a density result for
psd’s (sectiort3). Then, by blowings-up we go from each surface in the list to
either the plane or Brieskorn’s singularity (sectigds;6) to settle the matter up
to a universal denominator. The conclusion follows by clearing that denominator
by some standard equations with sos’s.

2 Generation of the list

Given an ideal c R{x}, letw (I (X)) stand for the minimal order of a series in
1. We have the following general remark:

Lemma 2.1. Let X c R” verify P(X) = ¥ (X). Thenw (I (X)) = 2.

Proof. To start with, we choose a seri€se I(X) of orderr > 0. After a linear
change we may assume

F=x+ a,.,lx;_l + -+ aix, + ag,

wherea; € R{y},y = (x1,...,x,-1) andw(a;j) >r — jfor0 < j <r — 1.
We claim that there i3/ > 0 such thata;| < M||y|"/.
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Indeed, sayf = ay, ... ,a,_1 hasorder s. Sincew(f?) > 25 we can write
f? =Y =2, a(y)y", and so, near the origin we have

FOP < Y alyl"= D alyl®lzl =1IyI* ) clzl’
lv|=2s |lv|=2s |v|=2s
with ¢, = 1+ |a,(0)] andz = y/[|y|l. The function}_, _,, c,|z|" is bounded
on|z]l = 1, say byM > 0, and we concludé¢ f|> < M| y||%, hence| f| <
M]|y||*. This shows our claim.
Now, for every integek > 1 we consider the quadratic form

gk = K2+ +x2 ) — X2,

and will prove that fork largeg; is psd inX.
In fact, otherwiseX would contain a sequenaé” = (y®, x®) — 0 such
thatg, (x®) < 0, that is,

0 < kpi < |xPl, where p, = [ly“].

SinceF e I(X), we haveF (x®) = 0, and consequently

O = |Za,(y<k>>(x<k>> = Da,(y("))nx"‘)v <

j=0 j=0
o

r—1
r— r 1
WSy < gL
j=0

1 1 .
But|x®|" > 0, and we get k M <% 4.4 F) , a contradiction.

Once we know thag, € P(X) for k large, let us see that, ¢ X (X) if
w(I(X)) > 3. To that end, supposg is an sos iD(X). Then

ge=hi+ - +hi+h,
with ; € R{x}, h € I1(X) andw(h) > 3. Whence, equating initial forms in the
above expression, we find, ... ,a, € R[xq, ..., x,] such that

gk=af+---+ar2,

which is impossible. O

From the last result we deduce that?{X) = X (X) holds forX c R3,
sayX : f(x,y,z) = 0, thenw(f) = 2. Hence, after a change of coordinates,
f = 72— F(x, y) with (F) > 2. Under this conditions, the arguments in [Rz3,
84] work for the conditior? = ¥ and not only forP = X, and we get the list
of 1.3.
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3 Polynomial reduction

Given an analytic surface gerfh C R3 with equatiorz? = F(x, y), whereF is

a polynomial, we consider the algebraic surfagalefined by the same equation
z?> = F(x, y) and denote b (Sy) the set of all polynomial® (x, y)+zQ(x, y)
which are> 0 everywhere oiy. To reduce the study ¢?(X) to that of P(Sy)
we need the following density result:

Lemma 3.1. Let Z ¢ R? be a closed semianalytic set germ afice O(R?).
If flz\i0y > O, the same holds true for evegy= f mod (x, y)" with r large
enough.

The germs that verify the condition in the statement areptistive definiteor
pdgerms onZ; we denote byP*(Z) the set of all pd's or¥.

Proof. Since Z is a finite union of closed half-branches and connected slices

between them, we can suppage, {0} connected. Letf € P*(Z). We have

Z N {f = 0} = {0}, and there exists a separating polynomgia¢ R[x, y] such

that(p|z\{o} >0 andq)hf:o}\{o} <0 ([RZ].])

Claim:If g = f mod (x, y)" for r large enough, thefig = 0} \ {0} C {¢ < 0}.
Assume this for the moment. Thefg, = 0} N Z = {0}, and,Z \ {0} being

connectedg has constant sign o# \ {0}. To see that this sign is positive, we

choose a half-branch c Z, sayy : x = x(t), y = y(@), t > 0. Since

f € PT(Z), we have

0< fx(@®),y@) =a;’ +---,a;>0.

By the condition ong, g(x(¢), y(¥)) = f(x(), y(t)) mod:", and forr > s,
we get

gx(),y@®) =at’ +---.

Asa; > 0,g € PT(Z). Thus, it remains to prove the claim.

To do that, by a linear change, we makés regular of ordem with respect
toy, sothatf = U P, whereP € R{x}[y] is a Weierstrass polynomial of degree
m andU e R{x, y} a unit ofR{x, y}.

Next, if g = f mod (x, y)" andr is large enougty is also regular of order
m, andg = V0, whereQ € R{x}[y] is a Weierstrass polynomial of degree
andV € R{x, y} a unit. Hence

0=V UP+vig—-FH=viUP mod(x,y),
from which we can deduce that

O=P mod(x,y)
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Indeed, consider the homogeneous componenis ¢f, W = V~1U:

P:Pm+]7m+1+"‘+[9m+k+"',

O=qm+qmir+ - +qumpx+--,

W=wo+wi+ - +we+---,
where

P ="+ a1 (0)Y" -+ ar(x)y + ao(x),
Gn = Y" 4+ bp1(X)Y" -+ b1(x)y + bo(x),

andoy (pm+k), 0y(gmk) <m —1fork>1. AsQ = WP mod (x, y)", for all
k=0,...,r—m—1we have:

dm+k = E piw;.
i+j=m+k

We must see that, ., = ppx fork =0, ... ,r —m — 1, thatwg = 1 and that
wy =0fork=1,...,r—m—1.Fork = 0we havey,, = p,,wo, and therefore
wo = landg,, = p,.Assume novw,,; = p4;jforj=0,... k<r—m—-1
andw; =0forj =1,... k. Then:

Am+k+1 = Pm+k+1W0 + PmtkW1 4+ + PuWit+1l = Pmtk+1 + PmWi+t1,

but, if Wil 75 0,

m =< ay(mek+l) = ay (Gm+k+1 — Pmtk+1)
< max{oy (gmtk+1), Oy (Pmik+1)} <m — 1,

which is impossible, hence, 1 = 0 andg, 1 k11 = Pmrks1-

Thus we writeP — Q = h € (x, y)" %, whereh € R{x}[y] has degree: m.

Finally, the germg = 0 is a union of real half-branches, sgy : x =
g;itP, y = g;(t), t > 0, wheres; = £1, and each Puiseux serigs= g; (t¥/?) is
a root of the polynomiap (¢;z, y) (we can takep = m!, [Ch]). Then there is a
root¢ of the polynomialP (¢;z, y) such thatu (¢ — &) > r/mp. Indeed, suppose

Pleit,y) = =28y —&m)s
with w(¢; — &) < r/mp forall j. Since

h(sit, £) = P(eit, &) — Q(eit, &) = P(git, €) = (E — 1) -+ - (§ — G),
we get
r/p = o(h(et,§) = o(E =51 —tw) <r/p,

acontradiction. Now, if has some non-real coefficient, choositgrge £ would
have the same non-real coefficient, which is not the case. Thus we conclude that
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¢ defines a real half-branch : x(r) = ¢;t?, y(t) = fi(¢), t > 0, contained in
{f =0}\ {0} C {¢ < 0}. Hence

plet?, fi®) =ait +---, a <0.
Finally, the conditionv (¢ — €) > r/mp meansf; = g; mod /™, so that
p(eit”, g (1) = @(eit”, fi(t)) mod /™,

and forr large,p(e;t?, gi(t)) = a;t* +- - - ,thatis,y; C {¢ < 0}. Thiscompletes
the proof. O

Remarks 3.2Let X ¢ R®be agerny® = F(x, y), with F € R[x, y]. Then the
ring O(X) is a freeR{x, y}-module of rank 2: every analytic function germ on
X can be writtenf (x, y) + zg(x, y), with f, g € R{x, y}. Furthermore, psd’s
are given by ([Rz3]):

PX)={f+zg: fePF >0), f2— Fg?e PR?>).

For pd’'s we only hav®* (X) > {f +zg: f € PT(F > 0), f2— Fg? ¢
P*(R?)}, but as a converse we can prove the following:

If f+zg € P(X)then(f + (x?+ y?)™)2 — Fg? € P*(R?) for m large
enough.

Indeed, sincef + (x2 + y»)™ + zg € PH(X), then

(f + (2 +yH™?2 — Fg? e P(R?) NPT (X)
and therefore f + (x? 4+ y»)™)? — Fg? € P(R®) NP*(F > 0). Thus,
(f + % +y2)™? = Fg? =0} C {F < 0} U {0},
and we obtain
(f + &2+ y)"M? = Fg? =0} = {f + (x* +yH)" = 0, g = 0.

But, {f + (x> + y2)™ = 0} N {g = 0} # {0} for finitely manym’s, and so
(f + (x2 + y2)m)2 — Fg? € PT(R?) for m large.

Now we can prove the polynomial reduction:

Theorem 3.3. LetX c R3be an analytic set germ of equatioh— F(x, y) =0
with F € R[x, y]. If P(Sx) C X2(X), thenP(X) = X1(X).

Proof. Supposé’(Sx) C X»(X)andleth = f+zg € P(X). We first prove that
for everym > 1 there existP, Q € R[x, y] such that:,, = P + zQ € P(Sx)
andw(h — h,,) > m.

We start with the functio,, = f + (x®> + y»)" + zg € P*(X) which has
the following properties:
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o f+28— =2+ y)" e (x,y)*"

L4 §0m(x, Y, _Z) € P+(X)

o [+ &+ y)" e PHF =0)

o (f + (%4 y?)™? — Fg? e P+(R?) for m large (by 3.2).

Now, by the density lemma (3.1), there exists 2m such that:
f+ a2+ y)" + (x,y) CPH(F > 0) 0)
(f + @2+ yH™? = Fg? + (x, y)" C PT(R?) (ii
We consider the jet of degree— 1 of ¢,,,,
o= froa+ P YD+ 282

wheref,_1, g,_» are the jets of degrees— 1, r — 2 of f, g respectively, and it
holdsg’~t € P*(X).
Indeed, we only have to check that

frat+ P+ y)" e PHF 2 0), (fia+ (P +))")? = Fgl, € PF(R?)
which follows from (i), (ii), because:

FHEE+Y)" = (o + P+ )" = f— froae () (i)

(f + 24+ yD™2 = Fg? — (o1 + 2+ yH™?% — Fg2 )
= (f2—Fg) — (f> 1 — Fg2 ) + 20> +y)"(f — fr-) € (x, )" (iv)

Sinceg! ! € PT(X), there iss > 0 such thaty!~*(x, y,z) > 0 for (x, y,2) €
Sx, 0 < ||(x, v, 2)|l <e.Now,ifz2 = F(x, y) and| (x, y, 2)|| > e:

-1 i J ok iV 1 151K
oty ol=] Y ey = D lagdial Iyl
i+j+k<r—1 i+j+k<r—1

itk |aij| 2
< ) ey ol s YD sl y, Ol
i+j+k<r—1 i+j+k<r—1

< M|(x,y, D" = M(x* + y* + 2%

for someM > O.
Thereforepr,, = ¢/t + M(x? + y?> + F)" € P(Sx) and

B — (f +28) = M2+ Y2+ F) + ¢l 7t — (f +28) € (x, y)*™.

Thus, h,, € P(Sx) and, sinceP(Sx) C X»(X), there arew,,, B, gn €
R{x, y, z} such that,, = a2 + 2 + (z2 — F)q,,. Buth = h,, mod (x, y, z)",
hence

h = Ols, + ,33, + (22 — F)g, mod (x,y,2)".
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Consequently, by M. Artin’'s Approximation Theorem ([Ku et al], [M.Ar]), we
deduce that the equation

h=a’+ B>+ (2= F)q
has a solution, 8, g € R{x, y, z}, andh € Xy (X). O
We close this section with a result which will be useful later.

Lemma 3.4. Let P € R{x, y}[z] be a Weierstrass polynomial of degmeeand
F, Ay, Ay, ..., Ay € R{x, y}[z] polynomials of degreec m — 1 such that
F=A?+ A5+ .-+ A2+ QP whereQ € R{x, y, z}. ThenQ € R{x, y}[z]

anda,(Q) <m — 2.

Proof. We divide the polynomiai$ + A3 + - - - + AZ of degree< 2m — 2 by P
in R{x, y}[z] to obtain

AS+AS+ -+ AF=01P+ Ry

where 01, Ry € R{x, y}[z] and3,(Q1) < m — 2,9,(R1) < m — 1. Thus
F = (Q1+ Q) P+ Ry, whichis aWeierstrass division. But, sin&F) < 9, (P)
this division must be trivial, and = — Q01 € R{x, y}[z],0,(Q) <m —2. O

4 The blowings-up of Brieskorn’s singularity

Here we will proveP = X, for X : z2—x3—xy®=0andyY : z2—x3—y* = 0.
As we have shown in the preceding section (3.3), it suffices to see that:

Theorem 4.1. P(Sx) C X>(X) and P(Sy) C Xx(Y)
We treatX first.

Proof. Consider the biregular map

d: {2 —xP—xy° =0\ {x =0} — (> —x°—u®=0}\ {x =0}
(x,y,2) —> (x,xy,x2) = (x, u, v)

with inverse
Vi == =0\ {x =0} — {Z?—x3—xy® =0} \ {x =0}

u v
(x9uav) ? (-xv_v—)
X X
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Eg:vzzx‘r’+y3

Now takeT = P + zQ € P(Sx) and consider

u F(x,u)4+vG(x,u)
) = 2r

Tow:P<x,;)+$Q<x,; P

whereF + vG € R[x, u,v],r > 0. Clearly,F + vG > 0 on v2— x> —ud =
0, x # 0, and by continuity, on? — x> — ¥ = 0. Since this is Brieskorn’s
singularity, for whichP = X, there existy, 8, ¢ € R{x, u, v} such that

x¥(P+zQ)oy = F+vG = a?+ B2+ q(v? — x° — u®),
and so, inRk{x, y, z}
xZ (P +z0)(x, y, 2) = o?(x, xy, xz) + B>(x, xy, x2)
+q(x, xy, xz)xz(z2 —x3— xys)

We dividea(x, xy, xz), B(x, xy, xz) andg(x, xy, xz) by z2 — x® — xy® and
apply 3.4 to obtain

X7 (P +20) = (o +z01)* + (Bo + 260> — (2> = x* —x3¥q0 (i)

wherea;, i, go € R{x, y}. The final step is to get rid of the denominaigf,
which will be done, up to iteration, if?|go andx |e;, B;. To show this, comparing
coefficients in (i) we get:

(0) ¥ P = a3 + B3+ qo(x> + xy°)
(1) ' Q = 2(aocr1 + Bopr)
(2) qo=a?+ p?

Now from (0) we obtainx|e3 + 83, hencex|ag, Bo andx|qo. Finally, from(2),
we deduce that|a? + g2 and sax |y, f1 andx?|qo. o

OnceX is solved, we treat similarly.
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Proof. We consider the analytic geréh : z2 + zy? — x3 = 0 and the invertible
polynomial mapp(x, y, z) = (x, v/2y, z — y?). Sincep(Sy) = S, andg(Y) =
Z, our problem translates into showing thatS;) c X»(Z). To do that we
consider the biregular map:

¢: {2+ —x3=0\{z=0 — WP+ 22— 2x*=0}\ {z =0}
x,y,2) — (x,z,2y) = (x,Z, u)

with inverse
Yo+ -2 =0\ {(x =0} — {2+ 20— x*=0}\ {x = 0}

u
(X’ Z,M) I (-xv ) Z)
Z

Now takeP € P(Sz), and consider

F(x,u,z)
2r

u
Pow=P(x,—,z):
Z

<

whereF (x, z,u) € R[x, z, u],r > 0.SinceF > 0onu?+z3—zx3=0,x #0,
by continuity F > 0 onu? + z3 — zx® = 0. But this surface is analytically
equivalent toX, already discussed, hence there exist, g € R{x, z, u} such
that

PPoyy=F =a®+ % +qu?+ 72 — 2x3)
and so, we have iR{x, y, z}

22 P(x,y,2) = a?(x, 2, 2y) + B2(x, 2, 29) + q(x, 2, 20)z(zy? + 22 — x°)

We dividea(x, z, zy), B(x, z, zy) andg(x, z, zy) by x® — z2 — zy? and apply
3.4 to get

2% (po + p1x + pax?) = (ao + arx + azx?)?

+ (Bo + Brx + B2xD? — (g0 + q10) (x> — 22 — 2y?) (i)
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whereq;, Bi, pi, gi € R{y, z}. We eliminate the denominatef” by seeing that
z°|g; andz|e;, B;. Comparing coefficients in (i) we obtain:

(0) 2% po = of + BZ + qo(z® + 2y°)

(1) 2% p1 = 2(croor1 + BoBr) + q1(2% + 2y?)

(2) 2% p = a? + BZ + 2(coe2 + PoB2)

(3) g0 = 2(a1a2 + B1B2)

(4) q1 =5 + B3

Now, from(0) we deduce|«2+ 82, and therefore|ao, o, SO that|go. Applying
this to (2) we see that|a? + g2, hencez|as, f1 and, thus, in view of (1}|g;.
From(4) we getz|a3 + B2, hencez|az, B2 Y 22|q1. Finally, from(3) we conclude
2%|qo. o

Thus, we have completed the proof of 4.1.

5 The two planes and its deformations

We show here that the germ¥s : z2 — x?> — y* = 0,k > 2, have all the property
P = X5. In addition, we will deduce the same for the two plapgs- x2 = 0.
As we know, by polynomial reduction, it is enough to prove:

Theorem 5.1. P(Sx,) C X2(Xx).

Proof. Considerthe gerr¥, : y*—uv = 0 andthe linearisomorfisp(x, y, z) =
(z—x,y,24+x)=(u,y,v).

20+1 _ — uv

Yo : y% = uv Yooy1:y

/'
g

Sincep(Sx,) = Sy, ande(X;) = Y, we will see thatP(Sy,) C X»(Y). For
this we consider the biregular map:

¢ :R?\ {v=0 — Sy, \ {v=0)
k

y,v) — (%y v) = (u,y,v)
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Now, takeP € P(Sy,) and

k
Pod(y,v) = P(%, Y. v) = Q(vyz’rv)

wherer > 0, andQ(y, v) € R[y, v]is > 0 onR?\ {v = 0}, hence oiR?. Since
P(R2) = X»(R?), there arex, 8 € R{y, v} such that

veroqﬁ:Q:az—l—ﬂz

and inR{u, y, v} we obtain
v Pu, y, v) = a?(y,v) + By, v) + (F — uv)qu, y, v).
We divide P, o, B by y* — uv and apply 3.4 to get
v (po+ p1y+ -+ ety = (o +oay + -+ a1yt H?
+ Bo+ Py + -+ By H = OF —uv)(@o+ gy + - + G2yt _
()
wherea;, B, pi, qi € R{u, v}. Again, we end by showing thaf|qo, . .. , gx_2,
v]e;, B; for 0 < i < k — 1. Comparing coefficients in (i) we find:
(@) V¥ po — uvgo = o + B3
@) V¥ p1 — uvgy = 20001 + 2BoP1

) v pe—uvge = Y (i + BiBy)

(k — 1) v¥ pr_1 — uvg1 = Y ivjk_1(aia; + Bif;) (whereg_q = 0)

(k) qo = Z,'.;_j:k(aiaj + ,Bi,Bj)
(k+0) qr = Zi+j:k+[(aiaj + ,Biﬁj)
(2k - 2) G2 =0 1+ B4
Now, we see thai|a, B¢, g for£ =0, ... , k — 1. For¢ = 0 we havev? pg —

uvgo = o + B2, hencev|a3 + B2, and we deduce|ag, Bo andv|qo. Next, let
¢ < k and suppose|ag, Bo, ... » ¥_1, Bi—1, G0, - - . » qe—1. If 2¢ < k — 1 then:

v pa —uvgy = Y (cicy + Bi) +of + B,
i+j=20,i#]j
and sincev|ag, Bo, ... , ap_1, Be_1, We getv|ay, B¢. If 2¢ > k — 1 then:

ook = Z (ciotj + BiB)) + of + BL
i+j=2¢,i#]
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Butf¢ < k—1implies Z —k < ¢—1 and by induction hypothesigg,,_. Since,
also by induction hypothesis|ag, Bo, . . . , a¢_1, Be—1 We deduce again|«;, 5.
Finally, from(¢) we see that|q,, which completes the induction. Once we know
this, from(k), ... , (2k — 2) we conclude that?|g, if 0 < ¢ < k — 2. o

We finish the section with a limit argument that gives the prop@rty X,
for the two planes:

Corollary 5.2. P(z> —x?=0) = Z,(z> — x? =0)

Proof. Let f 4+ zg € P(z>—x?> = 0) andm > 1. By 3.2,f > 0 onx? > 0, that
is, onRR?2, hence

f+ @2+ yH™ e PHR?).
Again by 3.2,f? — x?g? > 0 onR?, so that

Now, by the 3.1, for large > 2m we have(f + (x2 + y?)™)2 — x2g2 +
(x,y)" c PH(R?), and we consider the gerixi,. : z> = x2 4+ y%, on which
f+@2+yH)"+zgis> 0.For,f + (x?+y?)™ € PT(R?) = P (x?+y% > 0),
and

(f + ()CZ + yZ)m)Z _ (x2 + er)gZ — (f + ()CZ + yZ)m)Z _ x2g2 _ y2rg2
€ (f + (& +y)"M? —x%% + (x,y) CPTR?).
Then, since® = X, holds forX,,, there existr,,,, 8., g» € R{x, y, z} such that:
f+ @y g =af + BE — (2 = x2 =y g,

and
fHzg=02 42— —xPg, mod(x,y)>".

This valid for everym, M.Artin’s Approximation Theorem giveg, 8,q €
R{x, y, z} such thatf + zg = a® 4+ B — (z°> — x?)g. We are done. O

6 Whitney’'s umbrella and its deformations

In this section we will prove® = X, for
Xk:zz—x2y+y2k+l=0, k>1, and Yk:zz—xzy—ka=O, k> 2,

and deduce in the limiP = X, for Whitney’s umbrella.
As usual, we prove:

Theorem 6.1. P(Sx,) C Z2(Xy) and P(Sy,) C Xa(Yx).
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First we treat the odd case.

Proof. Let Z; : 72 — xy(x — y¥) = 0 and consider the invertible polynomial
mapg(x, y,z) = (x + y*, V2, ¥22). Sincep(Sz,) = Sx, andp(Zy) = X;,
the conditionP(Sy,) C X2(Xy) is equivalent taP(Sz,) C X2(Zy), and we will
see the latter. Consider the algebraic surfage w?(x — y*) — xy = 0 and the
biregular map:

¢: M\ {x —y' =0} — Sz \ {x =y =0}
(x, y, w) —> (x, y, wx —y9)) = (x, y,2)
with inverse:
¥ Sz \{x —y =0} — M\ {x -y =0}
Z
(x,y,2) —> (X,y,x_—yk)

My w?(x — Y5 = xy Zg 122 = xy(x — 5

Now takeT = P + zQ € P(Sz); the polynomiall o ¢ = P(x,y) + w(x —
y5Q(x, y) is > 0 enM,. Consider the biregular map:

xR\ {w?—y =0} — M\ {y=w=0)
2.k
(y, w) — <w2——y’y’ w)

and

2.k 2.k 2.,k

wey wey k wey F(y, w)
Fogox= (22 ) ru( 2 )o( )2 Fow
ePox w2y )Ty ) (w2 — y)&

where 2 > 3,(T o ¢), andFi(y, w) € Ry, w]is > 0 onw? — y # 0, hence
onR?.

Here we need the fact that a psd polynonfile R[x, y] is a sum of two
squares iR{x}[y]. A proof of this can be the following. Such di is positive
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in every total ordering oR({x})[y]. Indeed, otherwise there is a homomorphism
from R({x})[y] into the field of real Puiseux series, say— st, y — h(t/?),
e = %1, such thatH (et, h(t*/?)) > 0 (Lang’s homomorphism theorem) and
specializing at > 0 small enough we get a point at whighis negative. Hence
H is an sos iR({x})(y), which has Pythagoras number 2 (JChDLR]), hence a
sum of 2 squares. But then it is a sum of two squar&{ik}[y] (see for instance
[ChLRRY]).

Consequently, applying this t§ = F we find F1, F> € R{y}[w], such that

(w? =) (T o¢oyx)=FF+ FZ,
and therefore
w? = y)?Tog = F + FZ + ((w* — y)x — w’y*)g(x,y, w)

whereg € R[x, y, w] (it comes from division iR[x, y, w]). Now, we compose
with ¢t =

) =R ) e )
((x—yk> y) 1yx—y" * 2y)c—yk

Z2 Z
+< k_xy>q(xaya —k>’
=Yy X =Yy

and multiply by a large power afc — y*)? to get

(x = Y92 (2 = y(r = YD) T = 0 + B2+ (22 — xy(x — y))g'
where, 8, ¢' € R{x, y, z}. Dividing a, B, (22— y(x — y©)2)¥ T by 22— xy(x —
y*) and applying 3.4, we obtain

(x _ yk)Zm((x _ yk)yk+1)2r(P 4 ZQ) — (x _ yk)2m+2ry2r(k+l)(P 4 ZQ)
= (Ao +2A1)° + (Bo + 2B1)?* — (2% — xy(x — y)po (i)

for someA;, B;, po € R{x, y}. Next, we multiply (i) by(x — y*)*y?" and get

((x = Yy 2P 4+ 20) = ((x — Y)»?' (P +20)
= (@0 + za1)* + (Bo+ 2B1)* — (2% — xy(x — y))qo (i)

wherew;, 8, go € R{x, y} andn = m +r(k+1). Once again it remains to show
that(x — y¥)y|ay, i and((x — y¥)y)?|q0. But, comparing coefficients in (ii) we
see:
0) ((x =y )N P = af + 5+ xy(x — ¥Y)qo
(1) ((x — ¥)»)? Q0 = 2(coe1 + PoB1)
(2) go=of + B
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From (0) we getx — y*)ylad + B3, hence(x — y*)y|ao, Bo and(x — y*)y|qo.
Finally, by (2), we have(x — y*)y|a? + g2 and thereforéx — y*)y|as, 1 and
((x = ¥ 9)?|90. We are done. o

Now we solve the even case:
Proof. Consider the birregular map:

¢ : (2% —x%y — Y\ {y =0} — {w? — 2%y +y** =0} \ {y = 0}
(x,y,2) V> (2, y,xy) = (2, y, w)

Yi: 22 =x%y + %

The inverse of is:
Y {w? =Py +y* =0\ {y =0} — {ZZ—x%y —y*})\ {y =0}
w
(Z,y9w)'_) _9y9Z
(52)
LetT = P +zQ € P(Sy,), and consider

_ F(w,y)+z2G(w, y)
- er

w w
ow= () eeo(t)
y y
wherer > 0, andF +zG € R[x, y, w]is > 0 onw? —z2y +y**1 =0,y # 0,
hence orw? — z2y + y%+1 = 0. Since this isX;, there existr, 8, ¢ € R{x, u, v}
such that
Y (P+zQ) oy =F +2G =a”+ >+ qw’ — 22y + y*™)

and so we have iR{x, y, z}

Y7 (P+20) = a?(z, y, xy) + B%(z, ¥, xy) +q(z, y, xy) ((xy)? — 22y + y# 1.
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We dividea(z, y, xy), B(z, y, xy) andq(z, y, xy) by z2 — x2y — y% and apply
3.4 to get

Y (P +20) = (a0 + za1)* + (Bo + 21)% — (22 — x%y — y%)q0 (i)

whereaw;, Bi, go € R{x, y}. Typically, we end by seeing thaf|qo, y|a;, i
Comparing coefficients in (i) gives:

(0) y*'P = o + BZ + qo(x2y + y*)
(1) ¥y Q = 2(aoct1 + Popr)
(2) qo=a?+ B7

Now from (0) we gety|a3 + 82, hencey|ao, Bo andy|qo. By (2), yla? + 2, so
thaty|as, B1 andy?|qo. The proof of the even case is thus complete. O

We conclude with the proof th& = X, for Whitney’s umbrella.
Corollary 6.2. P (z%2 — x%y = 0) = Zp(z?> — x%°y =0)
Proof. Let f + zg € P(z%> — x?y = 0). By 3.2, for largen we have:
fH O+ e PPy =0 =P ({y 20} U (x =0} (i)

(f + %+ yH)™?2 - x%yg? e PT(R?) (ii)
By 3.1, there exists > 1 such that
(f + &+ yD)™2 = x%yg? + (x,y) C PT(R?). (iii)

We consider the gerry : z2 = x2y + y* with k > r, 20m + 1), and f + (x? +
y2)" 4 zg which is> 0 onY;.
Indeed, by (iii)

(f + @2+ y)"? = %y +y%)g? e PHR?),
and by (i)
f+@E+yH" e Py = 0.
Again by (i),
FO, ) + 2" = yZu(y),
whereu € R{y}, u(0) > 0 ands < m. Therefore,

FHE2 Y™ = yZu(y)+xh(x, y) = y*u(y)—|x||h(x, y)| > y*u(y)—clx|,
whereh € R{x, y} andc = |h(0, 0)| + 1. Now, if x* + y%*~1 < 0 we have

2m+1 2541 _ 2541

el < [yl < 1yl y

<yl

and then
f+ e+ y)" > y* () +y) = 0.
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All of this means thayf + (x2+ y?)" 4 zg € P(Y;) = X2(Y;), hence there exist
Uy ,Hm’ qm € R{x, y, Z} such that:

[+ @2+ g =) + B — & —x%y — y) g

and so,
fHzg=a2+p2—(®—x*)g, mod(x,y)>".

Since this holds for evem, M. Artin’s Approximation Theorem gives, 8, g €
R{x, y, z} such thatf + zg = a2 + B2 — (z2 — x2y)q. o

References

[AnBrRz] C.Andradas, L. Bocker, J.M. Ruiz: Constructible sets in real geometry. Ergeb. Math.
33. Berlin Heidelberg New York: Springer Verlag, 1996

[M.Ar] M. Artin: On the solution of analytic equations, Invent. Ma#).227-291 (1968)

[BoCoRo] J. Bochnak, M. Coste, M.F. Roy: Real Algebraic Geometry, Ergeb. N3&tBerlin
Heidelberg New York: Springer-Verlag, 1998

[Ch] A. Chenciner: Courbes algebriques planes, Publ. Math. Univ. Paris VII, 1979

[ChDLR] M.D. Choi, Z.D. Dai, T.Y.Lam, B. Reznick: The Pythagoras number of some affine
algebras and local algebras, J. reine Angew. M2®i6, 45-82 (1982)

[ChLRR] M.D. Choi, T.Y.Lam, B. Reznick, A. Rosenberg: Sums of squares in some integral
domains, J. Algebr@é5, 234-256 (1980)

[FeRz] J.F. Fernando, J.M. Ruiz: Positive semidefinite germs on the cone, Pacific. J. Math.
(to appear)

[Kuetal] H. Kurke, T. Mostowski, G. Pfister, D. Popescu, M. Roczen: Die Approximation-
seigenschaft lokaler Ringe, Lecture Notes in Ma&B4 Berlin: Springer-Verlag,

1978
[Rz1] J.M. Ruiz: A note on a separation problem, Arch. MaB.422—-426 (1984)
[Rz2] J.M. Ruiz: On Hilbert’'s 17th problem and real nullstellensatz for global analytic

functions, Math. 2190, 447-459 (1985)

[Rz3] J.M. Ruiz: Sums of two squares in analytic rings, Math2Z0, 317—-328 (1999)

[Sch1] C. Scheiderer: Sums of squares of regular functions on real algebraic varieties, Trans.
A.M.S.3523), 1039-1069 (1999)

[Sch2] C. Scheiderer: On sums of squares in local rings, Preprint Univ. Duisburg 2000



