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Abstract. We find all real analytic surface germs inR3 on which every positive semidefinite
function germ is a sum of squares (in fact, of two squares) of analytic function germs.

1 Introduction and statement of the result

In the study of positive semidefinite functions (=psd) and sums of squares (=
sos) one main problem is to know whether every positive semidefinite function
is a sum of squares.As is well known, the interest on questions of this type stems
from the famous Hilbert’s 17th problem, and has been one of the streamlines of
research in real algebra and real geometry. The history of psd’s and sos’s is long
and rich, and we refer the reader to [BoCoRo] and [ChDLR]. One particular case
which is receiving more attention lately is that of local rings, see for instance
[Sch2]. Here real algebra and the techniques of real spectra appear in essential
ways. In fact, psd’s are defined over arbitrary commutative rings bymeans of the
theory of the real spectrum.

In this paper, we will be dealing with the most geometric illustration of local
rings: real analytic germs. Our goal is to determine when psd = sos foranalytic
function germs. Of course, this is always true formeromorphicfunction germs
(see for instance [Rz2]), but in the analytic setting things are very different. For
curve germs we know that it is true only for unions of independent lines; this is
easy to see for curves in the plane, and in any case follows from a general result
due to Scheiderer ([Sch2]). In higher dimensions only five germs are known to
have that property: the plane, the Brieskorn singularity, the union of two planes,
Whitney’s umbrella and the cone, and in fact, very few more are expected to
appear in the list (see [FeRz]).
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Before further comments, we need some notation and terminology. LetX be
an analytic set germ (at the origin ofR

n); we denote byO(X) the ring of germs
of analytic functions onX and byM(X) its total ring of fractions. For instance,
O(Rn) is the ringR{x} of convergent power series inx = (x1, . . . , xn), and
M(Rn) is the field of fractionsR({x}) of R{x}. AsX ⊂ R

n we haveO(X) =
R{x}/I , whereI is the ideal of all analytic function germs vanishing onX. A
germf ∈ O(X) is positive semidefiniteor psdif it is ≥ 0 onX; we denote by
P(X) the set of all psd’s ofX. We will denote byΣ(X) (resp.Σ2(X)) the set of
all sums of squares (resp. of 2 squares) of elements ofO(X).

As was said before, we can introduce these notions for an arbitrary commuta-
tive ringA:P(A) is the set of allf ∈ A such thatf (α) ≥ 0 for every prime cone
α ∈ Specr (A). The fact thatP(A) = P(X) for A = O(X) is a consequence
of the Artin-Lang property for germs (see [AnBrRz]). Also, we setΣ(X) (resp.
Σ2(X)) for the set of all sums of squares (resp. of 2 squares) of elements ofA.

We have the following general result for dimension≥ 3.

Theorem 1.1. ([Sch1])Let A be a local regular ring of dimension≥ 3. Then
Σ(A) �= P(A).

From this we easily deduce:

Corollary 1.2. LetX ⊂ R
n have dimensiond ≥ 4. ThenΣ(X) �= P(X).

Proof. Indeed, ifXd is an irreducible component ofX of dimensiond, the curve
selection lemma gives a curve germγ ⊂ X not contained in SingX and the ideal
of γ is a prime idealp ⊂ O(X) of heightd − 1, such thatA = O(X)p is local
regular of dimensi´ond −1 ≥ 3. By 1.1 there isf/g ∈ P(A)\Σ(A)with g �∈ p.

Let h ∈ O(X) be an equation for the union of all irreducible components of
X which do not containγ (i.e. those distinct fromXd) plus the singular locus of
Xd . The elementF = h2g2f/g is clearly inP(A), and consequently, positive in
every ordering ofcf (A), which is in fact the field of meromorphic functions of
Xd . Thus,F ≥ 0 onXd \ SingX and 0 on any other irreducible component of
X; we concludeF ∈ P(X). ButF �∈ Σ(X), because otherwise, sincehg �∈ p is
a unit inA, we would havef/g ∈ Σ(A). ��

It is thought that this should also be true for dimension= 3, and consequently
the germs for whichΣ = P should be looked for in dimension 2. However, we
know many examples withΣ �= P and very few withΣ = P (the five surface
germs already mentioned). Then, one starts by searching the surface germs in
R
3 with P = Σ . In this framework, our main result is the following:

Theorem 1.3. The singular surface germsX ⊂ R
3 with P(X) = Σ(X) are

exactly the following
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(i) z2 − x3 − y5 = 0 (Brieskorn’s singularity)
(ii) z2 − x3 − xy3 = 0
(iii) z2 − x3 − y4 = 0
(iv) z2 − x2 = 0 (Two transversal planes)
(v) z2 − x2 − y2 = 0 (Cone)
(vi) z2 − x2 − yk = 0, k ≥ 3 (Deformations of two planes)
(vii) z2 − x2y = 0 (Whitney’s umbrella)
(viii) z2 − x2y + y3 = 0
(ix) z2 − x2y − (−1)kyk = 0, k ≥ 4 (Deformations of Whitney’s umbrella)

Furthermore, in all these casesP(X) = Σ2(X).

The first part of this statement, that is,P(X) = Σ(X) putsX in the list,
was partially proved in [Rz3]. Indeed, there it is shown thatX is in the list if
P(X) = Σ2(X). We extend this to any number of squares in section§2.

The second part of the statement 1.3, and the hardest, is to proveP = Σ2

for all germs in the list. This is done in [Rz3] for Brieskorn’s singularity, the
two planes, and Whitney’s umbrella, and in [FeRz] for the cone. The proof for
Brieskorn’s singularity is a transcription of the old argument for the plane, using
the fact that the singularity and its complexification are both factorial (a property
that characterizes this singularity). The proof for the other three surface germs
are particular of each case, although that of the cone contains some hints for
the more systematic method we develop in this paper. Indeed, we will prove
P = Σ2 for all germs in the list, starting always from the factorial situation.
To that end, we reduce the problem to a mixed polynomial case, by means of
M. Artin’s Approximation Theorem ([Ku et al], [M.Ar]) and a density result for
psd’s (section§3). Then, by blowings-up we go from each surface in the list to
either the plane or Brieskorn’s singularity (sections§4-§6) to settle the matter up
to a universal denominator. The conclusion follows by clearing that denominator
by some standard equations with sos’s.

2 Generation of the list

Given an idealI ⊂ R{x}, letω(I (X)) stand for the minimal order of a series in
I . We have the following general remark:

Lemma 2.1. LetX ⊂ R
n verify P(X) = Σ(X). Thenω(I (X)) = 2.

Proof. To start with, we choose a seriesF ∈ I (X) of orderr > 0. After a linear
change we may assume

F = xr
n + ar−1x

r−1
n + · · · + a1xn + a0,

whereaj ∈ R{y}, y = (x1, . . . , xn−1) andω(aj ) ≥ r − j for 0 ≤ j ≤ r − 1.
We claim that there isM > 0 such that|aj | < M‖y‖r−j .
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Indeed, sayf = a1, . . . , ar−1 has order≥ s. Sinceω(f 2) ≥ 2s we can write
f 2 = ∑

|ν|=2s aν(y)y
ν , and so, near the origin we have

|f (y)|2 ≤
∑

|ν|=2s

cν |y|ν =
∑

|ν|=2s

cν‖y‖2s |z|ν = ‖y‖2s
∑

|ν|=2s

cν |z|ν

with cν = 1+ |aν(0)| andz = y/‖y‖. The function
∑

|ν|=2r cν |z|ν is bounded
on ‖z‖ = 1, say byM > 0, and we conclude‖f ‖2 < M‖y‖2s , hence‖f ‖ <

M‖y‖s . This shows our claim.
Now, for every integerk ≥ 1 we consider the quadratic form

gk = k2(x21 + · · · + x2n−1) − x2n,

and will prove that fork largegk is psd inX.
In fact, otherwise,X would contain a sequencex(k) = (y(k), x(k)

n ) → 0 such
thatgk(x(k)) < 0, that is,

0 ≤ kρk < |x(k)
n |, where ρk = ‖y(k)‖.

SinceF ∈ I (X), we haveF(x(k)) = 0, and consequently

|x(k)
n |r = |

r−1∑
j=0

aj (y
(k))(x(k)

n )j | ≤
r−1∑
j=0

|aj (y(k))||x(k)
n |j ≤

M

r−1∑
j=0

ρ
r−j

k |x(k)
n |j < M

r−1∑
j=0

|x(k)
n |r

kr−j
= M|x(k)

n |r
r−1∑
j=0

1

kr−j
.

But |x(k)
n |r > 0, and we get 1< M

(
1

k
+ · · · + 1

kr

)
, a contradiction.

Once we know thatgk ∈ P(X) for k large, let us see thatgk �∈ Σ(X) if
ω(I (X)) ≥ 3. To that end, supposegk is an sos inO(X). Then

gk = h21 + · · · + h2s + h,

with hi ∈ R{x}, h ∈ I (X) andω(h) ≥ 3. Whence, equating initial forms in the
above expression, we finda1, . . . , ar ∈ R[x1, . . . , xn] such that

gk = a21 + · · · + a2r ,

which is impossible. ��
From the last result we deduce that ifP(X) = Σ(X) holds forX ⊂ R

3,
sayX : f (x, y, z) = 0, thenω(f ) = 2. Hence, after a change of coordinates,
f = z2−F(x, y)with ω(F) ≥ 2. Under this conditions, the arguments in [Rz3,
§4] work for the conditionP = Σ and not only forP = Σ2, and we get the list
of 1.3.
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3 Polynomial reduction

Given an analytic surface germX ⊂ R
3 with equationz2 = F(x, y), whereF is

a polynomial, we consider the algebraic surfaceSX defined by the same equation
z2 = F(x, y) and denote byP(SX) the set of all polynomialsP(x, y)+zQ(x, y)

which are≥ 0 everywhere onSX. To reduce the study ofP(X) to that ofP(SX)

we need the following density result:

Lemma 3.1. Let Z ⊂ R
2 be a closed semianalytic set germ andf ∈ O(R2).

If f |Z\{0} > 0, the same holds true for everyg ≡ f mod (x, y)r with r large
enough.

The germs that verify the condition in the statement are thepositive definiteor
pdgerms onZ; we denote byP+(Z) the set of all pd’s onZ.

Proof. SinceZ is a finite union of closed half-branches and connected slices
between them, we can supposeZ \ {0} connected. Letf ∈ P+(Z). We have
Z ∩ {f = 0} = {0}, and there exists a separating polynomialϕ ∈ R[x, y] such
thatϕ|Z\{0} > 0 andϕ|{f=0}\{0} < 0 ([Rz1]).
Claim: If g ≡ f mod (x, y)r for r large enough, then{g = 0} \ {0} ⊂ {ϕ < 0}.

Assume this for the moment. Then,{g = 0} ∩ Z = {0}, and,Z \ {0} being
connected,g has constant sign onZ \ {0}. To see that this sign is positive, we
choose a half-branchγ ⊂ Z, sayγ : x = x(t), y = y(t), t > 0. Since
f ∈ P+(Z), we have

0< f (x(t), y(t)) = ast
s + · · · , as > 0.

By the condition ong, g(x(t), y(t)) ≡ f (x(t), y(t)) mod t r , and forr > s,
we get

g(x(t), y(t)) = ast
s + · · · .

As as > 0, g ∈ P+(Z). Thus, it remains to prove the claim.
To do that, by a linear change, we makef is regular of orderm with respect

toy, so thatf = UP , whereP ∈ R{x}[y] is aWeierstrass polynomial of degree
m andU ∈ R{x, y} a unit ofR{x, y}.

Next, if g ≡ f mod (x, y)r andr is large enough,g is also regular of order
m, andg = VQ, whereQ ∈ R{x}[y] is a Weierstrass polynomial of degreem
andV ∈ R{x, y} a unit. Hence

Q = V −1UP + V −1(g − f ) ≡ V −1UP mod (x, y)r ,

from which we can deduce that

Q ≡ P mod (x, y)r−1.
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Indeed, consider the homogeneous components ofP,Q,W = V −1U :

P = pm + pm+1 + · · · + pm+k + · · · ,
Q = qm + qm+1 + · · · + qm+k + · · · ,
W = w0 + w1 + · · · + wk + · · · ,

where

pm = ym + am−1(x)y
m−1 + · · · + a1(x)y + a0(x),

qm = ym + bm−1(x)y
m−1 + · · · + b1(x)y + b0(x),

and∂y(pm+k), ∂y(qm+k) ≤ m − 1 for k ≥ 1. AsQ ≡ WP mod (x, y)r , for all
k = 0, . . . , r − m − 1 we have:

qm+k =
∑

i+j=m+k

piwj .

We must see thatqm+k = pm+k for k = 0, . . . , r − m − 1, thatw0 = 1 and that
wk = 0 for k = 1, . . . , r −m−1. Fork = 0 we haveqm = pmw0, and therefore
w0 = 1 andqm = pm. Assume nowqm+j = pm+j for j = 0, . . . , k < r −m−1
andwj = 0 for j = 1, . . . , k. Then:

qm+k+1 = pm+k+1w0 + pm+kw1 + · · · + pmwk+1 = pm+k+1 + pmwk+1,

but, if wk+1 �= 0,

m ≤ ∂y(pmwk+1) = ∂y(qm+k+1 − pm+k+1)

≤ max{∂y(qm+k+1), ∂y(pm+k+1)} ≤ m − 1,

which is impossible, hencewk+1 = 0 andqm+k+1 = pm+k+1.
Thus we writeP − Q = h ∈ (x, y)r−1, whereh ∈ R{x}[y] has degree< m.
Finally, the germg = 0 is a union of real half-branches, sayγi : x =

εit
p, y = gi(t), t > 0, whereεi = ±1, and each Puiseux seriesξ = gi(t

1/p) is
a root of the polynomialQ(εit, y) (we can takep = m!, [Ch]). Then there is a
rootζ of the polynomialP(εit, y) such thatω(ζ − ξ) ≥ r/mp. Indeed, suppose

P(εit, y) = (y − ζ1) · · · (y − ζm),

with ω(ζj − ξ) < r/mp for all j . Since

h(εit, ξ) = P(εit, ξ) − Q(εit, ξ) = P(εit, ξ) = (ξ − ζ1) · · · (ξ − ζm),

we get
r/p ≤ ω

(
h(εit, ξ)

) = ω
(
(ξ − ζ1) · · · (ξ − ζm)

)
< r/p,

acontradiction.Now, ifζ hassomenon-real coefficient, choosingr large,ξ would
have the same non-real coefficient, which is not the case. Thus we conclude that
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ζ defines a real half-branchσ : x(t) = εit
p, y(t) = fi(t), t > 0, contained in

{f = 0} \ {0} ⊂ {ϕ < 0}. Hence
ϕ(εit

p, fi(t)) = ait
si + · · · , ai < 0.

Finally, the conditionω(ζ − ξ) ≥ r/mp meansfi ≡ gi mod t r/m, so that

ϕ(εit
p, gi(t)) ≡ ϕ(εit

p, fi(t)) mod t r/m,

and forr large,ϕ(εitp, gi(t)) = ait
si +· · · , that is,γi ⊂ {ϕ < 0}. This completes

the proof. ��
Remarks 3.2.LetX ⊂ R

3 be a germz2 = F(x, y), with F ∈ R[x, y]. Then the
ringO(X) is a freeR{x, y}-module of rank 2: every analytic function germ on
X can be writtenf (x, y) + zg(x, y), with f, g ∈ R{x, y}. Furthermore, psd’s
are given by ([Rz3]):

P(X) = {f + zg : f ∈ P(F ≥ 0), f 2 − Fg2 ∈ P(R2)}.
For pd’s we only haveP+(X) ⊃ {f + zg : f ∈ P+(F ≥ 0), f 2 − Fg2 ∈

P+(R2)}, but as a converse we can prove the following:
If f + zg ∈ P(X) then(f + (x2 + y2)m)2 − Fg2 ∈ P+(R2) for m large

enough.
Indeed, sincef + (x2 + y2)m ± zg ∈ P+(X), then

(f + (x2 + y2)m)2 − Fg2 ∈ P(R2) ∩ P+(X)

and therefore(f + (x2 + y2)m)2 − Fg2 ∈ P(R2) ∩ P+(F ≥ 0). Thus,

{(f + (x2 + y2)m)2 − Fg2 = 0} ⊂ {F < 0} ∪ {0},
and we obtain

{(f + (x2 + y2)m)2 − Fg2 = 0} = {f + (x2 + y2)m = 0, g = 0}.
But, {f + (x2 + y2)m = 0} ∩ {g = 0} �= {0} for finitely manym’s, and so
(f + (x2 + y2)m)2 − Fg2 ∈ P+(R2) for m large.

Now we can prove the polynomial reduction:

Theorem 3.3. LetX ⊂ R
3 be an analytic set germ of equationz2−F(x, y) = 0

with F ∈ R[x, y]. If P(SX) ⊂ Σ2(X), thenP(X) = Σ2(X).

Proof. SupposeP(SX) ⊂ Σ2(X) and leth = f +zg ∈ P(X).We first prove that
for everym ≥ 1 there existP,Q ∈ R[x, y] such thathm = P + zQ ∈ P(SX)

andω(h − hm) ≥ m.
We start with the functionϕm = f + (x2 + y2)m + zg ∈ P+(X) which has

the following properties:
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• f + zg − ϕm = (x2 + y2)m ∈ (x, y)2m

• ϕm(x, y,−z) ∈ P+(X)

• f + (x2 + y2)m ∈ P+(F ≥ 0)
• (f + (x2 + y2)m)2 − Fg2 ∈ P+(R2) for m large (by 3.2).

Now, by the density lemma (3.1), there existsr > 2m such that:

f + (x2 + y2)m + (x, y)r ⊂ P+(F ≥ 0) (i)

(f + (x2 + y2)m)2 − Fg2 + (x, y)r ⊂ P+(R2) (ii)

We consider the jet of degreer − 1 of ϕm,

ϕr−1
m = fr−1 + (x2 + y2)m + zgr−2

wherefr−1, gr−2 are the jets of degreesr − 1, r − 2 of f, g respectively, and it
holdsϕr−1

m ∈ P+(X).
Indeed, we only have to check that

fr−1 + (x2 + y2)m ∈ P+(F ≥ 0), (fr−1 + (x2 + y2)m)2 − Fg2r−2 ∈ P+(R2)

which follows from (i), (ii), because:

f + (x2 + y2)m − (
fr−1 + (x2 + y2)m

) = f − fr−1 ∈ (x, y)r (iii)

(f + (x2 + y2)m)2 − Fg2 − (
(fr−1 + (x2 + y2)m)2 − Fg2r−2

)
= (f 2 − Fg2) − (f 2

r−1 − Fg2r−2) + 2(x2 + y2)m(f − fr−1) ∈ (x, y)r (iv)

Sinceϕr−1
m ∈ P+(X), there isε > 0 such thatϕr−1

m (x, y, z) > 0 for (x, y, z) ∈
SX, 0< ‖(x, y, z)‖ < ε. Now, if z2 = F(x, y) and‖(x, y, z)‖ ≥ ε:

|ϕr−1
m (x, y, z)| =

∣∣∣ ∑
i+j+k≤r−1

aijkx
iyj zk

∣∣∣ ≤
∑

i+j+k≤r−1

|aijk||x|i |y|j |z|k

≤
∑

i+j+k≤r−1

|aijk|‖(x, y, z)‖i+j+k ≤
∑

i+j+k≤r−1

|aijk|
ε2r−(i+j+k)

‖(x, y, z)‖2r

≤ M‖(x, y, z)‖2r = M(x2 + y2 + z2)r

for someM > 0.
Therefore,hm = ϕr−1

m + M(x2 + y2 + F)r ∈ P(SX) and

hm − (f + zg) = M(x2 + y2 + F)r + ϕr−1
m − (f + zg) ∈ (x, y)2m.

Thus,hm ∈ P(SX) and, sinceP(SX) ⊂ Σ2(X), there areαm, βm, qm ∈
R{x, y, z} such thathm = α2

m +β2
m + (z2 −F)qm. Buth ≡ hm mod (x, y, z)m,

hence
h ≡ α2

m + β2
m + (z2 − F)qm mod (x, y, z)m.
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Consequently, by M. Artin’s Approximation Theorem ([Ku et al], [M.Ar]), we
deduce that the equation

h = α2 + β2 + (z2 − F)q

has a solutionα, β, q ∈ R{x, y, z}, andh ∈ Σ2(X). ��
We close this section with a result which will be useful later.

Lemma 3.4. LetP ∈ R{x, y}[z] be a Weierstrass polynomial of degreem and
F,A1, A2, . . . , Ak ∈ R{x, y}[z] polynomials of degree≤ m − 1 such that
F = A2

1 + A2
2 + · · · + A2

k + QP whereQ ∈ R{x, y, z}. ThenQ ∈ R{x, y}[z]
and∂z(Q) ≤ m − 2.

Proof. We divide the polynomialA2
1 +A2

2 + · · · +A2
k of degree≤ 2m− 2 byP

in R{x, y}[z] to obtain
A2
1 + A2

2 + · · · + A2
k = Q1P + R1

whereQ1, R1 ∈ R{x, y}[z] and ∂z(Q1) ≤ m − 2, ∂z(R1) ≤ m − 1. Thus
F = (Q1+Q)P +R1, which is aWeierstrass division. But, since∂y(F ) < ∂y(P )

this division must be trivial, andQ = −Q1 ∈ R{x, y}[z], ∂z(Q) ≤ m − 2. ��

4 The blowings-up of Brieskorn’s singularity

Here we will proveP = Σ2 forX : z2−x3−xy3 = 0 andY : z2−x3−y4 = 0.
As we have shown in the preceding section (3.3), it suffices to see that:

Theorem 4.1. P(SX) ⊂ Σ2(X) and P(SY ) ⊂ Σ2(Y )

We treatX first.

Proof. Consider the biregular map

φ : {z2 − x3 − xy3 = 0} \ {x = 0} −→ {v2 − x5 − u3 = 0} \ {x = 0}
(x, y, z) �−→ (x, xy, xz) = (x, u, v)

with inverse

ψ : {v2 − x5 − u3 = 0} \ {x = 0} −→ {z2 − x3 − xy3 = 0} \ {x = 0}
(x, u, v) �−→

(
x,

u

x
,
v

x

)
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X : z2 = x3 + xy3 E8 : v2 = x5 + y3

φ

−→

Now takeT = P + zQ ∈ P(SX) and consider

T ◦ ψ = P
(
x,

u

x

)
+ v

x
Q

(
x,

u

x

)
= F(x, u) + vG(x, u)

x2r

whereF + vG ∈ R[x, u, v], r ≥ 0. Clearly,F + vG ≥ 0 onv2 − x5 − u3 =
0, x �= 0, and by continuity, onv2 − x5 − u3 = 0. Since this is Brieskorn’s
singularity, for whichP = Σ2, there existα, β, q ∈ R{x, u, v} such that

x2r (P + zQ) ◦ ψ = F + vG = α2 + β2 + q(v2 − x5 − u3),

and so, inR{x, y, z}
x2r (P + zQ)(x, y, z) = α2(x, xy, xz) + β2(x, xy, xz)

+q(x, xy, xz)x2(z2 − x3 − xy3)

We divideα(x, xy, xz), β(x, xy, xz) andq(x, xy, xz) by z2 − x3 − xy3 and
apply 3.4 to obtain

x2r (P + zQ) = (α0 + zα1)
2 + (β0 + zβ1)

2 − (z2 − x3 − xy3)q0 (i)

whereαi, βi, q0 ∈ R{x, y}. The final step is to get rid of the denominatorx2r ,
which will be done, up to iteration, ifx2|q0 andx|αi, βi . To show this, comparing
coefficients in (i) we get:

(0) x2rP = α2
0 + β2

0 + q0(x
3 + xy3)

(1) x2rQ = 2(α0α1 + β0β1)

(2) q0 = α2
1 + β2

1

Now from (0) we obtainx|α2
0 + β2

0, hencex|α0, β0 andx|q0. Finally, from(2),
we deduce thatx|α2

1 + β2
1 and sox|α1, β1 andx2|q0. ��

OnceX is solved, we treatY similarly.
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Proof. We consider the analytic germZ : z2 + zy2 − x3 = 0 and the invertible
polynomial mapϕ(x, y, z) = (x,

√
2y, z − y2). Sinceϕ(SY ) = SZ andϕ(Y ) =

Z, our problem translates into showing thatP(SZ) ⊂ Σ2(Z). To do that we
consider the biregular map:

φ : {z2 + zy2 − x3 = 0} \ {z = 0} −→ {u2 + z3 − zx3 = 0} \ {z = 0}
(x, y, z) �−→ (x, z, zy) = (x, z, u)

Z : z2 = x3 − zy2 X : u2 = −z3 + zx3

ϕ

−→

with inverse

ψ : {u2 + z3 − zx3 = 0} \ {x = 0} −→ {z2 + zy2 − x3 = 0} \ {x = 0}
(x, z, u) �−→

(
x,

u

z
, z

)

Now takeP ∈ P(SZ), and consider

P ◦ ψ = P
(
x,

u

z
, z

)
= F(x, u, z)

z2r

whereF(x, z, u) ∈ R[x, z, u], r ≥ 0. SinceF ≥ 0 onu2+z3−zx3 = 0, x �= 0,
by continuityF ≥ 0 on u2 + z3 − zx3 = 0. But this surface is analytically
equivalent toX, already discussed, hence there existα, β, q ∈ R{x, z, u} such
that

z2rP ◦ ψ = F = α2 + β2 + q(u2 + z3 − zx3)

and so, we have inR{x, y, z}
z2rP (x, y, z) = α2(x, z, zy) + β2(x, z, zy) + q(x, z, zy)z(zy2 + z2 − x3)

We divideα(x, z, zy), β(x, z, zy) andq(x, z, zy) by x3 − z2 − zy2 and apply
3.4 to get

z2r (p0 + p1x + p2x
2) = (α0 + α1x + α2x

2)2

+ (β0 + β1x + β2x
2)2 − (q0 + q1x)(x

3 − z2 − zy2) (i)
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whereαi, βi, pi, qi ∈ R{y, z}. We eliminate the denominatorz2r by seeing that
z2|qi andz|αi, βi . Comparing coefficients in (i) we obtain:

(0) z2rp0 = α2
0 + β2

0 + q0(z
2 + zy2)

(1) z2rp1 = 2(α0α1 + β0β1) + q1(z
2 + zy2)

(2) z2rp2 = α2
1 + β2

1 + 2(α0α2 + β0β2)

(3) q0 = 2(α1α2 + β1β2)

(4) q1 = α2
2 + β2

2

Now, from(0)wededucez|α2
0+β2

0, and thereforez|α0, β0, so thatz|q0.Applying
this to (2) we see thatz|α2

1 + β2
1, hencez|α1, β1 and, thus, in view of (1)z|q1.

From(4)we getz|α2
2 +β2

2, hencez|α2, β2 y z2|q1. Finally, from(3)we conclude
z2|q0. ��

Thus, we have completed the proof of 4.1.

5 The two planes and its deformations

We show here that the germsXk : z2 − x2 − yk = 0,k ≥ 2, have all the property
P = Σ2. In addition, we will deduce the same for the two planesz2 − x2 = 0.
As we know, by polynomial reduction, it is enough to prove:

Theorem 5.1. P(SXk
) ⊂ Σ2(Xk).

Proof. Consider thegermYk : yk−uv = 0and the linear isomorfismϕ(x, y, z) =
(z − x, y, z + x) = (u, y, v).

Y2@ : y2@ = uv Y2@+1 : y2@+1 = uv

Sinceϕ(SXk
) = SYk andϕ(Xk) = Yk, we will see thatP(SYk ) ⊂ Σ2(Yk). For

this we consider the biregular map:

φ : R
2 \ {v = 0} −→ SYk \ {v = 0}

(y, v) �−→
(yk

v
, y, v

)
= (u, y, v)
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Now, takeP ∈ P(SYk ) and

P ◦ φ(y, v) = P
(yk

v
, y, v

) = Q(y, v)

v2r

wherer ≥ 0, andQ(y, v) ∈ R[y, v] is≥ 0 onR
2 \ {v = 0}, hence onR2. Since

P(R2
o) = Σ2(R

2
o), there areα, β ∈ R{y, v} such that

v2rP ◦ φ = Q = α2 + β2

and inR{u, y, v} we obtain
v2rP (u, y, v) = α2(y, v) + β2(y, v) + (yk − uv)q(u, y, v).

We divideP, α, β by yk − uv and apply 3.4 to get

v2r (p0 + p1y + · · · + pk−1y
k−1) = (α0 + α1y + · · · + αk−1y

k−1)2

+ (β0 + β1y + · · · + βk−1y
k−1)2 − (yk − uv)(q0 + q1y + · · · + qk−2y

k−2)

(i)

whereαi, βi, pi, qi ∈ R{u, v}. Again, we end by showing thatv2|q0, . . . , qk−2,

v|αi, βi for 0 ≤ i ≤ k − 1. Comparing coefficients in (i) we find:

(1) v2rp0 − uvq0 = α2
0 + β2

0
(2) v2rp1 − uvq1 = 2α0α1 + 2β0β1

...

(@) v2rp@ − uvq@ = ∑
i+j=@(αiαj + βiβj )

...

(k − 1) v2rpk−1 − uvqk−1 = ∑
i+j=k−1(αiαj + βiβj ) (whereqk−1 = 0)

(k) q0 = ∑
i+j=k(αiαj + βiβj )

...

(k + @) ql = ∑
i+j=k+@(αiαj + βiβj )

...

(2k − 2) qk−2 = α2
k−1 + β2

k−1

Now, we see thatv|α@, β@, q@ for @ = 0, . . . , k − 1. For@ = 0 we havev2rp0 −
uvq0 = α2

0 + β2
0, hencev|α2

0 + β2
0, and we deducev|α0, β0 andv|q0. Next, let

@ < k and supposev|α0, β0, . . . , α@−1, β@−1, q0, . . . , q@−1. If 2@ ≤ k − 1 then:

v2rp2@ − uvq2@ =
∑

i+j=2@,i �=j

(αiαj + βiβj ) + α2
@ + β2

@ ,

and sincev|α0, β0, . . . , α@−1, β@−1, we getv|α@, β@. If 2@ > k − 1 then:

q2@−k =
∑

i+j=2@,i �=j

(αiαj + βiβj ) + α2
@ + β2

@
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But@ ≤ k−1 implies 2@−k ≤ @−1 and by induction hypothesisv|q2@−k. Since,
also by induction hypothesis,v|α0, β0, . . . , α@−1, β@−1 we deduce againv|αl, βl.
Finally, from(@)we see thatv|q@, which completes the induction. Oncewe know
this, from(k), . . . , (2k − 2) we conclude thatv2|q@ if 0 ≤ @ ≤ k − 2. ��

We finish the section with a limit argument that gives the propertyP = Σ2

for the two planes:

Corollary 5.2. P(z2 − x2 = 0) = Σ2(z
2 − x2 = 0)

Proof. Let f + zg ∈ P(z2 − x2 = 0) andm ≥ 1. By 3.2,f ≥ 0 onx2 ≥ 0, that
is, onR

2, hence
f + (x2 + y2)m ∈ P+(R2).

Again by 3.2,f 2 − x2g2 ≥ 0 onR
2, so that

(f + (x2 + y2)m)2 − x2g2 ∈ P+(R2).

Now, by the 3.1, for larger ≥ 2m we have(f + (x2 + y2)m)2 − x2g2 +
(x, y)r ⊂ P+(R2), and we consider the germX2r : z2 = x2 + y2r , on which
f +(x2+y2)m+zg is≥ 0. For,f +(x2+y2)m ∈ P+(R2) = P+(x2+y2r ≥ 0),
and

(f + (x2 + y2)m)2 − (x2 + y2r )g2 = (f + (x2 + y2)m)2 − x2g2 − y2rg2

∈ (f + (x2 + y2)m)2 − x2g2 + (x, y)r ⊂ P+(R2).

Then, sinceP = Σ2 holds forX2r , there existαm, βm, qm ∈ R{x, y, z} such that:
f + (x2 + y2)m + zg = α2

m + β2
m − (z2 − x2 − y2r )qm,

and
f + zg ≡ α2

m + β2
m − (z2 − x2)qm mod (x, y)2m.

This valid for everym, M.Artin’s Approximation Theorem givesα, β, q ∈
R{x, y, z} such thatf + zg = α2 + β2 − (z2 − x2)q.We are done. ��

6 Whitney’s umbrella and its deformations

In this section we will proveP = Σ2 for

Xk : z2 − x2y + y2k+1 = 0, k ≥ 1, and Yk : z2 − x2y − y2k = 0, k ≥ 2,

and deduce in the limitP = Σ2 for Whitney’s umbrella.
As usual, we prove:

Theorem 6.1. P(SXk
) ⊂ Σ2(Xk) and P(SYk ) ⊂ Σ2(Yk).
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First we treat the odd case.

Proof. Let Zk : z2 − xy(x − yk) = 0 and consider the invertible polynomial
mapϕ(x, y, z) = (x + yk,

k
√
2y, 2k

√
2z). Sinceϕ(SZk

) = SXk
andϕ(Zk) = Xk,

the conditionP(SXk
) ⊂ Σ2(Xk) is equivalent toP(SZk

) ⊂ Σ2(Zk), and we will
see the latter. Consider the algebraic surfaceMk : w2(x − yk)− xy = 0 and the
biregular map:

φ : Mk \ {x − yk = 0} −→ SZk
\ {x − yk = 0}

(x, y,w) �−→ (x, y,w(x − yk)) = (x, y, z)

with inverse:

ψ : SZk
\ {x − yk = 0} −→ Mk \ {x − yk = 0}

(x, y, z) �−→
(
x, y,

z

x − yk

)

Mk : w2(x − yk) = xy Zk : z2 = xy(x − yk)

ϕ

−→ •

Now takeT = P + zQ ∈ P(SZk
); the polynomialT ◦ φ = P(x, y) + w(x −

yk)Q(x, y) is≥ 0 enMk. Consider the biregular map:

χ : R
2 \ {w2 − y = 0} −→ Mk \ {y = w = 0}

(y,w) �−→
( w2yk

w2 − y
, y,w

)

and

T ◦ φ ◦ χ = P
( w2yk

w2 − y
, y

)
+ w

( w2yk

w2 − y
− yk

)
Q

( w2yk

w2 − y
, y

)
= F(y,w)

(w2 − y)2r

where 2r ≥ ∂x(T ◦ φ), andFk(y,w) ∈ R[y,w] is ≥ 0 onw2 − y �= 0, hence
onR

2.
Here we need the fact that a psd polynomialH ∈ R[x, y] is a sum of two

squares inR{x}[y]. A proof of this can be the following. Such anH is positive
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in every total ordering ofR({x})[y]. Indeed, otherwise there is a homomorphism
from R({x})[y] into the field of real Puiseux series, sayx �→ εt, y �→ h(t1/p),
ε = ±1, such thatH(εt, h(t1/p)) > 0 (Lang’s homomorphism theorem) and
specializing att > 0 small enough we get a point at whichH is negative. Hence
H is an sos inR({x})(y), which has Pythagoras number 2 ([ChDLR]), hence a
sum of 2 squares. But then it is a sum of two squares inR{x}[y] (see for instance
[ChLRR]).

Consequently, applying this toH = F we findF1, F2 ∈ R{y}[w], such that
(w2 − y)2r (T ◦ φ ◦ χ) = F 2

1 + F 2
2 ,

and therefore

(w2 − y)2rT ◦ φ = F 2
1 + F 2

2 + (
(w2 − y)x − w2yk

)
q(x, y,w)

whereq ∈ R[x, y,w] (it comes from division inR[x, y,w]). Now, we compose
with φ−1 = ψ :

(( z

x − yk

)2− y
)2r

T = F 2
1

(
y,

z

x − yk

)
+ F 2

2

(
y,

z

x − yk

)

+
( z2

x − yk
− xy

)
q
(
x, y,

z

x − yk

)
,

and multiply by a large power of(x − yk)2 to get

(x − yk)2m
(
z2 − y(x − yk)2

)2r
T = α2 + β2 + (z2 − xy(x − yk))q ′

whereα, β, q ′ ∈ R{x, y, z}. Dividingα, β, (z2−y(x−yk)2
)2r

T by z2−xy(x−
yk) and applying 3.4, we obtain

(x − yk)2m((x − yk)yk+1)2r (P + zQ) = (x − yk)2m+2ry2r(k+1)(P + zQ)

= (A0 + zA1)
2 + (B0 + zB1)

2 − (z2 − xy(x − yk))p0 (i)

for someAi, Bi, p0 ∈ R{x, y}. Next, we multiply (i) by(x − yk)2rky2m and get

((x − yk)y)2m+2r(k+1)(P + zQ) = ((x − yk)y)2n(P + zQ)

= (α0 + zα1)
2 + (β0 + zβ1)

2 − (z2 − xy(x − yk))q0 (ii)

whereαi, βi, q0 ∈ R{x, y} andn = m+ r(k+1). Once again it remains to show
that(x − yk)y|αi, βi and((x − yk)y)2|q0. But, comparing coefficients in (ii) we
see:

(0) ((x − yk)y)2nP = α2
0 + β2

0 + xy(x − yk)q0
(1) ((x − yk)y)2nQ = 2(α0α1 + β0β1)

(2) q0 = α2
1 + β2

1
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From (0) we get(x − yk)y|α2
0 + β2

0, hence(x − yk)y|α0, β0 and(x − yk)y|q0.
Finally, by (2), we have(x − yk)y|α2

1 + β2
1 and therefore(x − yk)y|α1, β1 and

((x − yk)y)2|q0. We are done. ��
Now we solve the even case:

Proof. Consider the birregular map:

φ : {z2 − x2y − y2k} \ {y = 0} −→ {w2 − z2y + y2k+1 = 0} \ {y = 0}
(x, y, z) �−→ (z, y, xy) = (z, y,w)

Yk : z2 = x2y + y2k Xk : w2 = z2y − y2k+1

φ

−→

The inverse ofφ is:

ψ : {w2 − z2y + y2k+1 = 0} \ {y = 0} −→ {z2 − x2y − y2k} \ {y = 0}
(z, y,w) �−→

(w
y
, y, z

)

Let T = P + zQ ∈ P(SYk ), and consider

T ◦ ψ = P
(w
y
, y

)
+ zQ

(w
y
, y

)
= F(w, y) + zG(w, y)

y2r

wherer ≥ 0, andF + zG ∈ R[x, y,w] is≥ 0 onw2 − z2y + y2k+1 = 0, y �= 0,
hence onw2−z2y+y2k+1 = 0. Since this isXk, there existα, β, q ∈ R{x, u, v}
such that

y2r (P + zQ) ◦ ψ = F + zG = α2 + β2 + q(w2 − z2y + y2k+1)

and so we have inR{x, y, z}
y2r (P + zQ) = α2(z, y, xy)+β2(z, y, xy)+q(z, y, xy)((xy)2− z2y +y2k+1).
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We divideα(z, y, xy), β(z, y, xy) andq(z, y, xy) by z2 − x2y − y2k and apply
3.4 to get

y2r (P + zQ) = (α0 + zα1)
2 + (β0 + zβ1)

2 − (z2 − x2y − y2k)q0 (i)

whereαi, βi, q0 ∈ R{x, y}. Typically, we end by seeing thaty2|q0, y|αi, βi .
Comparing coefficients in (i) gives:

(0) y2rP = α2
0 + β2

0 + q0(x
2y + y2k)

(1) y2rQ = 2(α0α1 + β0β1)

(2) q0 = α2
1 + β2

1

Now from (0) we gety|α2
0 + β2

0, hencey|α0, β0 andy|q0. By (2), y|α2
1 + β2

1, so
thaty|α1, β1 andy2|q0. The proof of the even case is thus complete. ��

We conclude with the proof thatP = Σ2 for Whitney’s umbrella.

Corollary 6.2. P(z2 − x2y = 0) = Σ2(z
2 − x2y = 0)

Proof. Let f + zg ∈ P(z2 − x2y = 0). By 3.2, for largem we have:

f + (x2 + y2)m ∈ P+(x2y ≥ 0) = P+({y ≥ 0} ∪ {x = 0}) (i)

(f + (x2 + y2)m)2 − x2yg2 ∈ P+(R2) (ii)

By 3.1, there existsr ≥ 1 such that

(f + (x2 + y2)m)2 − x2yg2 + (x, y)r ⊂ P+(R2). (iii)

We consider the germYk : z2 = x2y + y2k with k ≥ r,2(m+ 1), andf + (x2 +
y2)m + zg which is≥ 0 onYk.

Indeed, by (iii)

(f + (x2 + y2)m)2 − (x2y + y2k)g2 ∈ P+(R2),

and by (i)
f + (x2 + y2)m ∈ P+({y ≥ 0}).

Again by (i),
f (0, y) + y2m = y2su(y),

whereu ∈ R{y}, u(0) > 0 ands ≤ m. Therefore,

f +(x2+y2)m = y2su(y)+xh(x, y) ≥ y2su(y)−|x||h(x, y)| ≥ y2su(y)−c|x|,
whereh ∈ R{x, y} andc = |h(0,0)| + 1. Now, if x2 + y2k−1 ≤ 0 we have

|x| ≤ |y|k−1 ≤ |y|2m+1 ≤ |y|2s+1 = −y2s+1

and then
f + (x2 + y2)m ≥ y2s(u(y) + y) ≥ 0.
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All of this means thatf + (x2+y2)m + zg ∈ P(Yk) = Σ2(Yk), hence there exist
αm, βm, qm ∈ R{x, y, z} such that:

f + (x2 + y2)m + zg = α2
m + β2

m − (z2 − x2y − y2k)qm

and so,
f + zg = α2

m + β2
m − (z2 − x2y)qm mod (x, y)2m.

Since this holds for everym, M.Artin’sApproximation Theorem givesα, β, q ∈
R{x, y, z} such thatf + zg = α2 + β2 − (z2 − x2y)q. ��
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