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Abstract. We determine all complete intersection surface germs whose Pythagoras
number is 2, and find that they are all embedded in R

3 and have the property that
every positive semidefinite analytic function germ is a sum of squares of analytic
function germs. In addition, we discuss completely these properties for mixed sur-
face germs in R

3. Finally, we find in higher embedding dimension three different
families with these same properties.
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1. Introduction

In the investigation of sums of squares in analytic surface germs, the property that
every positive semidefinite function germ is a sum of squares (in short P = Σ)
has appeared closely connected to the minimal value of the Pythagoras number p.
Here we will refer always to the analytic Pythagoras number, that is, the smallest
integer p ≥ 1 such that every sum of squares of analytic function germs is a sum
of p squares of analytic function germs. This invariant is always finite for surface
germs ([Fe1]) and infinite for germs of higher dimension ([Fe3]).

Back to our properties P = Σ and p = 2, they were first compared in [Rz2],
where a small list of candidates for them was produced. Later, in [Fe2], we saw
that in fact the list gave all unmixed surface germs in R

3 with P = Σ , and all had
p = 2. In this paper we single out the invariant p, and look for surface germs with
p = 2. Our main result is proved in Section 2:

Theorem 1.1. The complete intersection germs of dimension ≥ 2 with p[X] = 2
are exactly the following
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(i) z2 − x3 − y5 = 0 (Brieskorn’s singularity).
(ii) z2 − x3 − xy3 = 0.

(iii) z2 − x3 − y4 = 0.
(iv) z2 − x2 = 0 (two transversal planes).
(v) z2 − x2 − y2 = 0 (cone).

(vi) z2 − x2 − yk = 0, k ≥ 3 (deformations of two planes).
(vii) z2 − x2y = 0 (Whitney’s umbrella).

(viii) z2 − x2y + y3 = 0.
(ix) z2 − x2y − (−1)kyk = 0, k ≥ 4 (deformations of Whitney’s umbrella).

Since we already know that all the germs of the list above have p = 2, the essential
goal here is the converse, that is, every complete intersection with p = 2 belongs
to the list. This theorem together with [Fe2] shows that the properties P = Σ and
p = 2 are equivalent for unmixed surface germs in R

3. Mixed surface germs in
R

3 are unions of surface germs with some irreducible components of dimension
1. These are exactly the surface germs in R

3 which are not complete intersections,
and very few of them have the properties under consideration. Namely, we prove

Theorem 1.2. The mixed surface germs in R
3 with p = 2 are either

(a) the union of a plane and a transversal line, and then P = Σ , or
(b) the union of a plane and a transversal singular planar curve, and then

P �= Σ .

This requires an extremely careful analysis that we present in Section 3. With
this results we close completely the case of surface germs in R

3. Let us say here that
although very predictable, as we naively stated at the 2001 Rennes International
Congress of Real Analytic and Algebraic Geometry, the actual proofs are far from
easy. The main difficulty is due to the fact that sums of squares which are not sums
of two squares are very rare (not generic) in the mixed surface cases that one is lead
to analize.

The proofs of Theorem 1.1 (Section 2) and Theorem 1.2 (Section 3) run in
the following way. First, we remark that for the germs satisfying the conditions of
the statements the property p = 2 holds true. Hence, we only have to prove the
converse. To do this we proceed in three steps:

(1) We obtain general order restrictions for a minimal system of generators of
the ideal of a germ X which has p = 2. For an analytic surface germ X which
satisfy these restrictions but not the conditions of the statement the analysis is more
delicate.

(2) By means of classification of singularities we obtain simplified equation(s)
of X. This together with some preliminary technical lemmas will be crucial to
achieve our goal, because they simplify the computations involved.

(3) For the equation(s) of X obtained in the previous step we construct an an-
alytic function germ G which is a sum of three but not two squares in the ring
of analytic function germs of X. To prove that the chosen G is not a sum of two
squares we always argue by way of contradiction. Unfortunately, heavy technical
computations are needed in each case.

In higher embedding dimension there are many more possibilities. First of all,
it is easy to produce reducible surface germs with P = Σ and p = 2: IfX, Y ⊂ R

3
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have the properties, then Z = (X × {0}) ∪ ({0} × Y ) ⊂ R
3 × R

3 = R
6 has

them too. Note that every non-unit f ∈ R{x1, x2, x3, y1, y2, y3} = R{x, y} can
be written over Z as f (x, 0) + f (0, y) (all products xiyj ’s vanish on Z), so that
f ∈ P(Z) if and only iff (x, 0) ∈ P(X), f (0, y) ∈ P(Y ). Therefore, iff ∈ P(Z),
f ≡ f (x, 0)+ f (0, y) ≡ a2

1 + a2
2 + b2

1 + b2
2 ≡ (a1 + b1)

2 + (a2 + b2)
2, and we

conclude P = Σ and p = 2 for Z. Hence, we concentrate on irreducible germs
and we study the following examples in Section 4.

Example 1.3. The Veronese cones Xn ⊂ R
n+1, n ≥ 2 (cones over the rational

normal curve), which are the surface germs given by the equations

Fij = xixj − xi−1xj+1 = 0, 1 ≤ i ≤ j ≤ n− 1,

and whose complexifications are parametrized by γ (z,w) = (zn, zn−1w, . . . ,

zwn−1, wn), (see [Ha]). It is easy to prove that Xn has multiplicity n and embed-
ding dimension n + 1. For these surface germs P = Σ and p = 2, which we
shortly denote by P = �2 (Th. 4.1). TheseXn’s are not complete intersections, but
they are at least normal, hence Cohen-Macaulay (but not Gorenstein). In particular,
X2 ⊂ R

3 is the usual cone x2
1 = x0x2, already settled in [FeRz],[Fe2].

Example 1.4. The generalized Whitney umbrellas Yn ⊂ R
n+1, n ≥ 2, which are

the analytic closures of the set germs parametrized by

ϕn : (s, t) �→ (s, st, . . . , stn−1, tn) = (x0, x1, . . . , xn−1, xn).

It is not difficult to check that the ideal of Yn is generated by the polynomials

xixj − x0x�x
q
n : i + j = qn+ � and

1 ≤ i ≤ j ≤ n− 1
0 ≤ � ≤ n− 1,

and Yn consists of the union of the image of ϕn and the xn-axis. Again we find mul-
tiplicity n and embedding dimension n+1. These surface germs have also P = Σ2
(Th. 4.4). However, theseYn’s are not complete intersections. In fact, they are neither
normal (x1/x0 is integral over O(Yn)) nor Gorenstein (by Stanley’s Criterion, [Ei,
21.14], [St]). On the positive, they are Cohen-Macaulay: depth(Yn) ≤ dim(Yn) = 2
and {x0, xn} is a regular sequence. The first umbrella Y2 ⊂ R

3 is the classical
Whitney umbrella x2

1 = x2
0x2, for which we already knew P = Σ2 ([Rz2]).

Example 1.5. A family of irreducible surface germs Zn ⊂ R
n+1, n ≥ 3, paramet-

rized by

φn : (s, t) �→ (x0, . . . , xn) = (s, st, . . . , stn−2, tn−1, tn),

withp = 2 and P �= Σ (Th. 4.5), and also multiplicity n and embedding dimension
n+ 1. The surface germ Zn is given by the equations






xn−1
k − xn−1

0 xkn−1 k = 1, . . . , n− 2
x0x

k
n − xkx

k
n−1 k = 1, . . . , n− 2

xn−1
n − xnn−1.
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TheseZn’s cannot be complete intersections by Th. 1.1, but in fact, it is not difficult
to verify that they are not even Cohen-Macaulay and, therefore, not Gorenstein (the
general hyperplane section given by x0 − xn+1 = 0 contains an embedded point
given by the ideal (x0, xn−1, xixj , xixn, x

n−1
n : 1 ≤ i ≤ j ≤ n − 2) and, hence,

depthZn < dimZn). Notice that for n = 2, Z2 ⊂ R
3 would be the regular germ

x2 = x2
1 for which of course P = Σ2 ([BR]).

We finish here with several questions that arise naturally from the above results
and examples:
Open questions. (1) Is there in higher embedding dimension any analytic germ
with P = Σ and p �= 2?

(2) Are there very singular surfaces (worse than our normal Xn’s and our
Cohen-Macaulay Yn’s) with P = Σ and p = 2?

(3) Are there very regular surfaces (better than our not Cohen-Macaulay Zn’s)
with p = 2 and P �= Σ?

The author thanks Prof. J. Ruiz for many discussions during the preparation of
this work.

2. Proof of the main result

The purpose of this section is to prove Theorem 1.1. Let X be an analytic set germ
(at the origin of R

n); we denote by O(X) the ring of germs of analytic functions
onX. IfX ⊂ R

n we have O(X) = R{x1, . . . , xn}/J (X), where J (X) is the ideal
of all analytic function germs vanishing on X. We recall that a germ f ∈ O(X)
is positive semidefinite or psd if it is ≥ 0 on X. We denote by P(X) the set of all
psd’s of X and by Σ(X) (resp. Σq ) the set of all sums of squares (resp. q squares)
of elements of O(X). Morever, p[X] stands for the Pythagoras number of O(X).

Lemma 2.1. Let a1, a2, b1, b2 ∈ R{x, y}. If ω(b1) = 0, there exist α1, α2, β1 ∈
R{x, y} such that

(a1 + zb1)
2 + (a2 + zb2)

2 = (α1 + zβ1)
2 + α2

2 .

Proof. Just take α1 = a1b1 + a2b2
√

b2
1 + b2

2

, α2 = a1b2 − a2b1
√

b2
1 + b2

2

and β1 =
√

b2
1 + b2

2. 
�

Lemma 2.2. Let G ∈ R{y}[u, v] be a polynomial such that X : G(u, y, v) = 0 is
an analytic surface germ of R

3. Suppose that there exist integers �1, �2,m ≥ 0 and
a polynomial H(x, y) ∈ R{y}[x] not divisible by y such that G(xy�1 , y, zy�2) =
ym(z2 − yH(x, y)). Let Y be the analytic surface germ of R

3 of equation z2 −
yH(x, y) = 0. Then p[Y ] ≤ p[X].

Proof. Let ε > 0 be such that the series G ∈ R{y}[u, v] ⊂ R{u, y, v} converge
on the set S = R × (−ε, ε) × R, and let SX,ε = {(u, y, v) ∈ R × (−ε, ε) × R :
G(u, y, v) = 0}. Note that z2 − yH(x, y) = 0 also converges in S and consider
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the set SY,ε = {(x, y, z) ∈ R× (−ε, ε)×R : z2 −yH(x, y) = 0} and the biregular
map ϕ:

ϕ : SX,ε \ {y = 0} → SY,ε \ {y = 0}
(u, y, v) �→ (x, y, z) =

(
u

y�1
, y,

v

y�2

)

.

After this preparation, let us see that p[Y ] ≤ p(X) = p.
First, let f = ∑

i (ci + zdi)
2 be a sum of squares in O(Y ) such that ci ,

di ∈ R[x, y] for all i. Consider the composition

f ◦ ϕ = g(u, y, v)

y2r

where g ∈ R[u, y, v] is clearly a sum of squares in O(X). Since p[X] = p, there
exist α1, . . . , αp, γ ∈ R{u, y, v} such that g = α2

1 + · · · + α2
p + G(u, y, v)γ .

Composing with ϕ−1 we obtain

y2rf = α1(xy
�1 , y, zy�2)2 + · · · + αp(xy

�1 , y, zy�2)2

+ym(z2 − yH(x, y))γ (xy�1 , y, zy�2)

One can check that there exist α11, . . . , α1p, α21, . . . , α2p, γ1 ∈ R{x, y} such that

y2rf ≡ y2r

(
∑

i

(c2
i + yHd2

i )+ 2z
∑

i

cidi

)

=
p∑

j=1

(α1j + zα2j )
2 − γ1(z

2 − yH(x, y)) (∗)

and comparing coefficients with respect to z we have

0) y2r
(∑

i (c
2
i + yHd2

i )
) = ∑p

j=1 α
2
1j + yHγ1

1)
∑
i cidi = ∑p

j=1 α1jα2j

2) γ1 = ∑p
j=1 α

2
2j .

If r = 0 we are done, so we can suppose r > 0. By 0) y|α1j for all j . Since
y does not divide H , y divides γ1. By 2) y|α2j for all j , hence y2|γ1. Thus, the
expression (∗) can be divided by y2. We continue the argument until we end up
with and expression of f as a sum of 2 squares in O(Y ). This shows p[Y ] ≤ p

for any germ in O(Y ) which has a polynomial as a representant. Finally, using M.
Artin’s Approximation Theorem ([Ar],[JP]) one deduces, by a standard argument
([Fe2]), that p[Y ] ≤ p. 
�

After these preliminary results we turn to our main result:

Proof of Theorem 1.1. We begin by remarking that in [Rz2, 1.1,2.1], the author
actually proves that if X ⊂ R

n is a complete intersection of dimension ≥ 2 and
p[X] = 2 then X is analytically equivalent to a surface germ in R

3 of equation
z2 = F(x, y). In what follows, we will see in several steps that:

A surface germ X : z2 − F(x, y) = 0 with p = 2 is one of the surfaces of the
list.
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To achieve this, we suppose that p = 2 and obtain succesive restrictions on the
series F . To start with, we get rid of order ≥ 4 series:

(2.3) First restriction. ω(F) ≤ 3.

Proof. Indeed, suppose ω(F) ≥ 4 and write F = Q+H where ω(H) ≥ 5 andQ
is either 0 or a homogeneous polynomial of degree 4. We will find an element of
the type

G = (x2 + az)2 + (y2 + bz)2 + (xy + cz)2.

which is not a sum of two squares in O(X). If such a G is a sum of two squares,
there exist α1, α2, β1, β2, γ ∈ R{x, y} with ω(β2) ≥ 1 (maybe β2 = 0, see 2.1)
such that

G ≡ x4 + y4 + x2y2 + 2(ax2 + by2 + cxy)z+ (a2 + b2 + c2)F

= (α1 + zβ1)
2 + (α2 + zβ2)

2 − γ (z2 − F)

Comparing coefficients with respect to z, we get the following equations

0) x4 + y4 + x2y2 + (a2 + b2 + c2)F = α2
1 + α2

2 + γF

1) ax2 + by2 + cxy = α1β1 + α2β2
2) 0 = β2

1 + β2
2 − γ

From 0) we deduce that ω(α1), ω(α2) ≥ 2 and from 1) that ω(β1) = 0. Thus,
β1(0) = λ �= 0. If we compare initial forms in 0) and 1) we deduce that

0) x4 + y4 + x2y2 + (a2 + b2 + c2)Q = In(α1)
2 + In(α2)

2 + λ2Q

1) ax2 + by2 + cxy = In(α1)λ.

Hence the following formula must hold:

λ2(x4 + y4 + x2y2 + (a2 + b2 + c2 − λ2)Q)

= (ax2 + by2 + cxy)2 + (ux2 + vy2 + wxy)2 (∗)
for some λ, u, v,w ∈ R. We distinguish three different cases. In each case we will
make a suitable choice of a, b, c to obtain G ∈ Σ(X) \Σ2(X):

(2.3.1) Case Q = 0.
We take a = 0, b = 1, c = 1. Suppose that the corresponding G is in Σ2(X).

We get

λ2(x4 + y4 + x2y2) = (y2 + xy)2 + (ux2 + vy2 + wxy)2.

Thus, u2 = λ2 �= 0, uw = 0, 2 + 2vw = 0 which is impossible. This means that
G is not a sum of two squares in O(X). 
�

IfQ �= 0, after a linear change, we can supposeQ = εx4 + q3x
2y2 + q4xy

3 +
q5y

4 where ε = ±1 and q3, q4, q5 ∈ R. Then:

(2.3.2) Case q4 = 0.
A linear change allows us to supposeQ = εx4 +q3x

2y2 +q5y
4 with (q3, q5) �=

(±1, 0), (±0, 1). Consider the non zero polynomial in s, t :

P(s, t) = (ε + s2 + t2)(ε(ε − q3)(ε − q5)− s2q5(ε − q3)− t2q3(ε − q5)),



Analytic surface germs with minimal Pythagoras number 731

and take a = 0 and b, c �= 0 such that P(b, c) �= 0. Suppose that the corresponding
G is in Σ2(X). Comparing coefficients in (∗) we obtain

x4) λ2(1 + (b2 + c2 − λ2)ε) = u2

y4) λ2(1 + (b2 + c2 − λ2)q5) = b2 + v2

x2y2) λ2(1 + (b2 + c2 − λ2)q3) = c2 + 2uv + w2

x3y) 0 = uw

xy3) 0 = bc + vw.

Since bc �= 0 then v,w �= 0 and u = 0. Thus, we deduce that λ2 = ε + b2 + c2

and w = −bc/v. Plugging these values in the equations above we have

(ε + b2 + c2)(1 − εq5)− b2 = v2

((ε + b2 + c2)(1 − εq3)− c2)v2 = b2c2

Eliminating v2, we conclude that P(b, c)must be zero, against our choice. Hence,
G is not a sum of two squares in O(X). 
�
(2.3.3) Case q4 �= 0.

After a linear change Q = εx4 + q3x
2y2 + 2xy3 + q5y

4. Take c = 0, a =
0, b �= 0 if ε(q3 + q5) − q3q5 ≥ 0 and c = 0, a = 2b �= 0 if ε(q3 + q5) < q3q5.
Suppose that the corresponding G is in Σ2(X). Comparing coefficients in (∗) we
get

x4) λ2(1 + (a2 + b2 − λ2)ε) = a2 + u2

y4) λ2(1 + (a2 + b2 − λ2)q5) = b2 + v2

x2y2) λ2(1 + (a2 + b2 − λ2)q3) = 2ab + 2uv + w2

x3y) 0 = uw

xy3) λ2(a2 + b2 − λ2) = vw.

Ifw = 0 then λ2 = a2 + b2 and we have u2 = b2, v2 = a2, a2 + b2 = 2ab+ 2uv.
Thus, a2 + b2 = 2ab ± 2ab which is impossible by our choice a = 0 �= b or
a = 2b �= 0. Hence,w �= 0, u = 0. Substituting u = 0 and λ2(a2 +b2 −λ2) = vw

in the equations above we get

λ2 + εvw = a2

λ2 + q5vw = b2 + v2

λ2 + q3vw = 2ab + w2.

Now, substituting λ2 = a2 − εvw we obtain

a2 − b2 = v(v − (q5 − ε)w)

0 = a(a − 2b) = w(w − (q3 − ε)v).

Sincew �= 0, we havew = (q3−ε)v, v �= 0. Thus,a2−b2 = v2(ε(q3+q5)−q3q5).
But since this is impossible with our choice of a, b, we concludeG is not a sum of
two squares in O(X). 
�
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This completes the proof of (2.3), and we can assume henceforth ω(F) ≤ 3.
Concerning order 2 series we have:

(2.4) Second restriction. If ω(F) = 2, then X is equivalent to z2 − x2 = 0 or
z2 − x2 − yk = 0 for some k ≥ 2.

Proof. After a change of coordinates, we can suppose that the equation of X is
z2 − x2 = 0 or of the type z2 + εx2 − yk with ε = ±1, k ≥ 2. If k = 2,
z2 + εx2 − y2 = 0 is equivalent to z2 − x2 − y2 = 0. Now, we prove that ε must
be −1 for k ≥ 3.

We claim that if ε = 1 the function germ (z+x2)2 +x2 +y2 is not a sum of two
squares in O(X). Indeed, were it so, there would exist α1, α2, β1, β2, γ ∈ R{x, y}
such that ω(β2) ≥ 1 (maybe β2 = 0, see 2.1) and

(z+x2)2+x2+y2 ≡ 2zx2+x4+y2+yk=(α1+zβ1)
2+(α2+zβ2)

2−γ (z2+x2−yk)
Comparing coefficients with respect to z we get the equations

0) x4 + y2 + yk + γ (x2 − yk) = α2
1 + α2

2
1) x2 = α1β1 + α2β2
2) 0 = β2

1 + β2
2 − γ.

If ω(β1) ≥ 1 then, by 2), ω(γ ) ≥ 1 and by 0), αi = λiy + gi where λi ∈
R, λ2

1 + λ2
2 = 1, gi ∈ (x, y)2, which is impossible by 1). Hence, ω(β1) = 0.

Eliminating α1, γ in 0) we get

β2
1 (x

4 + y2 + yk + (β2
1 + β2

2 )(x
2 − yk)) = (x2 − α2β2)

2 + α2
2β

2
1 ,

and computing a little we conclude that

β2
1 ((β

2
1 +β2

2 )x
2+y2)+(β2

1 −1)x4+β2
1 (1−β2

1 −β2
2 )y

k = α2((β
2
1 +β2

2 )α2−2x2β2),

but this is impossible because the power series on the left is irreducible, since its
initial form is a2x2 + b2y2 with a, b �= 0. The proof of (2.4) is finished. 
�
Next we look at order 3 series and get:

(2.5) Third restriction. If ω(F) = 3, thenX is equivalent to one of the follow-
ing: {

z2 − x2y − (−1)kyk = 0 (k ≥ 3), z2 − x2y;
z2 − x3 + xy3 = 0, z2 − x3 − y4 = 0 or z2 − x3 − y5 = 0.

Proof. After a linear change, the initial form of F is x2y, x2y±y3 or x3. We study
two cases:

(2.5.1) If In(F ) = x2y or x2y ± y3, thenX is equivalent to z2−x2y−(−1)kyk = 0
(k ≥ 3) or z2 − x2y.

After a change of coordinates (classification of singularities), we can suppose
that F is one of the following power series: x2y, x2y ± yk , k ≥ 3. If F = x2y −
(−1)kyk we show that there exist a sum of squares G of analytic function germs
on Xk : z2 = x2y − (−1)kyk which is not sums of 2 squares in O(Xk).

First, we find G for X3 : z2 − y(x2 + y2). Let f = g6 + z2(x2 + y2) for a
homogeneous polynomial g6 ∈ R[x, y] of degree 6 which is a sum of squares but
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(x2 + y2) � | g6, e.g. x6. If f was a sum of two squares, then there would exist
α1, α2, β1, β2, γ ∈ R{x, y} such that

f ≡ g6 + (x2 + y2)2y = (α1 + zβ1)
2 + (α2 + zβ2)

2 − γ (z2 − (x2 + y2)y),

and so, comparing coefficients with respect to z we have

0) g6 + (x2 + y2)2y = α2
1 + α2

2 + (β2
1 + β2

2 )(x
2 + y2)y,

1) 0 = α1β1 + α2β2.

Comparing orders in 0) we deduce that ω(β2
1 + β2

2 − (x2 + y2)) ≥ 3. Thus,
In(β2

1 + β2
2 ) = x2 + y2 and we conclude that ω(βi) = 1. Hence, the series β1, β2

are relatively prime. By 1), there exist a series d ∈ R{x, y} such that α1 =
β2d, α2 = −β1d. Plugging these in 0) we get g6 = d2(β2

1 + β2
2 ) + y(x2 + y2)q

where q ∈ R{x, y} is a series of order ≥ 3. Comparing initial forms in this
expression, we conclude that (x2 + y2)|g6, impossible by hypothesis.

Next, we prove, using 2.2, that p[Xk] ≥ 3 if k ≥ 4. Consider the equations

{
Fk(u, y, v) = v2 − u2y − yk = 0 if k = 2�+ 3
Fk(u, y, v) = u2 − v2y + yk = 0 if k = 2�+ 4.

Xk is the surface germ of equation Fk(x, y, z) = 0 if k = 2� + 3 and Fk(z, y, x)
if k = 2� + 4. It is enough to see that the surface germ Zk : Fk(u, y, v) = 0 has
p[Zk] ≥ 3 for all k. Take

{
�1 = �2 = �,m = 2� if k = 2�+ 3
�1 = �+ 1, �2 = �,m = 2�+ 1 if k = 2�+ 4.

On can check that Fk(xy�1 , y, zy�2) = (−1)k0+1ym(z2 − x2y − y3). By 2.2, we
conclude that 3 ≤ p[X3] ≤ p[Xk], as wanted. 
�

After (2.5.1), we see:

(2.5.2) If In(F ) = x3 thenX is equivalent to z2 − x3 + xy3 = 0, z2 − x3 − y4 = 0
or z2 − x3 − y5 = 0.

Changing x by −x if necessary, there exist a Weierstrass polynomial P = x3 +
p1(y)y

2x2 + p2(y)y
3x + p3(y)y

4, (pi ∈ R{y}) and a unit U ∈ R{x, y} such that
U(0, 0) > 0 andF = PU .After the change (x, y, z) �→ (x−p1(y)y

2/3, y,
√
Uz),

we can suppose that the equation of X is of the type z2 − x3 − a(y)y3x − b(y)y4

for some a, b ∈ R{y}. After this preparation we proceed in several steps:

(a) If ω(a) ≥ 1 and ω(b) ≥ 2 then p[X] ≥ 3.
To prove this we are going to use 2.2. LetG(u, y, v) = v2 −F(u, y). If we take
�1 = �2 = 1,m = 2 we have G(xy�1 , y, zy�2) = ym(z2 − yH(x, y)) where
H = x3 −a(y)yx−b(y)y. By 2.2, we conclude that if Y : z2 −yH(x, y) = 0,
then p[Y ] ≤ p[X]. On the other hand, as we have seen in (2.3), we have that
p[Y ] ≥ 3 (because ω(yH) ≥ 4). Hence, p[X] ≥ 3.

Next, we discuss the factorization of F = x3 + a(y)y3x + b(y)y4:
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(b) If F is the product of three (possibly equal) irreducible factors then p[X] ≥ 3.
Suppose F = f1f2f3, where some or all the factors may coincide. Since the
initial form of F is x3, we can write fk = x + λk(x, y) where ω(λk) ≥ 2 and
then

F = (x + λ1)(x + λ2)(x + λ3)

= x3 + x2(λ1 + λ2 + λ3)+ x(λ1λ2 + λ1λ3 + λ2λ3)+ (λ1λ2λ3)

= x3 + a(y)y3x + b(y)y4

From this equality we deduce that

b(y)y4 = F(0, y) = λ1(0, y)λ2(0, y)λ3(0, y) has order ≥ 6,

a(y)y3 = ∂F

∂x
(0, y) =

∑

1≤i<j≤3

λi(0, y)λj (0, y)

(

1 + ∂λk

∂x
(0, y)

)

has order ≥ 4,

where 1 ≤ k ≤ 3, k �= i, j . Hence, ω(a) ≥ 1, ω(b) ≥ 2 and, by (2.5.2.a),
p[X] ≥ 3.

(c) If F is reducible and p[X] = 2, then F = x3 − xy3.
By the previous remark, F = fg and f, g must be irreducible, say ω(f ) =
2, ω(g) = 1 and we can suppose In(f ) = x2, In(g) = x. If f is semidefinite,
it is a sum of two squares with initial form x2. After multiplying by a suitable
ortogonal matrix, we can suppose f = (x + µ1(x, y))

2 + (µ2(x, y))
2 and

g = x + µ3(x, y) with ω(µk) ≥ 2. Thus,

F = (x + µ1(x, y)+ iµ2(x, y))(x + µ1(x, y)− iµ2(x, y))(x + µ3(x, y)).

Proceeding similarly to (2.5.2. b) (we have again three irreducible factors al-
though two of them are complex) we are in the hypothesis of (2.5.2. a) and
p[X] ≥ 3. Hence, if p[X] = 2, f should be irreducible and real. Thus, we can
assume F = (x2 − yk)(x + µ(x, y)), k ≥ 3, ω(µ) ≥ 2. By the Weierstrass
Preparation Theorem there exist a series α ∈ R{y} and a unitU ∈ R{x, y} such
that x+µ(x, y) = (x+α(y)y2)U(x, y). Changing x by −x (if necessary) we
can suppose U(0, 0) > 0 and after a change (x, y, z) �→ (x, y,

√
U(x, y)z),

the equation of our germ is z2 − (x2 − yk)(x + α(y)y2).
For k ≥ 4, F = x3 + α(y)x2y2 − ykx − yk+2α(y). After the change x �→
x − α(y)y2/3, we are again in the conditions of (a). Hence, p[X] ≥ 3.
Finally, for k = 3 we get F = (x2 − y3)(x + · · · ) and by classification of
singularities F is equivalent to x3 − xy3.

(d) If F is irreducible then F = x3 + y4 or x3 + y5.
SupposeF irreducible. By classification of singularities we can transformF in-
to x3 ±y4 orF = x3 +xy4a′(y)+y5b′(y). Suppose firstF = x3 +xy4a′(y)+
y5b′(y). If b′(0) = 0, by (2.5.2. a), p[X] ≥ 3. If b′(0) �= 0 then another change
makes F = x3 + y5.



Analytic surface germs with minimal Pythagoras number 735

For F = x3 − y4 we see that p[X] ≥ 3. Consider G(u, y, v) = v2 − u3 + y4,
and �1 = �2 = 1,m = 2. We have thatG(xy�1 , y, vy�2) = y2(z2 + y2 − x3y)

and by 2.2, we conclude that if Y : z2+y2−x3y = 0, thenp[Y ] ≤ p[X]. Now,
we see that Y : z2 + y2 − x3y = z2 + (y − x3/2)2 − x6/4 = 0 is equivalent
to Y ′ : z2 +w2 − x6 = 0 which has, as we proved in (2.4), p[Y ′] ≥ 3. Hence
p(X) ≥ p(Y ) ≥ 3. 
�

Thus, we have proved (2.5.2). Summing up, (2.3) says that ω(F) ≤ 3, (2.4) that if
ω(F) = 2, the germ z2 − F = 0 is among (iv)–(vi) in the list of Th.1.1, and (2.5)
that if ω(F) = 3, the germ z2 − F = 0 is among (i)–(iii) and (vii)–(ix) in that list.
All together we conclude that if an unmixed surface germ X ⊂ R

3 has p = 2 then
X belongs to the list, as wanted. 
�

3. The mixed case

In this section we find all mixed surface germs X ⊂ R
3 with Pythagoras number 2

and prove that only the simplest one of them has the property P = Σ . First of all:

Proposition 3.1. LetX ⊂ R
3 be a mixed surface germ. Then P(X) = Σ(X) if and

only if X is equivalent to the union of a plane and a transversal line. Furthermore,
in this case, p[X] = 2.

Proof. First, we prove that if X is the union of a plane π and a transversal line �
then every f ∈ P(X) is a sum of squares of analytic function germs. Indeed, after
a change of coordinates the ideal of X is (zx, zy) and, every non unit f in O(X)
can be written uniquely as f1(x, y)+ f2(z) where f1 ∈ R{x, y}, f2 ∈ R{z}. Note
that f (0, 0) = 0, g(0) = 0. Now, f = f1(x, y) + f2(z) ∈ P(X) if and only if
f1 ∈ P(π) and f2 ∈ P(�), or equivalently f1(x, y) = a(x, y)2 + b(x, y)2 and
f2(z) = c(z)2. Thus, f = f1 + f2 ≡ (a + c)2 + b2 in O(X).

Conversely, if P(X) = Σ(X), by [Fe2, 2.1], ω(J (X)) = 2. Let I (resp. J )
be the ideal of the union of the components of X of dimension 2 (resp. 1). Then
J (X) = I∩J . Moreover, since the ideal I ⊂ R{x, y, z} has height 1, it is principal,
and we write I = (ϕ)with ϕ ∈ R{x, y, z}. One can check that J (X) = I ·J ; hence,
2 = ω(J (X)) = ω(I)+ ω(J ). Thus, ω(I) = ω(J ) = 1 and we can suppose that
I = (z) and J = (ψ1, ψ2) where ψj ∈ R{x, y, z} and 1 = ω(ψ1) ≤ ω(ψ2).

We are to prove that after a change of coordinates J = (x, y). To that end, we
begin by proving that Z(J ) is regular, hence irreducible. Indeed, suppose Z(J )
singular. Then there exists a function f in P(Z(J )) \Σ(Z(J )) ([Sch]). We claim
that z2f ∈ P(X) is not a sum of squares in O(X). If it were, there would exist
a1, . . . , ap, b1, b2 ∈ R{x, y, z} such that z2f = a2

1 + · · · + a2
p + zψ1b1 + zψ2b2.

From this we see that z| ai , say ai = zαi . Hence, the function z2(f −α2
1 −· · ·−α2

p)

vanishes on X, which means that f − α2
1 − · · · − α2

p = 0 on Z(J ). Thus f is a
sum of squares, contradiction. Therefore, J is generated by two elements of order
1 with independent initial forms. We can suppose I = (z), J = (x, ψ(y, z))where
ψ = y or z− yk, k ≥ 2.

Ifψ = y we are done. So we only have to discard the casesψ = z−yk , k ≥ 2. If
k is even, f = z is psd onX but it is not a sum of squares. If k is odd we consider the
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function f = zy which is psd onX but not a sum of squares. Suppose that there are
a1, . . . , ap, b1, b2 ∈ R{x, y, z} such that zy = a2

1 +· · ·+a2
p+zxb1 +z(z−yk)b2.

Comparing initial forms, there exist λ,µ ∈ R such that the quadratic form q =
zy+λz2 +µzx is a sum of squares of linear forms. This is imposible because such
a q is not psd in R

3. Whence, q is not a sum of squares in O(X). 
�

Now, we characterize the mixed surface germs in R
3 with Pythagoras number

2. First, note that if Y ⊂ X then p[Y ] ≤ p[X] (there exist an epimorphism from
O(X) onto O(Y )). Hence, if Y is a mixed surface germ contained in the union of
two transversal planes, which has Pythagoras number 2 ([Rz2], [Fe2]), it also has
Pythagoras number 2. The aim of the following theorem is to prove that there are
no more mixed surface germs in R

3 with Pythagoras number 2.

Theorem 3.2. Let X ⊂ R
3 be a mixed surface germ with Pythagoras number 2.

Then X is contained in the union of two transversal planes.

To prove this, we need the following preliminary results.

Lemma 3.3. Let ϕ ∈ R{t} be a unit, n ≥ 1. Consider the equation λ(x)n =
ϕ(xλ(x)) in R{x}. If ϕ(0) has an n-root in R, then the previous equation has a
solution in R{x}.

Proof. Let b ∈ R be such that bn = ϕ(0). The equation above is equivalent to
F(x, y) = (b + y)n − (ϕ(x(b + y))) = 0, which satisties:

F(0, 0) = 0,
∂F

∂y
(0, 0) = nbn−1 �= 0.

By the Implicit Function Theorem ([JP, 3.3]) there exists a series ψ ∈ R{x} such
that ψ(0) = 0 and F(x,ψ(x)) = 0. Taking λ = b + ψ we are done. 
�

The next result, which is a consequence of the classification of singularities, is
included for the sake of the reader.

Lemma 3.4. (Classification of singularities) Let f, g ∈ R{x, y} be two power
series such that ω(f ) = 2, ω(g) ≥ 2 and the ideal I = (zf, z(z − 2g)) is real
radical. Then I is analytically equivalent to one of the following:

(a) (zxy, z(z− 2g′)) where In(g′) = x2 + y2;
(b) (zxy, z(z− 2g′)) where In(g′) = x2 − y2;
(c) (zxy, z(z− 2g′)) where In(g′) = y2;
(d) (z(y2 − xk), z(z− x2)) where k ≥ 3;
(e) (z(y2 − xk), z(z− xy)) where k ≥ 3
(f) (z(z− x(y + x�)), z(y2 − xk)) where 2 ≤ � < k, 3 ≤ k �= 2�;
(g) (zy(y + x�), z(z− x(y + b(x)x�))) where � ≥ 2, b ∈ R{x}, b(0) �= 0, 1;
(h) (zy(y + x�), z(z− x(y + δx�+n))) where δ = ±1, � ≥ 2, n ≥ 1;
(i) (z(x2 − yk), z(z − 2g′)) where k ≥ 2 and g′ = y�+1(xa(y)+ b(y)) for some
� ≥ 1 and a, b ∈ R{y} such that ω(a2 + b2) = 0 and ω(g′) ≥ 3.
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Proof. First, if In(f ), In(g) are linearly dependent quadratic forms then we can
write In(g) = λ In(f ). Thus,

I = (z(z− 2g(x, y)), zf (x, y))

= (z(z− 2(g(x, y)− λf (x, y))), zf (x, y)) = (z(z− 2h(x, y)), zf (x, y)).

where h = g(x, y)− λf (x, y) has order ≥ 3. By classification of singularities and
using the fact that I is real radical, we can suppose (after a change of coordinates)
that f = x2 − yk , k ≥ 2. Moreover, one can check, by means of the Weierstrass
division theorem and the fact that I is real radical, that h = (x2 − yk)q + g′ where
q ∈ R{x, y} and g′ = y�+1(xa(y) + b(y)) for some � ≥ 1 and a, b ∈ R{y} such
that ω(a2 + b2) = 0 and ω(g′) ≥ 3. Thus,

I = (z(z− 2h(x, y)), zf (x, y)) = (z(z− 2(h(x, y)− qf (x, y))), zf (x, y))

= (z(z− 2g′(x, y)), zf (x, y)) (case (i)) .

Hence, in what follows we assume that In(f ), In(g) are linearly independent
quadratic forms. We proceed in several steps:

Step 1. If In(f ) is a quadratic form of rank 2 the ideal I is analytically equiv-
alent to one of (a), (b) or (c). Indeed, since I is real radical, we can suppose
f = xy (In(f ) is a non definite quadratic form because I is a real radical ideal)
and In(g) = ax2+bxy+cy2 with a2+c2 �= 0 (since In(f ), In(g) are linearly inde-
pendent). We have I = (z(z−2g), zf ) = (z(z−2g)+2bzf, zf ) = (z(z−2g′), zf ),
where g′ = g − bf has initial form In(g′) = ax2 + cy2. After a linear change in
the variables x, y, we can suppose In(g′) = x2 + y2, x2 − y2 or y2.

Step 2. If In(f ) is a quadratic form of rank 1 the ideal I is analytically equiva-
lent to one of (d), (e), (f), (g) or (h). We can suppose that In(f ) = y2 and In(g) =
ax2+bxy+cy2 and I = (z(z−2g), zf ) = (z(z−2g+2cf ), zf ) = (z(z−2g1), zf )

where g1 = g − cf has initial form ax2 + bxy, with a2 + b2 �= 0. After a suit-
able change of coordinates of the type (x, y, z) �→ (d1x, d2y,±z) we can as-
sume In(g1) = x2, x2 + 2xy or xy. In fact, if In(g1) = x2 + 2xy then I =
(z(z− 2g1), zf ) = (z(z− 2(g1 + f )), zf ) = (z(z− 2g2), zf ) where g2 = g1 + f
has initial form (x + y)2. Hence, up to the change x �→ x − y, we can assume that
In(f ) = y2 and In(g2) = x2 or xy. Therefore, we have two cases to study:

(a) In(g) = x2. Consider the generators of I : z(z − 2(g + f )), zf . By Morse’s
Lemma ([Rz1]), after a suitable change of coordinates of the type ϕ(x, y) = (x +
ϕ1, y + ϕ2), ω(ϕi) ≥ 2, we have g + f = x2 + y2.

On the other hand, f = PU where P = y2 + 2a(x)x2y + b(x)x3 ∈ R{x}[y]
is a Weierstrass polynomial of degree 2 and U ∈ R{x, y} is a unit. Thus,

I = (z(z−2(x2+y2)), zP ) = (z(z−2(x2+y2−P)), zP ) = (z(z−x2u(x, y)), zP )

where u(x, y) = 2 − 4a(x)y − 2b(x)x is a unit. Moreover, since I is a real rad-
ical ideal, changing x by ±x, P = (

y + a(x)x2
)2 − xkw(x) where k ≥ 3 and

w ∈ R{x} is a unit with w(0) > 0. After the change y �→ y − a(x)x2, we have
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I = (z(z − x2v(x, y)), z(y2 − xkw(x))), for a new unit v(x, y) ∈ R{x, y}. Now,
after the change x k

√
w(x) �→ x we get I = (z(z − x2v′(x, y)), z(y2 − xk)), for

yet a new unit v′(x, y) ∈ R{x, y}. Finally, after the change z �→ zv′ we obtain
I = (z(y2 − xk), z(z− x2)), k ≥ 3 (case (d)).

(b) In(g) = xy. By classification of singularities, after a suitable change of
coordinates of the type ϕ(x, y) = (x + ϕ1, y + ϕ2), ω(ϕi) ≥ 2, we can sup-
pose g = xy. On the other hand, f = PU where P = y2 + 2a(x)x2y + b(x)x3 ∈
R{x}[y] is a Weierstrass polynomial of degree 2 and U ∈ R{x, y} is a unit. Thus,
I = (z(z − 2xy), zP ). We recall that since I is the ideal of a real surface germ
(changing x by ±x) P = (

y + a(x)x2
)2 − xkw(x) where k ≥ 3 and w ∈ R{x}

is a unit with w(0) > 0. After the change (y, z) �→ (y − a(x)x2, 2z), we have
I = (z(z−x(y−a(x)x2)), z(y2−xkw(x))).Now, we proceed in the following way:

(b.1) If a(x) = 0, after the change (y, z) �→ √
w(x)(y, z) we get I = (z(y2 −

xk), z(z− xy)) (case (e)).
(b.2) If a(x) �= 0 then a(x) = x�−2v(x) where � ≥ 2 and v ∈ R{x} is a unit. Here

we distinguish two subcases:

(•) If k �= 2�, consider a change of the type (x, y, z) �→ (λ(x)x, µ(x)y, γ (x)z),
where λ,µ, γ ∈ R{x} are units, such that after this change we have

I =
(
γ z(γ z− xλ(yµ− v(xλ)x�λ�)), zγ (y2µ2 − xkλkw(xλ))

)

= (z(z− x(y + x�)), z(y2 − xk)), k ≥ 3, � ≥ 2.

That is, such that µ = −v(xλ)λ�, γ = λµ,µ2 = λkw(xλ). This system of
equations has a solution if an only if the equation v(xλ)λ2� = λkω(xλ) has
a solution. But, since k �= 2�, we get an equation of the kind λn = ϕ(λx)

where ϕ ∈ R{t} is a unit, n ≥ 1. This equation has a solution by 3.3.
Note that if � ≥ k then I = (z(z − x(y + x�−ky2)), z(y2 − xk)) =
(z(z− xy(1 + x�−ky)), z(y2 − xk)) and after the change z �→ z(1 + x�−ky)
we get I = (z(y2 − xk), z(z − xy)) (case (e)). For � < k we are in the case
(f) of the statement.

(••) If k = 2�, such a change does not exist and we proceed as follows. After
the change xw(x) �→ x we get that I = (z(z−x(y−x�u(x))), z(y2 −x2�))

for certain unit u ∈ R{x}. If u = ±1 one can check that I is not a radical
ideal, a contradiction. Therefore, u �= ±1 and again we distinguish two
further subcases:

� If u(0) �= ±1, after the change (x, y, z) �→ ( x�√2
, y + x�

2 ,
z
�√2
) we see that

there exist a unit b ∈ R{x} with b(0) �= 0, 1 such that I = (z(z − x(y +
x�b(x))), zy(y + x�)) (case (g)).

� If u(0) = δ = ±1, we begin by making the change y �→ y−δx� and we get
I = (z(z− x(y − xl+nc(x))), z(y2 + 2yδx�)) for some unit c ∈ R{x} and
n ≥ 1. Considering a change of the type (x, y, z) �→ (λ(x)x, µ(x)y, γ (x)z)

where λ,µ, γ ∈ R{x} are units and proceeding as in the previous case (•),
we come to I=(z(z− x(y + δx�+r )), zy(y + x�)), δ=±1 (case (h)). 
�
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Lemma 3.5. Let X ⊂ R
3 be given by the equations:

(1) z(z+ 2g) = 0, zf = 0; or

(2) z2 − g2 = 0, (z− g)f = 0

(f, g ∈ R{x, y}). Let ϕ ≡ ∑r
i=1(ai + zbi)

2 ∈ O(X) with ai, bi ∈ R{x, y}. Then,
there exist ϕ1, ϕ2, q1, q2 ∈ R{x, y} such that either

(1) ϕ ≡ ϕ1 + zϕ2 =
r∑

i=1

(ai + zbi)
2 + q1z(z+ 2g)+ q2zf ; or

(2) ϕ ≡ ϕ1 + zϕ2 =
r∑

i=1

(ai + zbi)
2 + q1(z

2 − g2)+ q2(z− g)f.

Proof. First, suppose X : z(z + 2g) = zf = 0. Since z(z + 2g) ∈ R{x, y}[z],
by Weierstrass division, there exist ϕ1, ϕ2 ∈ R{x, y} such that ϕ1 + zϕ2 ≡ ϕ ≡∑r
i=1(ai + zbi)

2. Therefore

ϕ1 + zϕ2 =
r∑

i=1

(ai + zbi)
2 +Q1z(z+ 2g)+Q2zf,

whereQ1,Q2 ∈ R{x, y, z}. Again by Weierstrass division,Q2 = Q3(z+2g)+q2
where q2 ∈ R{x, y} and Q3 ∈ R{x, y, z}. Thus:

ϕ1 + zϕ2 =
r∑

i=1

(ai + zbi)
2 + (Q1 +Q3)z(z+ 2g)+ q2zf.

On the other hand, in the ring R{x, y}[z] we have
∑r
i=1(ai + zbi)

2 = −q1z(z +
2g) + R where degz R ≤ 1, degz q1 = 0. By the uniqueness of the Weierstrass
division Q1 +Q3 = q1 ∈ R{x, y} as we wanted.

The case X : z2 − g2 = (z − g)f = 0 follows from the previous one by the
change of coordinates z �→ z+ g. 
�

Lemma 3.6. Let X ⊂ R
3 be the union of the analytic surface germ z = 0 and a

curve germX1 : f = 0, z+2g = 0, (f, g ∈ R{x, y}) such thatX1∩{z = 0} = {0}.
LetG ∈ Σ(X) be a sum of squares such thatG(x, y, 0) is a Weierstrass polynomial
of degree 4 with respect to y. Let η1, η1, η2, η2 be the roots of Q. Write ηi1 = ηi
and ηi,−1 = ηi for i = 1, 2. Suppose thatG is a sum of two squares in O(X). Then
we have:

(a) G ≡ ‖α+zβ‖2 mod J (X)whereα = (y−η11(x))(y−η2ε(x)), β ∈ C{x, y},
ε = ±1.

(b) If γ : R → R
3, t �→ (tn, γ2, γ3) is a parametrization of an irreducible compo-

nent of X1 then G ◦ γ = ‖(γ2 − η1ε(t
n))(γ2 − η2ε(t

n))+ γ3β(t
n, γ2)‖2.
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Proof. First, sinceX1∩{z = 0} = {0}, one can check that J (X) = (z(z+2g), zf ).
By 3.5 and using the fact thatG is a sum of two squares inO(X), we deduce that there
exist ai, bi, q1, q2 ∈ R{x, y} such thatG = ∑2

i=1(ai+zbi)2 +q1z(z+2g)+q2zf.

For z = 0, we haveQ(x, y) = G(x, y, 0) = a2
1 + a2

2 . Since C{x, y} is an UFD
andQ is a Weierstrass polynomial of degree 4, there exist a Weierstrass polynomial
P ∈ C{x, y} of degree 2 and a unit U ∈ C{x, y} such that a = a1 + ia2 = PU .
SinceQ = PPUU , by the uniqueness part of the Weierstrass preparation theorem,
UU = 1. If b = b1 + ib2 we have

(α1 + zb1)
2 + (α2 + zb2)

2 = (α + zb)(α + zb) = (PU + zb)UU(PU + zb)

= (P + zbU)(P + zbU) = (P1 + z(bU)1)
2 + (P2 + z(bU)2)

2.

Since Q = PP and P is a Weierstrass polynomial then we can assume P =
(y − η11(x))(y − η2ε(x)) for ε = ±1. Taking α = P and β = bU we have (a).
Statement (b) follows directly from (a). 
�
Remark 3.7. Under the hypotheses of the previous lemma, if J (X1) = (f, z− 2g)
where f, g ∈ R{x, y} and ω(f (0, y)) = 2 or ω(f (x, 0)) = 2 we can suppose that
either β = λ+ yµ for some λ,µ ∈ C{x} or β = λ+ xµ for some λ,µ ∈ C{y}.
This is an straightforward consequence of the fact that zf ∈ J (X).

After all this preparation we proceed with the proof of 3.2.

Proof of Theorem 3.2. Let I (resp. J ) be the ideal of the union of components of
dimension 2 (resp. 1) of X. Then, J (X) = I ∩ J . Using f = x2 + y2 + z2 one
sees that if p[X] = 2, then ω(J (X)) = 2. As in 3.1we can assume that I = (z)

and J = (ψ1, ψ2) where ψj ∈ R{x, y, z} and 1 = ω(ψ1) ≤ ω(ψ2).
If the initial form of a ψi has order 1 and is linearly independent to z, after a

change of coordinates, J = (x, ψ(y, z)) and we are done. Thus, we can suppose
I = (z), J = (z − 2g(x, y), f (x, y)) where f, g ∈ R{x, y} and ω(f ), ω(g) ≥ 2.
For all this situations we will find a function germG inΣ3(X)\Σ2(X). We proceed
in several steps:

(3.8) Step I. If ω(f ) ≥ 3 then p[X] ≥ 3. Replacing z by z+g, we can suppose
that the equations of X are: z2 − g2 = 0, (z+ g)f = 0.

Proof. LetG = (Q1 +az)2 + (Q2 +bz)2 + (Q3 + cz)2 where (a, b, c) ∈ R
3 \ {0}

andQ1,Q2,Q3 are quadratic forms. Suppose that such aG is a sum of two squares.
By 3.5 there exist α1, α2, β1, β2, γ1, γ2 ∈ R{x, y} with ω(β2) ≥ 1 (maybe β2 = 0,
see 2.1) such that

G ≡ Q2
1 +Q2

2 +Q2
3 + 2(aQ1 + bQ2 + cQ3)z+ (a2 + b2 + c2)g2

= (α1 + zβ1)
2 + (α2 + zβ2)

2 − γ1(z
2 − g2)− 2γ2(z+ g)f

where γ1, γ2 ∈ R{x, y} by 3.5. Comparing coefficients with respect to z:

0) Q2
1 +Q2

2 +Q2
3 + (a2 + b2 + c2)g2 = α2

1 + α2
2 + γ1g

2 − 2γ2gf

1) aQ1 + bQ2 + cQ3 = α1β1 + α2β2 − γ2f

2) 0 = β2
1 + β2

2 − γ1
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From 0) we see that ω(α1), ω(α2) ≥ 2 and from 1) we deduce that ω(β1) = 0, that
is, β1(0) = λ �= 0. By 2), γ1(0) = λ2 and comparing initial forms in 0) and 1) we
deduce that

0) Q2
1 +Q2

2 +Q2
3 + (a2 + b2 + c2)g2

2 = In(α1)
2 + In(α2)

2 + λ2g2
2

1) aQ1 + bQ2 + cQ3 = In(α1)λ

where g2 is the homogeneous component of g of degree 2. If we take Q1 = x2,

Q2 = y2,Q3 = xy we obtain

λ2
(
x4 + y4 + x2y2 + (a2 + b2 + c2 − λ2)g2

2

)

= (ax2 + by2 + cxy)2 + (ux2 + vy2 + wxy)2

for suitable u, v,w ∈ R. Thus, we obtain the same equations (∗) used in the
step (2.3) of the proof of Th.1.1. As it was seen there, there exists values a, b, c ∈ R

such that the previous equation is not solvable. Such aG is not a sum of two squares.

�

(3.9) Step II. If ω(f ) = 2, ω(g) ≥ 2 then p[X] ≥ 3.

Proof. By 3.4 it is enough to consider the following cases:

(3.9.1) If J (X) = (zxy, z(z−2g)) and In(g) = x2 +y2, x2 −y2 or y2 there exists
an element of the typeG = (Q1 + az)2 + (Q2 + bz)2 + (Q3 + cz)2 ∈ Σ(X) with
(a, b, c) ∈ R

3 \ {0} and the Qi’s quadratic forms such that G is not a sum of two
squares in O(X).

Suppose that such aG is a sum of two squares. By 3.5 there exist α1, α2, β1, β2,

γ1, γ2 ∈ R{x, y} with ω(β2) ≥ 1 (maybe β2 = 0, see 2.1) such that

G ≡ Q2
1 +Q2

2 +Q2
3 + 2(aQ1 + bQ2 + cQ3 + (a2 + b2 + c2)g)z

= (α1 + zβ1)
2 + (α2 + zβ2)

2 − γ1(z
2 − 2zg)− 2γ2zxy

where γ1, γ2 ∈ R{x, y} by 3.5. Comparing coefficients with respect to z and pro-
ceeding as in (3.8), we obtain the following equation for suitable real numbers
λ �= 0, µ, u, v,w:

λ2(Q2
1 +Q2

2 +Q2
3) = (

aQ1 + bQ2 + cQ3 − µxy + (a2 + b2 + c2 − λ2) In(g)
)2

+ (ux2 + vy2 + wxy)2 (�).

Now, we make specific choices for each possible initial form of g:

(i) If In(g) = x2 + y2, consider G = (3x2 + 2y2 − 2z)2 + (3y2 + x2 − z)2 +
( 21

10xy
)2

.
After simplifying equation (�) for this G we obtain

λ2
(

10x4 + 2241
100 x

2y2 + 13y4
)

= (
µxy+(2+λ2)(x2+y2)

)2+(ux2+vy2+wxy)2.

for suitable real numbers λ �= 0, µ, u, v,w. Comparing coefficients we get

x4) 10λ2 = (2 + λ2)2 + u2

y4) 13λ2 = (2 + λ2)2 + v2
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x2y2) 2241
100 λ

2 = 2(2 + λ2)2 + µ2 + 2uv + w2

x3y) 0 = µ(2 + λ2)+ uw

xy3) 0 = µ(2 + λ2)+ vw.

Substracting the two last equations we deduce w(u − v) = 0. If w = 0 then
µ = 0 and adding the two first equations and substracting the third we obtain
59

100λ
2 = (u− v)2. Combining this with the two first equations we conclude that

(u2 + 4)(556960000u4 − 4850867039u2 + 13493610244) = 0.

But this equation has no real root. Thus, w �= 0 and u = v. Substracting the two
first equations we conclude 3λ2 = 0, a contradiction. Hence,G is not a sum of two
squares in O(X).

(ii) If g = x2−y2, considerG = (3x2−2y2−2z)2+(−3y2+x2−z)2+(3xy)2.
After simplifying equation (�) for this G we obtain

λ2
(

10x4 − 9x2y2 + 13y4
)

= (
(2+λ2)(x2 −y2)+µxy)2 +(ux2 +vy2 +wxy)2.

for suitable real numbers λ �= 0, µ, u, v,w. Comparing coefficients we get

x4) 10λ2 = (2 + λ2)2 + u2

y4) 13λ2 = (2 + λ2)2 + v2

x2y2) −9λ2 = −2(2 + λ2)2 + µ2 + 2uv + w2

x3y) 0 = µ(2 + λ2)+ uw

xy3) 0 = −µ(2 + λ2)+ vw.

Adding the two last equations we obtain w(u + v) = 0. If w = 0 then µ = 0.
Adding the three first equations we deduce 14λ2 = (u+ v)2. Combining this with
the two first equations we conclude that (u2 +4)(3136u4 −26015u2 +58564) = 0.
But this equation has no real root, and so w �= 0. Thus, u = −v and substracting
the two first equations we conclude 3λ2 = 0, a contradiction. Hence, G is not a
sum of two squares in O(X).

(iii) If g = y2, consider G = x4 + (−3y2 + z)2 + 9x2y2.
After simplifying equation (�) for this G we obtain

λ2
(
x4 + 9y4 + 9x2y2

)
= (

(2 + λ2)y2 + µxy
)2 + (ux2 + vy2 + wxy)2.

for suitable real numbers λ �= 0, µ, u, v,w. Here we get

x4) λ2 = u2

y4) 9λ2 = (2 + λ2)2 + v2

x2y2) 9λ2 = µ2 + 2uv + w2

x3y) 0 = uw

xy3) 0 = −µ(2 + λ2)+ vw.

Since λ �= 0, u �= 0 and w = 0, hence µ = 0. Thus, v = 9
2u and hence

9u2 = (2 + u2)2 + ( 9
2u)

2 or equivalently 4u4 + 61u2 + 16 = 0, a contradiction.
Hence, G is not a sum of two squares in O(X).
(3.9.2) If J (X) = (z(y2 −xk), z(z−x2)), k ≥ 3 there existsG ∈ Σ(X)\Σ2(X).
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Just to apply 3.6 using the same notation, we interchange the variables x and y,
and we obtain J (X) = (z(x2−yk), z(z−y2)), k ≥ 3. We distinguish two subcases:

(i) If k is odd we take G = (y2 + xy − z)2 + (xy)2 + (x2)2.
Note that X = X1 ∪ {z = 0} where X1 is the curve germ parametrized by

t �→ (tk, t2, t4). Suppose that G is a sum of two squares in O(X). Let η1ε =
(u1 + εiu2)x, η2ε = (v1 + εiv2)y where ui, vi ∈ R, ε = ±1 be the roots of the
Weierstrass polynomial G(x, y, 0). Since

y4 + 2y3x + 2y2x2 + x4 = Q = ‖(y − η11)(y − η2ε)‖2

= ‖y2 − (η11 + η2ε)xy + (η11η2ε)x
2‖2

we deduce that η11 + η2ε = −1 − ib2, b2 ∈ R. Write η11η2ε = c = c1 + ic2 ∈ C.
By 3.6, there exist β ∈ C{x, y} such that

2t2k+4 + t4k = G(tk, t2, t4) = ‖t4 + (1 + ib2)t
k+2 + ct2k + t4β(tk, t2)‖2

= ‖t4(1 + β(tk, t2))+ (1 + ib2)t
k+2 + ct2k‖2.

Hence ω(1+β(tk, t2)) ≥ k−2. Since k is odd, k−2 is not in the semigroup of the
curve germ (tk, t2) (see [JP]). Thus, in fact, ω(1 + β(tk, t2)) ≥ k − 1. Therefore,
comparing initial forms in the previous equation we deduce 2 = 1 + b2

2 and hence
we can suppose b2 = 1. Thus, (y2 + xy)2 + (xy)2 + (x2)2 = (y2 + xy+ c1x

2)2 +
(xy+c2x

2)2 which transforms into x4(c2
1 +c2

2 −1)+2x3y(c1+c2)+2x2y2c1 = 0,
a contradiction.

(ii) If k = 2n is even n ≥ 2 we take G = (y2 + xy − z(1 + yn−1))2 +
(xy − zyn−1)2 + (x2)2.

Note thatX = X1 ∪{z = 0} whereX1 is the union of the curve germs paramet-
rized by t �→ (εtn, t2, t4), ε = ±1. Suppose thatG is a sum of two squares in O(X).
Procedding as in (3.9.2.i) and applying 3.6 and 3.7 there exist λ,µ ∈ C{y} such that

t4k = G(tn, t, t2) = ‖t2 + (1 + ib2)t
n+1 + ct2n + t2(λ(t)+ tnµ(t))‖2

= ‖t2(1 + λ(t)+ (1 + ib2)t
n−1)+ tn+2µ(t)+ ct2n‖2.

Hence ω(1 + λ(t) + (1 + ib2)t
n−1) ≥ n and we can write λ(t) = −1 − (1 +

ib2)t
n−1 + g(t)tn, g ∈ C{t}. On the other hand,

8t2n+2 + t4n = G(−tn, t, t2) = ‖t2 − (1 + ib2)t
n+1 + ct2n + t2(λ(t)− tnµ(t))‖2

= ‖ − 2(1 + ib2)t
n+1 − tn+2µ(t)+ ct2n‖2.

Comparing initial forms we get 8 = 4 + 4b2
2, and we can suppose b2 = 1. In a

similar way to (3.9.2.i), we get a contradiction. 
�
(3.9.3) If J (X) = (z(y2 −xk), z(z−xy)), k ≥ 3 there existsG ∈ Σ(X)\Σ2(X).

Take G = (y2 − xk)2 + (xk − εkzx
k/2−1)2 + (xy − z)2, where εk = 0 if k is

odd and 1 otherwise. Suppose that G is a sum of two squares in O(X). Let

η1ε = xk−1g1(x)+ εi(x+ xk−1g2(x)), η2ε = x2k−3h1 + εi(
√

2xk−1 + x2k−3h2)
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be the roots of theWeierstrass polynomialG(x, y, 0), wheregi, hi ∈ R{x}, ε = ±1.
By 3.6 and 3.7, G = ‖α + zβ‖2 mod (J (X)) where

α = y2±
√

2xk+yxk−1ϕ1(x)+x2k−2ψ1(x)+i(−xy+yxk−1ϕ2(x)+x2k−2ψ2(x))

for suitable series ϕi, ψi ∈ R{x} and β = λ + yµ for some λ,µ ∈ C{t}. We
distinguish two subcases:

(i) k odd. In this case X = X1 ∪ {z = 0} where X1 is the curve germ paramet-
rized by t �→ (t2, tk, tk+2). We have

t4k = G(t2, tk, tk+2) = ‖(1±
√

2)t2k+ t3k−2ρ(t)+ tk+2(−i+λ(t2)+ tkµ(t2))‖2

for some ρ ∈ C{t}. Since k is odd, we conclude 1 = (1 ± √
2)2, a contradiction.

(ii) k = 2n even. In this case X = X1 ∪ {z = 0} where X1 is the union of the
curve germs parametrized by t �→ (t, εtn, εtn+2), ε = ±1. We have

0 = G(t, tn, tn+1) = ‖(1 ±
√

2)t2n + t3n−2ρ(t)+ tn+1(−i + λ(t)+ tnµ(t))‖2

for some ρ ∈ C{t}. Hence λ(t) = i − (1 ± √
2)tn−1 + tnθ , θ ∈ C{t}. Moreover,

4t4n=G(t,−tn,−tn+1)=‖(1±
√

2)t2n+t3n−2ρ′(t)−tn+1(−i+λ(t)−tnµ(t))‖2

for some ρ′ ∈ R{t}. Putting all together, we conclude that 4 = 4(1 ± √
2)2,

a contradiction. 
�
(3.9.4) If J (X) = (z(z − x(y + x�)), z(y2 − xk)), 2 ≤ � < k, 3 ≤ k �= 2� there
exists G ∈ Σ(X) \Σ2(X).

We distinguish four different situations:
(i) If k is odd and 2� > k, we take G = y4 + (xk−l−1(xy − z))2 + x2k .

In this case X = X1 ∪ {z = 0} where X1 is the curve germ parametrized by
t �→ (t2, tk, tk+2 + t2�+2). Suppose that G is a sum of two squares in O(X). Let

η1ε = x5�−2kg1 + εi(x� + x5�−2kg2), η2ε = x3�−kh1 + εi(xk−l + x3�−kh2)

be the roots of theWeierstrass polynomialG(x, y, 0), wheregi, hi ∈ R{x}, ε = ±1.
By 3.6 and 3.7 there exist λ,µ ∈ C{x} such that

3t4k ≡ G(t2, tk, tk+2 + t2�+2)

≡ ‖(tk − it2�)(tk + εit2k−2�)+ (tk+2 + t2�+2)(λ(t2)+ tkµ(t2))‖2

≡ ‖(1 + ε)t2k + i(εt3k−2� − tk+2�)+ (tk+2 + t2�+2)λ(t2)‖2 mod (t4k+1).

Since k is odd we get, comparing orders and initial forms, λ(t2) =−iεt2(k−�)−2 +
· · · . Hence, 3 = (1 + ε)2 + (ε)2, a contradiction.

(ii) If k is odd and 2� < k, we takeG = (y2 +x�+1 −z)2 + (xy−x�+1 +z)2 +
(x�+1−z)2. In this caseX = X1∪{z = 0} whereX1 is the curve germ parametrized
by t �→ (t2, tk, t2�+2 + tk+2). Suppose thatG is a sum of two squares in O(X). Let

η1ε = x�g1 + εi(x + x�g2), η2ε = −x� + x2�−1h1 + εi(
√

2x� + x2�−1h2)
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be the roots of theWeierstrass polynomialG(x, y, 0), wheregi, hi ∈ R{x}, ε = ±1.
By 3.6 and 3.7 there exist λ,µ ∈ C{x} such that

6t2k+4 − 2t3k+2 + t4k = G(t2, tk, t2�+2 + tk+2)

= ‖(tk − t2�g1(t
2)− i(t2 + t2�g2(t

2)))(tk + t2� − t4�−2h1(t
2)

+ εi(
√

2t2� + t4�−2h2(t
2))) + (t2�+2 + tk+2)(λ(t2)+ tkµ(t2))‖2.

Since k > 2�, comparing initial forms, we deduce that λ(0) = i− ε√2. Moreover,
using that k is odd and � ≥ 2 we conclude that 6 = |−i+λ(0)|2 = 2, a contradiction.

(iii) If k = 2n is even and � > n, we take

G=
(

y2 − zxn−1

1 + x�−n

)2

+
(

xk−�−1(xy − z)+ zxn−1

1 + x�−n

)2

+
(

xk − zxn−1

1 + x�−n

)2

.

In this case X = X1 ∪ {z = 0} where X1 is the union of the curve germs para-
metrized by t �→ (t, εtn, εtn+1 + t�+1). Suppose that G is a sum of two squares
in O(X). Let η1ε, η2ε be the roots of the Weierstrass polynomial G(x, y, 0) which
are the same obtained in (3.9.4.i). By 3.6 and 3.7 there exist λ,µ ∈ C{x} such that

0 ≡ G(t, tn, tn+1 + t�+1) ≡ ‖(tn − it�)(tn + εit2n−�)

+ (tn+1 + t�+1)(λ(t)+ tnµ(t))‖2

≡ ‖(1 + ε)t2n + i(εt3n−� − tn+�)+ (tn+1 + t�+1)(λ(t)+ tnµ(t))‖
mod (t4n+1).

Comparing orders and initial forms, we get λ(t) = −εit2n−�−1−(1+ε−iε)tn−1+
· · · . Again by 3.6 we have

12t4n ≡ G(t,−tn,−tn+1 + t�+1)

≡ ‖(−tn − it�)(−tn + εit2n−�)+ (−tn+1 + t�+1)(λ(t)− tnµ(t))‖2

≡ ‖(2 + 2ε − 2εi)t2n‖2 mod (t4n+1)

which is impossible.
(iv) If k = 2n is even and � < n, we take

G =
(

y2 + x2� − z
x�−1 + yxn−�−1

1 + xn−�

)2

+
(

x�y − z
xn−1

1 + xn−�

)2

+(x2� + xn+� − zx�−1)2.

In this caseX = X1∪{z = 0} whereX1 is the union of the curve germs parametrized
by t �→ (t, εtn, εtn+1 + t�+1). Suppose thatG is a sum of two squares in O(X). Let

η1ε = x2n−�g1 + εi(x� + xn + x2n−�g2),

η2ε = x2n−�h1 + εi(
√

2x� −
√

2/2xn + x2n−�h2)
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be the roots of theWeierstrass polynomialG(x, y, 0), wheregi, hi ∈ R{x}, ε = ±1.
By 3.6 and 3.7 there exist λ,µ ∈ C{x} such that

0 ≡ G(t, tn, t�+1 + tn+1)

≡ ‖(tn − i(t l + tn))(tn + εi(
√

2t� −
√

2/2tn))+ (t�+1 + tn+1)(λ(t)+ tnµ(t))‖2

≡ ‖ε
√

2t2� + (ε
√

2/2 + i(ε
√

2 − 1))tn+l + (1 − ε
√

2/2 − i(1 + ε
√

2/2))t2n

+ (t�+1 + tn+1)(λ(t)+ tnµ(t))‖2 mod (t2�+2n+1).

Hence, we get that λ(t) = −ε√2t�−1 + tn−1(ε
√

2/2 + i(1 − ε√2))+ · · · . Again
by 3.6 we have

12t2�+2n ≡ G(t,−tn, t�+1 − tn+1) ≡ ‖(−tn − i(t l + tn))

× (−tn + εi(
√

2t� −
√

2/2tn))+ (t�+1 − tn+1)(λ(t)+ tnµ(t))‖2

≡ ‖2(ε
√

2 + i(1 − ε
√

2))tn+�‖2 mod (t2�+2n+1),

which is impossible. 
�
(3.9.5) If J (X) = (zy(y+x�), z(z−x(y+b(x)x�))), � ≥ 2, b ∈ R{x}, b(0) �= 0, 1
there exists G ∈ Σ(X) \Σ2(X).

We take G = (y2 − x2�)2 + 2
(
x�y − zx�−1

1−b(x)
)2 + 3

(
x2� + zx�−1

1−b(x)
)2
. In this

case X = X1 ∪ {z = 0} where X1 is the union of the curve germs parametrized by
t �→ (t,−t�,−t�+1(1 − b(t))) and t �→ (t, 0, t�+1b(t)). Suppose that G is a sum
of two squares in O(X). Let η1ε = (1+εi)x�, η2ε = (−1+ i)x� be the roots of the
Weierstrass polynomialG(x, y, 0). By 3.6 and 3.7 there exist λ,µ ∈ C{x} such that

0 = G(t,−t�,−t�+1(1 − b(t)))

= ‖(−t� − (1 + i)t�)(−t� − (−1 + εi)t�)− t�+1(1 − b(t))(λ(t)− t�µ(t))‖2

= ‖t2�ε(2i − 1)− t�+1(1 − b(t))(λ(t)− t�µ(t))‖2.

Hence, we deduce that λ(t) = t�−1ε(2i−1)/(1−b(0))+· · · . Again by 3.6 we get

t4�(4 − 2b(t)+ 3b(t)2)

(b(t)− 1)2

= G(t, 0, t�+1b(t)) = ‖(−(1 + i)t�)(−(−1 + εi)t�)+ t�+1b(t)λ(t)‖2

= ‖t2�(−1 − ε + (−1 + ε)i)+ t�+1b(t)λ(t)‖2.

Comparing initial forms, we conclude

4 − 2b(0)+ 3b(0)2 = |(−1 − ε + (−1 + ε)i)(1 − b(0))+ b(0)ε(2i − 1)|2
= 4 − 2b(0)− 2εb(0)+ 3b(0)2 + 2εb(0)2.

Hence, b(0)− b(0)2 = 0, a contradiction. 
�
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(3.9.6) If J (X) = (zy(y + x�), z(z− x(y + δx�+n))), δ = ±1, � ≥ 2, n ≥ 1 there
exists G ∈ Σ(X) \Σ2(X).

We takeG = (y2)2 +2(x�y)2 +(x2�+n−δzx�−1)2. In this caseX = X1 ∪{z =
0} where X1 is the union of the curve germs parametrized by t �→ (t, 0, δt�+n+1)

and t �→ (t,−t�,−t�+1 + δt�+n+1). Suppose that G is a sum of two squares in
O(X). Let

η1ε=x�+2ng1 + εi(x�
√

2+x�+2ng2), η2ε=x�+3nh1 + εi(
√

2/2x�+n+x�+3nh2)

be the roots of theWeierstrass polynomialG(x, y, 0), wheregi, hi ∈ R{x}, ε = ±1.
By 3.6 and 3.7 there exist λ,µ ∈ C{x} such that

0 ≡ G(t, 0, δt�+n+1) ≡ ‖i(t�
√

2)εi(
√

2/2 t�+n)+ δt�+n+1λ(t)‖2

≡ ‖− εt2�+n + δt�+n+1λ(t)‖2 mod (t4�+2n+1).

Hence, we get that λ(t) = εδt�−1 + · · · . Again by 3.6 we get

4t4� ≡ G(t,−t�,−t�+1 + δt�+n+1)

≡ ‖(−t�−it�
√

2)(−t�−εi
√

2/2 t�+n)−(t�+1−δt�+n+1)(λ(t)−t�µ(t))‖2

≡ ‖(1 +
√

2i − εδ)t2�‖2 mod (t4�+1)

and therefore, 2 = (1 − εδ)2, a contradiction. 
�
(3.9.7) If J (X) = (z(x2 − yk), z(z − 2g)), k ≥ 2 and g = y�+1(xa(y) + b(y))

for some � ≥ 1 and a, b ∈ R{y} such that ω(a2 + b2) = 0 and ω(g′) ≥ 3, there
exists G ∈ Σ(X) \Σ2(X).

Letψ = ∑r
i=1(ai+zbi)2 (ai, bi ∈ R{x, y}) be a sum of three squares which is

not a sum of squares in O(X′) of X′ : zf = 0, z(z+ (xa(y)+ b(y))y) = 0. Such
a ψ exists because X′ is equivalent to a germ in one of the previous cases (3.9.1)
to (3.9.6). We claim that function germ in O(X) given by ϕ = ∑r

i=1(aiy
� + zbi)

2

is in Σ(X) \Σ2(X). Indeed, if ϕ ∈ Σ2(X) then

0)
∑
i a

2
i y

2� = α2
1 + α2

2
1)

∑
i aiy

�bi +
∑
i b

2
i y
�(xa(y)+ b(y))y = y�(xa(y)+ b(y))y(β2

1 + β2
2 )+ γ2f

+α1β1 + α2β2.

for certain αj , βj , γj ∈ R{x, y}. From 0) we deduce that y�|αj , and hence, from
1), y�|γ2. Therefore we can write αj = y�α′

j , γ2 = y�γ ′
2 and then we have

0)
∑
i a

2
i = (α′

1)
2 + (α′

2)
2

1)
∑
i aibi +∑

i b
2
i (xa(y)+ b(y))y = (xa(y)+ b(y))y(β2

1 + β2
2 )+ γ ′

2f

+α′
1β1 + α′

2β2.

which means that ψ ∈ Σ2(X
′), a contradiction. Hence, ϕ is not a sum of two

squares in O(X), and we are done. 
�
Thus, putting all together we conclude that, after a change of coordinates, X is

contained in the union of two transversal planes. 
�
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4. Examples in higher embedding dimension

In this section we discuss the examples Xn (Veronese cones), Yn (generalized
Whitney’s umbrellas) and Zn. We begin by proving that:

Theorem 4.1. P(Xn) = Σ2(Xn).

First, we show:

Lemma 4.2. For every f ∈ R{x0, x1, . . . , xn} there exist f0, f1, . . . , fn−1 ∈
R{xn} and g ∈ R{x0, x1, . . . , xn} such that f = f0(xn)+

∑n−1
i=1 fi(xn)xi + x0g

mod J (Xn).
Proof. We consider for every ν = (ν1, . . . , νn−1) the homogeneous polynomial

Gν = x
ν1
1 · · · xνn−1

n − xd−1−k
0 xknxi

where d = |ν|, 0 ≤ i < n and
∑n−1
j=1 jνj = nk + i. Since

Gν ◦ γ =
n−1∏

j=1

(zn−jwj )νj − zn(d−1−k)wnkzn−iwi

= znd−nk−iwnk+i − zn(d−k)−iwnk+i = 0

we see that Gν ∈ J (Xn). For ν = (0, . . . , 1, . . . , 0) we get xni − xinx
n−i
0 ∈

J (Xn). Therefore, we divide f ∈ R{x0, . . . , xn} succesively by these polynomi-
als xni − xinx

n−i
0 until we obtain

f =
∑

0≤ν1,... ,νn−1<n

aν(x0, xn)x
ν1
1 · · · xνn−1

n−1 mod J (Xn).

Furthermore,Gν ∈ J (Xn)means xν1
1 · · · xνn−1

n = xd−1−k
0 xknxi mod J (Xn), and

we obtain b0, b1, . . . , bn−1 ∈ R{x0, xn} such that f = b0(x0, xn) +∑n−1
i=1 bi(x0, xn)xi mod J (Xn).
Finally, since bi(x0, xn) = fi(xn) + x0gi(x0, xn), there exists g ∈

R{x0, x1, . . . , xn} such that f = f0(xn) +∑n−1
i=1 fi(xn)xi + x0g mod J (Xn).


�
To prove that P(Xn) = Σ2(Xn) we need the following polynomial reduction

lemma.

Lemma 4.3. For every f ∈ P(Xn) and every k ≥ 1 there exists a polynomial fk
positive semidefinite on the algebraic surface Sn given by the same equations as
Xn such that ω(f − fk) > k.

Proof. We parametrize Sn as follows. If n is odd, we take the complex para-
metrization γ , which maps R

2 over Sn. We write γ+ = γ |R2 . If n is even γ+
only parametrizes Sn ∩ {x0 ≥ 0} and we must use γ− = −γ+ to parametrize
Sn ∩ {x0 < 0}.
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Now, choose k ≥ 1 and f ∈ P(Xn) and set gk = f + (x2
0 + x2

1 + · · · + x2
n)
k .

We claim that gk + (x0, x1, . . . , xn)
r ⊂ P+(Xn) for r ≥ 2k big enough.

Indeed, the germs gk ◦ γ+ and gk ◦ γ− are positive definite in R
2. In [Fe2,

3.1] we showed that if a function germ g is positive semidefinite in a semianalytic
germ Z of R

2 there exits an integer r such that all function germs in g + mr
2 are

also postive semidefinite in Z. Thus, in our case, there exist r ≥ 2k such that
gk ◦ γ+ + (s, t)rn, gk ◦ γ− + (s, t)rn ⊂ P+(R2) from which the claim follows.

We consider now the (r − 1)-jet hk of gk , which, as we have seen, is positive
definite in Xn. Therefore, there exists ε > 0 such that hk is ≥ 0 in Sn ∩ Bε(0).
On the other hand, if y ∈ Sn ∩ R

n+1 \ Bε(0), then ‖y‖ ≥ ε, and we deduce

|hk(y)| =
∣
∣
∣

∑

0≤|ν|≤r−1

aνy
ν
∣
∣
∣ ≤

∑

0≤|ν|≤r−1

|aν ||yν0
0 ||yν1

1 | . . . |yνnn |

≤
∑

0≤|ν|≤r−1

|aν |‖y‖|ν| ≤
∑

0≤|ν|≤r−1

|aν |
ε2r−|ν| ‖y‖2r ≤ M‖y‖2r

Hence, the polynomial fk = hk + M(x2
0 + x2

1 + . . . + x2
n)
r is ≥ 0 on Sn and

ω(f − fk) > k. 
�

Now we proceed with the

Proof of Theorem 4.1. From the previous lemmas and the M. Artin’s Approximation
Theorem, it suffices to prove that every polynomial f which is positive semidefinite
on Sn is a sum of two squares of analytic function germs on Xn. To that end, we
consider the biregular equivalence

φn : R
2 \ {x0 = 0} → Sn \ {x0 = 0}

(x0, x1) �→
(
x0, x1,

x2
1

x0
, . . . ,

xk1

xk−1
0

, . . . ,
xn1

xn−1
0

)

whose inverse π is the obvious projection. Now, let

g = f ◦ φn = f
(
x0, x1,

x2
1

x0
, . . . ,

xk1

xk−1
, . . . ,

xn1

xn−1
0

)
= P(x0, x1)

x2r
0

,

where r ≥ 0, and P ∈ R[x0, x1] is ≥ 0 on x0 �= 0, hence on R
2. Since P = Σ2

in R{x1, x2}, we have x2r
0 g = P = a2 + b2, a, b ∈ R{x0, x1}. Thus, composing

with π we obtain

x2r
0 f = (a2 + b2) mod J (Xn). (∗)

In view of 4.2, there exist power series a0, a1, . . . , an−1, b0, b1, . . . , bn−1 ∈ R{xn}
and α, β ∈ R{x0, x1, . . . , xn} such that

a ≡ a0(xn)+
n−1∑

i=1

ai(xn)xi + x0α, b ≡ b0(xn)+
n−1∑

i=1

bi(xn)xi + x0β mod J (Xn).
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Hence,

x2r
0 f =

(

a0(xn)+
n−1∑

i=1

ai(xn)xi + x0α

)2

+
(

b0(xn)+
n−1∑

i=1

bi(xn)xi + x0β

)2

mod J (Xn).

Substituting γ+ we get

s2rn(f ◦ γ+) =
(

a0(t
n)+

n−1∑

i=1

ai(t
n)sn−i t i + sn(α ◦ γ+)

)2

+
(

b0(t
n)+

n−1∑

i=1

bi(t
n)sn−i t i + sn(β ◦ γ+)

)2

and counting orders respect to s

ords

(

a0(t
n)+

n−1∑

i=1

ai(t
n)sn−i t i + sn(α ◦ γ+)

)

≥ rn,

ords

(

b0(t
n)+

n−1∑

i=1

bi(t
n)sn−i t i + sn(β ◦ γ+)

)

≥ rn.

Thus, we deduce that ai(tn), bi(tn) = 0 for i = 0, . . . n− 1. Hence, ai, bi = 0 for
i = 0, . . . n−1. Therefore, x2r

0 f = x2
0 (α

2 +β2) mod J (Xn). Since x0 �∈ J (Xn)
and this ideal is prime, we conclude x2r−2

0 f = (α2 + β2) mod J (Xn). We can
begin again the argument from (∗) and, at the end, we will obtain f ∈ Σ2(Xn), as
wanted. 
�

Next we turn to the generalized Whitney umbrellas:

Theorem 4.4. P(Yn) = Σ2(Yn).

Proof. The parametrizationϕn : (s, t) �→ (s, st, . . . , stn−1, tn) = (x0, x1, . . . , xn−1, xn)

induces a homomorphism of rings

ϕ∗
n : O(Zn) → R{s, t}

f �→ f ◦ ϕn.

which is finite, injective and (s) R{s, t} ⊂ imψn. The last remark, because si tj =
si−1(str )tnq = ψn(x

i−1
0 xrxn) where j = nq + r , 0 ≤ r < n.

Let f ∈ P(Yn) and consider f ◦ ϕn. Since f is a psd in O(Yn), f ◦ ϕn is psd
in R{s, t}. Thus, there exist α1, α2,∈ R{s, t} and β1, β2 ∈ R{t} such that

f ◦ ϕn ≡ (α1s + β1)
2 + (α2s + β2)

2.
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It is clear that Cn = Zn ∩ {x0 = 0} is the line x0 = 0, . . . , xn−1 = 0, which has
Pythagoras number 1. Setting g = f |Cn ∈ P(Cn), there exists g1 ∈ R{xn} such
that g ≡ g2

1 mod J (Cn). Therefore, if γ1 = g1 ◦ ϕn(0, t), i = 1, 2, we deduce

β2
1 + β2

2 = f ◦ ϕn(0, t) = f |Cn ◦ ϕn(0, t) = g2
1 ◦ ϕn(0, t) = γ 2

1 ,

and
γ1

β1 + iβ2
,

γ1

β1 − iβ2
are two units in C{t} whose product is 1. Hence,

(α1s + β1)
2 + (α2s + β2)

2

= (α1s + iα2s + β1 + iβ2))

(
γ1

β1 + iβ2

)(
γ1

β1 − iβ2

)

× (α1s − iα2s + β1 − iβ2))

= ((a1s + γ1)+ ia2s)((a1s + γ1)− ia2s)

= (a1s + γ1)
2 + (a2s)

2,

with a1, a2 ∈ R{s, t}. Now, using that (s)R{s, t} ⊂ imψn and that γ1(t) =
g1 ◦ϕn(0, t) = g1 ◦ϕn(s, t), we conclude that there exist h1, h2 ∈ O(Yn) such that

f ≡ (h1 + g1)
2 + h2

2 mod J (Yn).

Hence, P(Yn) = Σ2(Yn). 
�

We finish with the surface germs Zn:

Theorem 4.5. The surface germs Zn, n ≥ 3, have p = 2 and P �= Σ .

Proof. The parametrization φn : (s, t) �→ (s, st, . . . , stn−2, tn−1, tn), defines the
homomorphism of rings

φ∗
n : O(Zn) → R{s, t}

f �→ f ◦ φn.

which is finite, injective and (s) R{s, t} ⊂ im φ∗
n . For this last fact, note that

si tj = si−1(str )t (n−1)q = φ∗
n(x

i−1
0 xrxn−1)where j = (n−1)q+r , 0 ≤ r < n−1,

i ≥ 1.
We now check that p[Zn] = 2. Let f ∈ Σ(Zn) and consider f ◦φn. Since f is

a sum of squares in O(Zn) then f ◦φn is a sum of squares in R{s, t} and there exist
α1, α2,∈ R{s, t} and β1, β2 ∈ R{t} such that f ◦φn = (α1s+β1)

2 + (α2s+β2)
2.

It is clear that Cn = Zn ∩ {x0 = 0} is the planar curve parametrized by φn(0, t) =
(0, . . . , 0, tn−1, tn). This curve has ideal J (Cn) = (x0, . . . , xn−2, x

n−1
n − xnn−1)

and Pythagoras number 2. Thus, for g = f |Cn ∈ Σ(Cn), we find g1, g2 ∈
R{xn−1, xn} such that g ≡ g2

1 + g2
2 mod J (Cn). Hence, if γi = gi ◦ φn(0, t),

i = 1, 2, we deduce

β2
1 + β2

2 = f ◦ φn(0, t) = f |Cn ◦ φn(0, t) = γ 2
1 + γ 2

2 ,
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and
γ1 + iγ2

β1 + iβ2
,
γ1 − iγ2

β1 − iβ2
are two units in C{t} whose product is 1. Consequently,

(α1s + β1)
2 + (α2s + β2)

2

= (α1s + iα2s + β1 + iβ2))

(
γ1 + iγ2

β1 + iβ2

)(
γ1 − iγ2

β1 − iβ2

)

× (α1s − iα2s + β1 − iβ2))

= ((a1s + γ1)+ i(a2s + γ2))((a1s + γ1)− i(a2s + γ2))

= (a1s + γ1)
2 + (a2s + γ2)

2,

with a1, a2 ∈ R{s, t}. Now, using that (s) R{s, t} ⊂ imψn and that γi(t) =
gi ◦φn(0, t) = gi ◦φn(s, t), we conclude that there exist h1, h2 ∈ O(Zn) such that

f ≡ (h1 + g1)
2 + (h2 + g2)

2 mod J (Zn).
Therefore, p[Zn] = 2.

Finally, P(Zn) �= Σ(Zn). Let f =
{
xn−1 if n is odd
xn if n is even

. Clearly, f ∈ P(Zn)
is not a sum of squares in O(Zn). 
�
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