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ON OPEN AND CLOSED MORPHISMS BETWEEN

SEMIALGEBRAIC SETS

JOSÉ F. FERNANDO AND J. M. GAMBOA

(Communicated by Lev Borisov)

Abstract. In this work we study how open and closed semialgebraic maps
between two semialgebraic sets extend, via the corresponding spectral maps,
to the Zariski and maximal spectra of their respective rings of semialgebraic
and bounded semialgebraic functions.

1. Introduction

A subset M ⊂ Rn is said to be basic semialgebraic if it can be written as

M = {x ∈ Rn : f(x) = 0, g1(x) > 0, . . . , gm(x) > 0}
for some polynomials f, g1, . . . , gm ∈ R[x1, . . . , xn]. The finite unions of basic semi-
algebraic sets are called semialgebraic sets. A continuous function f : M → R is
said to be semialgebraic if its graph is a semialgebraic subset of Rn+1. Usually,
semialgebraic function just means a function, not necessarily continuous, whose
graph is semialgebraic. However, since all semialgebraic functions occurring in this
article are continuous, we will omit for simplicity the continuity condition when we
refer to them.

The sum and product of functions, defined pointwise, endow the set S(M) of
semialgebraic functions on M with a natural structure of commutative ring whose
unity is the semialgebraic function with constant value 1. In fact S(M) is an R-
algebra if we identify each real number r with the constant function which just
attains this value. The most simple examples of semialgebraic functions on M are
the restrictions to M of polynomials in n variables. Other relevant ones are the
absolute value of a semialgebraic function, the maximum and the minimum of a
finite family of semialgebraic functions, the inverse and the k-root of a semialgebraic
function whenever these operations are well-defined.

It is obvious that the subset S∗(M) of bounded semialgebraic functions on M
is a real subalgebra of S(M). In what follows, we denote by S�(M), indistinctly,
either S(M) or S∗(M) in case the involved statements or arguments are valid for
both rings. Moreover, if p ∈ M , we will denote by m�

p the maximal ideal of all
functions in S�(M) vanishing at p.
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Likewise, a semialgebraic map ϕ : N → M between semialgebraic sets N ⊂ Rn

and M ⊂ Rm is a continuous map whose coordinates are semialgebraic functions.
Given an open and closed map between two semialgebraic sets, our purpose

is to study the topological properties of its unique continuous extensions to the
Zariski and maximal spectra of their respective rings of semialgebraic and bounded
semialgebraic functions.

(1.1) Since the usual notation for spectral spaces becomes cumbersome, we replace
it by the following notation. Let M ⊂ Rn be a semialgebraic set. We denote

Specs(M) = Spec(S(M));

Spec*s (M) = Spec(S∗(M));

Spec�s (M) = Spec(S�(M)),

βsM = Specmax(S(M));
β*
sM = Specmax(S∗(M));

β�
sM = Specmax(S�(M)).

All these spaces are endowed with the Zariski topology; see (2.1) below. Recall,
[FG4, 3.5], that the map ΦM : βsM → β*

sM, m �→ m∗, where m∗ is the unique
maximal ideal of S∗(M) containing the prime ideal m∩S∗(M), is a homeomorphism.
On the other hand, the map

φ : M → Spec�s(M), p �→ m�
p

embeds M (endowed with the Euclidean topology) into Spec�s(M) as a dense sub-
space. In fact we identify M ≡ φ(M) ⊂ β�

sM and denote ∂M = β*
sM \M .

(1.2) Each semialgebraic map ϕ : N → M between semialgebraic sets N ⊂ Rn

and M ⊂ Rm induces a ring homomorphism ϕ�,� : S�(M) → S�(N), f �→ f ◦ ϕ,
and the spectral map associated to ϕ is Spec�s (ϕ) : Spec�s(N) → Spec�s (M), p �→
(ϕ�,�)−1(p). In fact, Spec�s (ϕ) is the unique continuous extension of ϕ with values
in Spec�s(M), because N is dense in Spec�s(N). Moreover, we proved in [FG2, 5.9]
that Spec*s (ϕ) : Spec*s (N) → Spec*s (M) maps β*

sN into β*
sM ; we denote β*

sϕ =
Spec*s (ϕ)|β*

sN
: β*

sN → β*
sM .

(1.3) On the other hand, we proved in [FG2, 4.8] the existence of semialgebraic
maps ϕ : N → M and maximal ideals of S(N) whose image under the induced
map Specs(ϕ) : Specs(N) → Specs(M) is not a maximal ideal of S(M). But,
S(M) being a Gelfand ring (see [FG1, 3.1(iii)] for an elementary proof), the map
sM : Specs(M) → βsM , which maps each prime ideal of S(M) to the unique
maximal ideal of S(M) containing it, is, by [MO, 1.2], a (continuous) retraction.
We define βsϕ = sM ◦ Specs(ϕ)|βsN : βsN → βsM , which is a continuous map.
Note that N and M being dense in βsN and βsM respectively, the map βsϕ is the
unique continuous extension of ϕ : N → M to βsN taking values in βsM .

(1.4) Again by [FG1, 3.1(iii)] and [MO, 1.2], there exists a retraction rM :
Spec*s (M) → β*

sM which maps each prime ideal of S∗(M) to the unique maximal
ideal of S∗(M) containing it. Consider the inclusion maps iM : βsM ↪→ Specs(M)
and jM : β*

sM ↪→ Spec*s (M), and let kM : Specs(M) → Spec*s (M), p �→ p∩S∗(M),
which is a homeomorphism onto its image; see [FG2, 3.2]. Moreover, sM =
Φ−1

M ◦ rM ◦ kM and kM ◦ Specs(ϕ) = Spec*s (ϕ) ◦ kN . This, together with the

equality rM ◦ Spec*s (ϕ) ◦ jN = Spec*s (ϕ) ◦ jN , provides the following commutative
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diagram:

N

ϕ

��

� � �� βsN

ΦN

��

βsϕ

��

� � iN �� Specs(N)

Specs(ϕ)

��

sN
�� � � kN �� Spec*s (N)

Spec*s (ϕ)

��

rN �� β*
sN

β*
sϕ

��

��jN
��

M � � �� βsM

ΦM

��
� � iM �� Specs(M)

sM
�� � � kM �� Spec*s (M)

rM �� β*
sM��jM

��

Thus, via ΦN and ΦM , we can translate the properties of the operator β*
s to prop-

erties of βs. This is why we focus our attention on the study of the behaviour of
β*
s.
As one can imagine, to get relevant information about Spec*s (ϕ) and its restric-

tion β*
sϕ we must impose strong conditions to the map ϕ. Moreover, by the nature

of the used techniques, which come back to [P] (see also [Mu]), we restrict ourselves
to maps ϕ which are bounded over their fibers. This is why in dealing with not
necessarily bounded semialgebraic functions, we impose ϕ to be a proper map. Our
main results in this direction are the following:

Theorem 1.5. Let ϕ : N → M be an open, closed and surjective semialgebraic
map. Then both maps Spec*s (ϕ) : Spec*s (N) → Spec*s (M) and β*

sϕ : β*
sN → β*

sM
are open, proper and surjective.

Theorem 1.6. Let ϕ : N → M be a semialgebraic map. Then the following
assertions are equivalent:

(i) The map ϕ : N → M is open, proper and surjective.
(ii) The map Spec*s (ϕ) : Spec

*
s (N) → Spec*s (M) is open, proper and surjective

and β*
sϕ(∂N) = ∂M .

(iii) The map Specs(ϕ) : Specs(N) → Specs(M) is open, proper and surjective
and the fiber under ϕ of each isolated point of M is compact.

(iv) The map β*
sϕ : β*

sN → β*
sM is open, proper and surjective and β*

sϕ(∂N) =
∂M .

A source of examples of maps to which Theorems 1.5 and 1.6 apply is the un-
ramified semialgebraic coverings with finite fibers. However, other maps fit such a
situation.

Examples 1.7. (i) Let N = {(x2 − y2 − z2)(x2 − y2 + z2) = 0} ⊂ R3, M = R2

and ϕ be the restriction to N of the projection R3 → R2, (x, y, z) → (x, y). One
can check that ϕ is open, proper and surjective.

(ii) Let N1, . . . , Nr ⊂ Rn be a finite collection of compact semialgebraic sets and
let ϕi : N1×· · ·×Nr → Ni, (x1, . . . , xr) �→ xi be the projection onto the ith-factor.
Then ϕi is open, proper and surjective.

(iii) The symmetric group Sn acts in a natural way on Rn. The space of orbits
Rn/Sn admits a natural structure of affine semialgebraic space (see [B, 1.6]) and it is
homeomorphic to the semialgebraic subset M = {x ∈ Rn : Bez(x) is positive semi-
definite}, where Bez denotes the quadratic form usually known as Bezoutian (see
[BCR, 6.2.7] and [PS, 0.1]). In fact, the map σ : Rn → Rn, x �→ (σ1(x), . . . , σn(x)),
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where σ1, . . . , σn are the elementary symmetric functions, induces a homeomor-
phism between Rn/Sn and M . In fact, the semialgebraic map σ : Rn → M is open,
proper and surjective.

(iv) In general, if a finite group of semialgebraic automorphisms acts on Rn,
we get a “semialgebraic” quotient (see [B, 1.6]) and the canonical projection is a
“semialgebraic” map which is moreover open, proper and surjective. �

The article is organized as follows. In Section 2 we present some preliminary
results concerning Zariski spectra of rings of semialgebraic and bounded semialge-
braic functions on a semialgebraic set that will be useful to prove Theorems 1.5 and
1.6 given in Section 3.

2. Preliminaries on Zariski and maximal spectra

We devote this section to recalling the main properties of the Zariski spectra of
rings of semialgebraic and bounded semialgebraic functions on a semialgebraic set
that we need in the sequel (see for instance [FG2, §3-§6] for further details) and the
notation to be used.

(2.1) Zariski spectra of rings of semialgebraic functions. Recall that the
Zariski spectrum Spec�s (M) of S�(M) is the collection of all prime ideals of S�(M).
This set Spec�s (M) is endowed with the Zariski topology which has as a basis of open
sets the family of sets DSpec�s (M)(f) = {p ∈ Spec�s (M) : f 	∈ p} where f ∈ S�(M).
We will denote its complement by ZSpec�s (M)(f) = Spec�s (M) \DSpec�s (M)(f).

More generally, for each ideal a of a commutative ring with unity R, we denote
ZSpec(R)(a) = {p ∈ Spec(R) : a ⊂ p}. If a = aR is a principal ideal, we write
ZSpec(R)(a) = ZSpec(R)(a). Next we recall some standard notation. If ψ : A → B is
a ring homomorphism and p ∈ Spec(A), we identify

Spec(Bp) = {q ∈ Spec(B) : q ⊂ ψ(p)B}.
If ψ is moreover injective, we write b ∩ A = ψ−1(b) for each ideal b in B, and aB
for the smallest ideal of B containing ψ(a).

(2.1.1) It is well known (see [FG2, §3] for an elementary proof) that the Zariski and
the real spectrum of S�(M) coincide. Consequently, the subset β�

sM of closed points
of Spec�s(M) is, by [BCR, 7.1.25(ii)], a compact, Hausdorff space which contains M
as a dense subspace; that is, β�

sM is a Hausdorff compactification of M . Observe
that if M is compact, then the embedding φ : M → β�

sM, p �→ m�
p is in fact bijective

(because in this case M is dense and closed in β�
sM) and so β�

sM ≡ M . We denote

Dβ�
sM

(f) = DSpec�s (M)(f) ∩ β�
sM

and

Zβ�
sM (f) = β�

sM \ Dβ�
sM (f) = ZSpec�s (M)(f) ∩ β�

sM.

(2.1.2) As usual, given f, g ∈ S�(M), we say that f ≤ g if f(x) ≤ g(x) for all
x ∈ M ; in the same vein, f is nonnegative if f ≥ 0. Moreover, the prime ideals of
the ring S�(M) satisfy a “convexity condition” which is ubiquitous in real geometry.
Namely, given f, g ∈ S�(M) such that g ∈ p and 0 ≤ f ≤ g, then also f ∈ p (see
[FG2, 3.1.2]).

(2.1.3) A useful consequence of the convexity is the following: The set of prime
ideals of the ring S�(M) containing a fixed prime ideal p forms a chain.
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3. Open and closed semialgebraic morphisms

The purpose of this section is to prove Theorems 1.5 and 1.6. First, we proceed
to develop some auxiliary results to prove Theorem 1.5. To simplify the statements
we fix a surjective closed and open semialgebraic map ϕ : N → M and denote by
ϕ� : S∗(M) ↪→ S∗(N), f �→ f ◦ ϕ the induced injective homomorphism. Notice
that, since ϕ is open and surjective, the image of ϕ� consists of those functions in
S∗(N) which are constant on the fibers of ϕ.

Since ϕ� is injective, we will write f instead of ϕ�(f) for each f ∈ S∗(M),
and in this way we identify S∗(M) with the subring of S∗(N) consisting of those
f ∈ S∗(N) which are constant on the fibers of ϕ.

We consider in S∗(N) the S∗(M)-module structure induced by ϕ�, and for each
prime ideal p of S∗(M) we denote by S∗(N)p the localization of S∗(N) at the
multiplicatively closed set S∗(M) \ p. As usual, given functions f ∈ S∗(M) and
g ∈ S∗(N) we will write fg = ϕ�(f)g ∈ S∗(N).

Next, we present an elementary but useful construction, which originates in [P].

Construction 3.1. Let ϕ : N → M be an open, closed and surjective semialgebraic
map. Let h ∈ S∗(N). Then, the functions

h+ : M → R, y �→ sup{h(x) : ϕ(x) = y}
and

h− : M → R, y �→ inf{h(x) : ϕ(x) = y}
are bounded and semialgebraic. Indeed, since h− = −(−h)+, it is sufficient to
study the function h+, which is bounded because h is. As to the continuity, and
since ϕ is open and surjective, the topology on M is the quotient topology for ϕ,
and so it suffices to prove the continuity of f = h+ ◦ ϕ. Fix x0 ∈ N and ε > 0.
Let x1 ∈ ϕ−1(ϕ(x0)) such that f(x0)− ε/2 < h(x1) ≤ f(x0) and consider the open
intervals I = (−∞, f(x0) + ε/2) and J = (f(x0) − ε/2,+∞). Observe that the
open semialgebraic subsets U = h−1(I) and V = h−1(J) of N contain, respectively,
ϕ−1(ϕ(x0)) and x1. DefineW1 = ϕ−1(M \ϕ(N\U)) andW2 = ϕ−1(ϕ(V )). Clearly,
since ϕ is open and closed, both W1 and W2 are open semialgebraic subsets of N ;
moreover, x0 ∈ W = W1 ∩ W2 and in fact ϕ−1(ϕ(x)) ⊂ U for all x ∈ W1. As
one can check straightforwardly, these sets fulfill f(W1) ⊂ (−∞, f(x0) + ε/2] and
f(W2) ⊂ (f(x0) − ε/2,+∞). Thus, W is an open (semialgebraic) neighbourhood
of x0 in N satisfying f(W ) ⊂ (f(x0)− ε, f(x0) + ε), which proves the continuity of
f at x0.

Finally, notice that the graph of h+ is a semialgebraic subset of M ×R because
both ϕ and f are semialgebraic and the supremum condition can be expressed in
the first order language of the theory of ordered fields. �

Remarks 3.2. (i) Given a function h ∈ S∗(N), we have h− ◦ ϕ ≤ h ≤ h+ ◦ ϕ.
Moreover, if g ∈ S∗(N) is constant on the fibers of ϕ, then g− ◦ ϕ = g = g+ ◦ ϕ.

(ii) If the functions h, b ∈ S∗(N) satisfy h ≤ b, then h− ≤ b− and h+ ≤ b+.
(iii) For each f ∈ S∗(M) we have ϕ�(|f |) = |ϕ�(f)|, because both functions are

nonnegative and share the square:

(ϕ�(|f |))2 = ϕ�(|f |2) = ϕ�(f2) = (|ϕ�(f)|)2.
Thus, the identification f = ϕ�(f) for f ∈ S∗(M) is compatible with absolute
values.
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(iv) The continuity of the functions h− and h+ fails to be true under milder
conditions on the map ϕ. Indeed, we can

(1) Consider the closed and surjective semialgebraic map ϕ : R → R, t �→ t3−3t,
which is not open because it has a local maximum at t = −1. Define h : R →
R, x �→ x/(1 + x2). The function h− : R → R, y �→ min{h(x) : y = x3 − 3x} is
not continuous at y = 2.

Indeed, for each y ∈ R consider the polynomial Py(x) = x3 − 3x − y ∈ R[x]
whose discriminant Δy = 27(4 − y2) vanishes at y = 2. In fact h−(2) = −1/2,
because P2(x) = (x + 1)2(x − 2). On the other hand, for every ε > 0 one has
Δy(2 + ε) < 0, and so the polynomial P2+ε has a unique real root ξε. Thus,
h−(2 + ε) = h(ξε) = ξε/(1 + ξ2ε ). To estimate the value of ξε notice that

P2+ε(2) = −ε < 0 while P2+ε(2 + ε) = ε(2 + ε)(4 + ε) > 0,

and so 2 < ξε < 2 + ε. Hence, limy→2+ h−(y) = 2/5 	= −1/2, and the function h−
is not continuous at y = 2.

(2) Consider the open and surjective semialgebraic map ϕ : R2 → R, (x, y) �→ y
and the semialgebraic function h : R2 → R, (x, y) → 1/(1+ (xy− 1)2). Notice that

h+ : R → R, y �→ 1

inf{1 + (xy − 1)2, x ∈ R} =

{
1 if y 	= 0,

1/2 if y = 0

is not continuous at y = 0.

Lemma 3.3. Let ϕ : N → M be an open, closed and surjective semialgebraic map.
Let p be a prime ideal in S∗(M) and let h ∈ S∗(N) be a nonnegative function whose
image under the canonical homomorphism S∗(N) → S∗(N)p is a unit. Then, also
the image of h− under the canonical homomorphism S∗(M) → S∗(M)p is a unit.

Proof. We must prove that h− 	∈ p. By the hypothesis on h there exist g ∈ S∗(N)
and f1, f2 ∈ S∗(M) \ p such that f1gh = f2. Since f2 	∈ p, the product f1g is not
identically zero. Hence, r = sup {|(f1 ◦ ϕ)(x)g(x)| : x ∈ N} > 0. The function
b = |f1g|/r satisfies 0 ≤ b(x) ≤ 1 for all x ∈ N and

H = bh =
|f1gh|

r
=

|f2|
r

∈ S∗(M).

This last equation means that H is constant on the fibers of ϕ. Therefore from
the obvious inequalities 0 ≤ (H ◦ ϕ) ≤ h on N , it follows, by Remark 3.2(ii), that
0 ≤ H− ≤ h− on M . Now, to prove that h− 	∈ p, it suffices, by Remark (2.1.2), to
check that H− 	∈ p. But this is clear since, using 3.2(i), H− = H = |f2|/r 	∈ p, and
we are done. �

Lemma 3.4 (Going-up). Let ϕ : N → M be an open, closed and surjective semial-
gebraic map. Then, the homomorphism ϕ� : S∗(M) → S∗(N), f �→ f ◦ ϕ satisfies
the going-up property.

Proof. Let q be a prime ideal in S∗(N), and let p be a prime ideal in S∗(M)
containing q ∩ S∗(M). Suppose, by way of contradiction, that no prime ideal of
S∗(N) lying over p contains q. Via the canonical homomorphism ψ : S∗(N) →
S∗(N)p we can interpret Spec(S∗(N)p) as a subset of Spec*s (N), and the set of
prime ideals of S∗(N) lying over p is ZSpec*s (N)(pS∗(N)) ∩ Spec(S∗(N)p). Hence,
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our assumption means that if a = q+ pS∗(N), then

ZSpec*s (N)(a) ∩ Spec(S∗(N)p) = ZSpec*s (N)(q) ∩ ZSpec*s (N)(pS∗(N)) ∩ Spec(S∗(N)p)

= ∅.

Therefore, aS∗(N)p = S∗(N)p, and so there exist h ∈ q, f1, . . . , fm ∈ p, g1, . . . , gm ∈
S∗(N) such that the image under ψ of the function F = h + f1g1 + · · · + fmgm ∈
S∗(N) is a unit in S∗(N)p. Hence, |F | ∈ S∗(N) is a nonnegative function whose
image in S∗(N)p is a unit.

Let L be a common upper bound for all functions |gi| and define new functions

h̃ = |h| ∈ q and f̃ = L
∑m

i=1 |fi| ∈ p. By (2.1.2), and since 0 ≤ h̃− ◦ ϕ ≤ h̃ on N ,

we get h̃− ∈ q ∩ S∗(M) ⊂ p, and so h̃− + f̃ ∈ p. Notice that, f̃ being constant on

the fibers of ϕ, we have (h̃+ f̃)− = h̃− + f̃ ∈ p. On the other hand,

|F | ≤ |h|+
m∑
i=1

|gi||fi| ≤ h̃+ L
m∑
i=1

|fi| = h̃+ f̃ ,

on N . This, together with the fact that |F | is a unit in S∗(N)p implies, by (2.1.2),

that the image of h̃+ f̃ in S∗(N)p is a unit and, by Lemma 3.3, (h̃+ f̃)− is also a

unit in S∗(M)p. This contradicts the fact that (h̃+ f̃)− ∈ p. Therefore, ϕ� satisfies
the going-up property. �
Corollary 3.5. Let ϕ : N → M be an open, closed and surjective semialgebraic
map. Let q ∈ Spec*s (N) and p = q ∩ S∗(M). Then, the ring homomorphism ψ :
S∗(M)p → S∗(N)q induced by ϕ satisfies the going-up property and it is injective.

Proof. First, let us check the going-up property. Indeed, let q1 be a prime ideal in
S∗(N) with q1 � q such that p1 = q1 ∩ S∗(M) � p. Consider a prime ideal p2 in
S∗(M) such that p1 � p2 � p. By Lemma 3.4, there exists q2 ∈ Spec*s (N) such that
q1 � q2 and p2 = q2 ∩ S∗(M). It only remains to check that q2 ∈ Spec(S∗(N)q),
that is, q2 ⊂ q. But since the set of prime ideals of S∗(N) containing q1 is, by
(2.1.3), a chain and q2 ∩ S∗(M) = p2 � p = q ∩ S∗(M), we conclude q2 � q.

Next, let us show the injectivity of ψ. Let F ∈ S∗(M) and f ∈ S∗(M) \ p be
such that F/f ∈ kerψ. Thus, gF = 0 for some g ∈ S∗(N) \ q and, after changing g
by |g| if necessary, we may assume that g is nonnegative. Clearly, 0 ≤ g ≤ g+ ◦ ϕ
on N ; hence, by (2.1.2), g+ ◦ ϕ 	∈ q, and so g+ 	∈ p. Consequently, to prove the
injectivity of ψ, it suffices to check that g+F = 0. Otherwise, there would exist a
point y ∈ M such that g+(y)F (y) 	= 0; in particular, F (y) 	= 0. Therefore, for each
x ∈ ϕ−1(y),

0 = (g(F ◦ ϕ))(x) = g(x)F (ϕ(x)) = g(x)F (y),

and so g(x) = 0. Thus, ϕ−1(y) ⊂ ZN (g), and this implies g+(y) = 0, a contradic-
tion. �
Lemma 3.6 (Going-down). Let ϕ : N → M be an open, closed and surjective
semialgebraic map. Then, the homomorphism ϕ� : S∗(M) → S∗(N), f �→ f ◦ ϕ
satisfies the going-down property.

Proof. Let q be a prime ideal in S∗(N) and let p = q ∩ S∗(M). We must prove
that the induced map Φ : Spec(S∗(N)q) → Spec(S∗(M)p) is surjective. It is a
closed map, by Corollary 3.5 and [AM, §5], and so its image imΦ is a closed subset
of Spec(S∗(M)p). Therefore, it is enough to see that imΦ is a dense subspace of
Spec(S∗(M)p).
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To that end we will use the injectivity of ψ : S∗(M)p → S∗(N)q proved in
Corollary 3.5, to show that imΦ contains the set of minimal prime ideals of S∗(M)p,
which is a dense subset of Spec(S∗(M)p) because the ring S∗(M)p has finite Krull
dimension; see [FG1, 4.1].

Indeed, to simplify notation write A = S∗(M)p and B = S∗(N)q. Given a
minimal prime ideal a in A, the induced homomorphism ψa : Aa → Ba is also
injective. Whence Ba is not zero and so it has a maximal ideal b. Thus, ψ−1

a (b)
is a prime ideal in Aa which must be aAa (because it is the unique prime ideal of
Aa); hence, Φ(b) = a. �

The next lemma, which will be used later, reduces the proof of Theorem 1.5
to studying the behaviour of the spectral map between the Zariski spectra. More
precisely,

Lemma 3.7. Let ϕ : N → M be a semialgebraic map such that the induced map
Spec�s (ϕ) : Spec�s(N) → Spec�s (M) is open, closed and surjective. Then, β�

sϕ :
β�
sN → β�

sM is an open, proper and surjective map.

Proof. Since Spec�s (ϕ) : Spec
�
s(N) → Spec�s (M) is closed, it maps closed points to

closed points and therefore it restricts to β�
sN as β�

sϕ : β�
sN → β�

sM . Moreover,
since β�

sϕ is continuous, β�
sN is a compact space and β�

sM is Hausdorff, it follows
that β�

sϕ is a proper map. To prove its surjectivity, let m� ∈ β�
sM . Since Spec�s (ϕ) :

Spec�s (N) → Spec�s (M) is surjective, there exists a prime ideal p ∈ Spec�s(N) with
Spec�s (ϕ)(p) = m�. Let n� be (the unique) maximal ideal of S�(N) containing p.
Then m� = Spec*s (ϕ)(p) ⊂ Spec*s (ϕ)(n

�) and, m� being a maximal ideal of S�(M)
and β�

sϕ = Spec�s (ϕ)|β�
sN , we get m� = β�

sϕ(n
�).

As to the openness of β�
sϕ, let W be an open subset of β�

sN , and denote by ρM :
Spec�s (M) → β�

sM the retraction that maps each prime ideal of S�(M) to the unique
maximal ideal of S�(M) containing it. The equality β�

sϕ(W ) = Spec�s (ϕ)(ρ
−1
M (W ))∩

β�
sM follows readily, and it proves that β�

sϕ(W ) is an open subset of β�
sM , because

ρM is continuous and Spec�s(ϕ) is an open map. �

Lemma 3.8. Let ϕ : N → M be a semialgebraic map. Then, the fibers of the
spectral map Spec�s (ϕ) : Spec

�
s (N) → Spec�s (M) are compact.

Proof. Let p be a prime ideal of S�(M) and write K = Spec�s (ϕ)
−1(p). The closure

Γ = ClSpec�s (M)({p})
of {p} is a finite and totally ordered set Γ = {p, p1, . . . , pr}, with p � p1 � . . . � pr.
Now we distinguish two cases. If p is maximal, then K = Spec�s (ϕ)

−1(Γ) is a closed
subset of the compact space Spec�s (N); hence it is compact.

If p is not maximal, let us choose a function f ∈ p1 \ p. Then,
K = Spec�s(ϕ)

−1(Γ ∩DSpec�s (M)(f)) = Spec�s(ϕ)
−1(Γ) ∩DSpec�s (N)(f ◦ ϕ)

is compact because it is a closed subset of the compact set DSpec�s (N)(f ◦ ϕ). �

Now, we are ready to prove Theorem 1.5:

Proof of Theorem 1.5. First, observe that by Lemma 3.7, it is enough to prove
that Spec*s (ϕ) : Spec

*
s (N) → Spec*s (M) is open, proper and surjective. Indeed, the

closedness of Spec*s (ϕ) is a straightforward consequence of the going-up property
(see [AM, §5]) proved in Lemma 3.4, while its surjectivity follows because the image
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of Spec*s (ϕ) is closed and it contains the dense subset ϕ(N) = M ≡ {m∗
y : y ∈ M}

of Spec*s (M). Moreover, by Lemma 3.8, the fibers of Spec*s (ϕ) are compact. Thus,
it just remains to check that Spec*s (ϕ) is an open map. For that, it is enough to
check the equality

(∗) DSpec*s (M)(h+) = Spec*s (ϕ)(DSpec*s (N)(h))

for every nonnegative function h ∈ S∗(N), because DSpec*s (N)(|h|) = DSpec*s (N)(h).

Notice that 0 ≤ h ≤ h+ ◦ ϕ, which implies, by (2.1.2), that h+ 	∈ Spec*s (ϕ)(q)
whenever h /∈ q. Conversely, let p 	∈ Spec*s (ϕ)(DSpec*s (N)(h)) be a prime ideal of

S∗(M) and let us prove that h+ ∈ p. Indeed, denote a = pS∗(N) and let us show
first that h ∈

√
a =

⋂
q
q where q ∈ ZSpec*s (N)(a).

Otherwise, there would exist a prime ideal q1 in S∗(N) containing a such that
h 	∈ q1. The prime ideal p1 = q1 ∩ S∗(M) contains p and, by the going-down
property of Lemma 3.6, there exists a prime ideal q in S∗(N) lying over p and
contained in q1. Consequently, h 	∈ q ∈ (Spec*s (ϕ))

−1(p) ⊂ ZSpec*s (N)(h), because

p 	∈ Spec*s (ϕ)(DSpec*s (N)(h)), a contradiction.

Hence, some power of h occurs in a; that is, h� =
∑d

i=1 figi for some � ≥ 1,
fi ∈ p and gi ∈ S∗(N). Let Fi = |fi| ∈ p and Gi = |gi| ∈ S∗(N); hence,

h� ≤
∑d

i=1(Fi ◦ ϕ)Gi on N and so 0 ≤ (h�)+ ≤
∑d

i=1(Gi)+Fi on M . By (2.1.2),

this implies, since
∑d

i=1 Gi,+Fi ∈ p, that also h�
+ ∈ p, that is, h+ ∈ p, as wanted. �

Our next goal is to approach Theorem 1.6. Before that we need some prelimi-
naries:

Remarks 3.9. (i) To study the map Specs(ϕ) : Specs(N) → Specs(M) induced by
a semialgebraic map ϕ : N → M by using similar arguments to those used for the
spectra of rings of bounded semialgebraic functions, it is natural to impose ϕ to
be a proper and surjective map. Under this assumption its fibers are nonempty
compact sets and so each function h ∈ S(N) induces two functions:

h+ : M → R, y �→ max{h(x) : ϕ(x) = y}

and

h− : M → R, y �→ min{h(x) : ϕ(x) = y}.

Moreover, an analogous proof to the one of Construction 3.1 shows that, if ϕ is also
an open map, then both h+ and h− are semialgebraic functions; that is, they are
continuous with semialgebraic graphs.

(ii) On the other hand, as is well known, Specs(N) and Specs(M) are homeo-
morphic to the subsets S(N) and S(M) of Spec*s (N) and Spec*s (M), respectively,
defined by

S(N) = {p ∈ Spec*s (N) : p ∩W(N) = ∅}

and

S(M) = {q ∈ Spec*s (M) : q ∩W(M) = ∅},
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where W(N) = {f ∈ S∗(N) : ZN (f) = ∅} and W(M) = {g ∈ S∗(M) : ZM (g) =
∅} (see for instance [FG2, 3.2]). After identifying these spaces, we get a commu-
tative diagram whose horizontal arrows are embeddings:

Specs(N) ≡ S(N) �
� ��

Specs(ϕ)

��

Spec*s (N)

Spec*s (ϕ)

��
Specs(M) ≡ S(M) �

� �� Spec*s (M)

(iii) Again, the homomorphism ϕ� : S(M) → S(N), f �→ f ◦ ϕ endows S(N)
with a structure of S(M)-module, and in fact S(N) is the ring of fractions of S∗(N)
with respect to W(M). To prove this, it suffices to write each function f ∈ S(N)
as a quotient f = g/h where g = f/(1+f2

+) ∈ S∗(N) and h = 1/(1+f2
+) ∈ W(M).

In other words, the canonical homomorphism S∗(N)W(M) → S∗(N)W(N) = S(N)
is an isomorphism.

(iv) Hence, S(N) = {p ∈ SpecS∗(N) : p ∩W(M) = ∅}, and so

Spec*s (ϕ)(Spec
*
s (N) \ Specs(N)) = Spec*s (M) \ Specs(M).

Therefore, Specs(N) = Spec*s (ϕ)
−1(Specs(M)). �

For the sake of the reader we state next a useful auxiliary result whose proof can
be found in [Fe2, 3.9].

Lemma 3.10. Let ϕ : N → M be a surjective semialgebraic map. Then, ϕ is
proper if and only if β*

sϕ(∂N) = ∂M .

We are now in a position to prove Theorem 1.6. Namely,

Proof of Theorem 1.6. We will prove the chain of implications (i) =⇒ (ii) =⇒ (iii)
=⇒ (iv) =⇒ (i). Observe first that (i) =⇒ (ii) follows from Theorem 1.5 and
Lemma 3.10.

(ii) =⇒ (iii) By Remark 3.9(iv), we have a commutative diagram

Specs(N) = Spec*s (ϕ)
−1(Specs(M)) �

� ��

Specs(ϕ)

��

Spec*s (N)

Spec*s (ϕ)

��
Specs(M) �

� �� Spec*s (M)

whose horizontal arrows are embeddings. Thus, since Spec*s (ϕ) is open, closed and
surjective, so is Specs(ϕ). Moreover, by Lemma 3.8, the fibers of Specs(ϕ) are
compact, and so Specs(ϕ) : Specs(N) → Specs(M) is also a proper map. Next, the
equality β*

sϕ(∂N) = ∂M implies that ϕ−1(p) = (β*
sϕ)

−1(m∗
p), and this last set is a

compact subset of N for all p ∈ M , in particular, if p is an isolated point of M .
(iii) =⇒ (iv). It follows from Lemma 3.7 that βsϕ : βsN → βsM is an open,

proper and surjective map. Thus, from (1.1)–(1.4), the same holds true for the map
β*
sϕ : β*

sN → β*
sM , and it only remains to check that β*

sϕ(∂N) = ∂M . This last task
will be done in several steps. In any case, we may assume from the beginning that
N ⊂ Rn is bounded, after changing N by its inverse image under the semialgebraic
homeomorphism

Bn(0, 1) → Rn, x �→ x√
1− ‖x‖2
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between the open ball Bn(0, 1) ⊂ Rn of center the origin and radius 1 and Rn.

(1.6.1) The fiber ϕ−1(p) is nowhere dense in N for each nonisolated point p of M .
Suppose that there exist a nonisolated point p ∈ M and a nonempty semialge-

braic subset W ⊂ ϕ−1(p) which is, moreover, open in N . Let us check first that
V = W \Clβ*

sN
(∂N) is a nonempty open subset of β*

sN . Indeed, letNlc be the largest

locally compact and dense subset of N , and let ρ1(N) = N \Nlc = ClRn(ClRn(N) \
N)∩N (see [Fe1, 3.8]). By [Fe1, 6.8.1], Clβ*

sN
(∂N) = β*

sN \Nlc. Notice that by its

definition ρ1(N) ∩W = ρ1(W ); hence Wlc = W \ ρ1(W ) = W \ ρ1(N) 	= ∅. Thus,

V = W \ (β*
sN \Nlc) = W \ (N \Nlc) = W \ ρ1(N) 	= ∅.

Moreover, V ⊂ Nlc ⊂ N , and so V is an open subset of Nlc; hence V is an open
subset of β*

sN , because the locally compact semialgebraic set Nlc is open in its
Hausdorff compactification β*

sN . Now, β*
sϕ : β*

sN → β*
sM being an open map,

β*
sϕ(V ) = ϕ(V ) = {p} is an open subset of M , which contradicts the fact that p is

nonisolated in M .

(1.6.2) The fiber ϕ−1(p) is a compact set for all p ∈ M .
Fix a point p ∈ M ; since by hypothesis ϕ−1(p) is compact for each isolated

point p of M , we may assume that p is a nonisolated point. Suppose, by way of
contradiction, that C = ϕ−1(p) is not compact and let q ∈ ClRn(C) \ C. Since C
is, by 1.6.1, nowhere dense in N , we have q ∈ ClRn(C) ⊂ ClRn(N) = ClRn(N \ C).
By the Curve Selection Lemma [BCR, 2.5.5], there exists a semialgebraic path
γ : [0, 1] → ClRn(N) such that γ((0, 1]) ⊂ N \ C and γ(0) = q. Consider the
maximal ideal

nγ = {f ∈ S(N) : ∃ ε > 0 such that (f ◦ γ)|(0, ε] = 0}

of S(N) (see [Fe2, 3.4]). The image of nγ under Specs(ϕ) is a maximal ideal, because
Specs(ϕ) maps closed points into closed points. Thus Specs(ϕ)(nγ) = mp, by the
choice of γ. However, the semialgebraic function f = ‖x− p‖ ∈ mp \ Specs(ϕ)(nγ)
because the composition (f ◦ϕ ◦ γ)(t) = ‖(ϕ ◦ γ)(t)− p‖ does not vanish identically
on any interval of the type (0, ε] with ε > 0, since γ((0, 1]) ⊂ N \ C = N \ ϕ−1(p).

(1.6.3) β*
sϕ(∂N) ∩M = ∅, or equivalently, β*

sϕ(∂N) = ∂M .
Suppose there exists a point p ∈ β*

sϕ(∂N) ∩ M . Then, there exists n ∈ ∂N ⊂
β*
sN ⊂ Spec*s (N) such that Spec*s (ϕ)(n) = β*

sϕ(n) = mp. By [FG4, 5.4], we may
assume that

n = nα = {f ∈ S(N) : ∃ ε > 0 such that (f ◦ α)|(0, ε] = 0},

for some semialgebraic path α : [0, 1] → ClRn(N) such that α((0, 1]) ⊂ N and
q = α(0) ∈ ClRn(N) \ N . Since the semialgebraic function f = ‖x − p‖ ∈ mp =

Spec*s (ϕ)(nα), there exists ε > 0 such that (f ◦ϕ◦α)|(0, ε] = ‖(ϕ◦α)(t)−p‖|(0, ε] ≡ 0.
We may assume that ε = 1, that is, (ϕ ◦ γ)(t) = p for all t ∈ [0, 1]. Hence,
α((0, 1]) ⊂ ϕ−1(p), and since ϕ−1(p) is compact, q = α(0) ∈ ϕ−1(p) ⊂ N , a
contradiction. Thus, β*

sϕ(∂N) ∩M = ∅, as wanted.
(iv) =⇒ (i). Since β*

sϕ : β*
sN → β*

sM is surjective and β*
sϕ(∂N) = ∂M , the map

ϕ is surjective and, by Lemma 3.10, it is also proper. Finally, given an open subset
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W of β*
sN , and since β*

sϕ(∂N) = ∂M , we have

β*
sϕ(W ) ∩M = (β*

sϕ(W ∩N) ∩M) ∪ (β*
sϕ(W ∩ ∂N) ∩M)

= β*
sϕ(W ∩N) ∩M = ϕ(W ∩N),

which implies that ϕ is an open map, because β*
sϕ is. �

Remarks 3.11. (i) Assertions (ii) and (iv) in Theorem 1.6 are not equivalent to
assertion (i) if we eliminate the hypothesis β*

sϕ(∂N) = ∂M . Indeed, the inclusion
map ϕ : (0, 1) ↪→ [0, 1] is neither proper nor closed nor surjective, but the induced
maps

Spec*s (ϕ) = id : Spec*s ((0, 1)) = Spec*s ([0, 1]) → Spec*s ([0, 1]), and

β*
sϕ = id : β*

s (0, 1) = β*
s [0, 1] = [0, 1] → [0, 1]

are open, proper and surjective. Indeed, see [FG3, 3.9], the rings S∗((0, 1)) and
S∗([0, 1]) are isomorphic, and so Spec*s ((0, 1)) = Spec*s ([0, 1]). On the other hand,
for the equalities β*

s (0, 1) = β*
s [0, 1] = [0, 1] see [FG4, 4.9].

(ii) Assertion (iii) in Theorem 1.6 is not equivalent to assertion (i) if we eliminate
the hypothesis that the fiber under ϕ of each isolated point ofM is compact. Indeed,
if ϕ : N → {p} is a constant semialgebraic map and N is not compact, the map
Specs(ϕ) : Specs(N) → Specs({p}) ≡ {p} is open, proper and surjective, while ϕ is
not proper.
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