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Abstract

In this work we compare the semialgebraic subsets that are images of regulous maps with those
that are images of regular maps. Recall that a map  f : n m is regulous if it is a rational
map that admits a continuous extension to n. In case the set of (real) poles of f is empty we
say that it is regular map. We prove that if Ì mS is the image of a regulous map

 f : n m, there exists a dense semialgebraic subset ÌT S and a regular map  g: n m

such that ( ) =g n T . In case ( ) = ndim S , we may assume that the difference S T⧹ has co-
dimension³2 in S. If we restrict our scope to regulous maps from the plane the result is neat: if

 f : m2 is a regulous map, there exists a regular map  g: m2 such that
( ) = ( )f gIm Im . In addition, we provide in Appendix A a regulous and a regular map

 f g, : 2 2 whose common image is the open quadrant { > > }0, 0Q x y≔ . These maps
are much simpler than the best-known polynomial maps  2 2 that have the open quadrant
as their image.

1. Introduction

A map ( ¼ )  f f f, , :m
n m

1≔ is regulous if its components are regulous functions, that is,
=fi

g

h
i

i
is a rational function that admits a continuous extension to n and Î [ ]g h,i i x are rela-

tively prime polynomials. By [15, 3.5] { = } Ì { = }h g0 0i i and the codimension of { = }h 0i is
³2. Consequently, the set of indeterminacy of f is an algebraic set of codimension ³2. In case
{ = }h 0i is empty for each = ¼i m1, , , we say that f is a regular map whereas f is polynomial if
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we may choose = = =h h 1m1  . Modern Real Algebraic Geometry was born with Tarskiʼs
article [21], where it is proved that the image of a semialgebraic set under a polynomial map is a
semialgebraic set. A subset Ì nS is semialgebraic when it has a description by a finite boolean
combination of polynomial equalities and inequalities, which we will call a semialgebraic
description.

We are interested in studying what might be called the ‘inverse problem’ to Tarski’s result, that
is, to represent semialgebraic sets as images of nice semialgebraic sets (in particular, Euclidean
spaces, spheres, smooth algebraic sets, etc.) under semialgebraic maps that enjoy a kind of identity
principle, that is, semialgebraic maps that are determined by its restriction to a small neighborhood
of a point (for instance, polynomial, regular, regulous, Nash, etc.). In the 1990, Oberwolfach reelle
algebraische Geometrie week [17] Gamboa proposed:

PROBLEM 1.1 To characterize the (semialgebraic) subsets of m that are either polynomial or
regular images of Euclidean spaces.

During the last decade, the first and fourth authors jointly with Gamboa have attempted to
understand better polynomial and regular images of n with the following target:

• To find obstructions to be either polynomial or regular images [4, 5, 7, 12].
• To prove (constructively) that large families of semialgebraic sets with piecewise linear bound-

ary (convex polyhedra, their interiors, their complements and the interiors of their complements)
are either polynomial or regular images of Euclidean spaces [6, 9–11, 14, 22, 23].

In [2], appears a complete solution to Problem 1.1 for the one-dimensional case, but the rigidity of
polynomial and regular maps makes really difficult to approach Problem 1.1 in its full generality.
Taking into account the flexibility of Nash maps, Gamboa and Shiota discussed in 1990 the possi-
bility of approaching the following variant of Problem 1.1 (see [17]).

PROBLEM 1.2 To characterize the (semialgebraic) subsets of n that are Nash images of
Euclidean spaces.

A Nash function on an open semialgebraic set Ì U n is a semialgebraic smooth function on
U . In [3], the first author solves Problem 1.2 and provides a full characterization of the semi-
algebraic subsets of m that are images under a Nash map on some Euclidean space. A natural
alternative approach is to consider regulous maps, which are closer than Nash maps to regular
maps, but seem to be less rigid than the latter [19, 20]. We propose to devise the following variant
of Problem 1.1.

PROBLEM 1.3 To characterize the (semialgebraic) subsets of n that are regulous images of
Euclidean spaces.

By [15, 3.11], a map  f : n m is regulous if and only if there exists a composite of a finite
sequence of blowings-up with non-singular centers f  Z: n such that the composition

f  f Z: m◦ is a regular map. As Z is a non-singular algebraic set, we deduce that
f( ) = ( )( )f f Zn ◦ is a pure dimensional semialgebraic subset of n. In addition, as a regulous

map on  is regular [15, 3.6], we deduce that ( )f n is connected by regular images of . We
refer the reader to [15] for a foundational work concerning the ring of regulous functions on an
algebraic set.
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Our experimental approach to the problem of characterizing the regulous images of Euclidean
spaces suggests that regular images and regulous images of Euclidean spaces coincide. Although
we have not been able to prove this result in its full generality, our main result in this direction is
the following.

THEOREM 1.4 Let  f : n m be a regulous map and let ( )f nS ≔ be its image. Then, there
exists a regular map  g: n m whose image ( ) Ìg nT S≔ is dense in S. In addition, if

( ) = ndim S , we may assume that the difference S T⧹ has codimension³2.

The proof of the previous result is reduced to showing the following one, which has interest by
its own and concerns the representation of the complement of an algebraic subset of n of co-
dimension³2 as a polynomial image of n.

THEOREM 1.5 Let Ì X n be an algebraic set of codimension ³2. Then the constructible set
 Xn⧹ is a polynomial image of n.

Assume Theorem 1.5 is proved and let us see how the proof of Theorem 1.4 arises.

Proof of Theorem 1.4 As we have commented above, the set of indeterminacy X of f has co-
dimension ³2. By Theorem 1.5, there exists a polynomial map  h: n n such that
( ) = h Xn n⧹ . Consider the composition  g f h: n m≔ ◦ . We have

( ) Ì ( ) = ( ) Ì f X g f X .n nS T S⧹ ≔ ⧹

As f is a continuous map and  Xn⧹ is dense in n, we deduce that T is dense in S. In addition, if
( ) = ndim S , we have Ì ( )f XS T⧹ , so ( ) £ ( ( ))f Xdim dimS T⧹ . By [1, Theorem 2.8.8], the fol-

lowing inequalities

( ( )) £ ( ) £ - = ( ) -f X X ndim dim 2 dim 2S

hold, so ( ) £ ( ) -dim dim 2S T S⧹ , as required. □

As commented above we feel that the following question has a positive answer.

QUESTION 1.6 Let  f : n m be a regulous map. Is there a regular map  g: n m such that
( ) = ( )f gIm Im ?

As there are much more regulous maps than regular maps and they are less rigid than regular
maps, we hope that a positive answer to the previous question will ease the solution to Problem
1.1 in the regular case. If we restrict our target to regulous maps from the plane, we devise the fol-
lowing neat answer to Question 1.6.

THEOREM 1.7 Let  f : m2 be a regulous map. Then there exists a regular map  g: m2

such that ( ) = ( )f gIm Im .

The proof of the previous result is reduced to showing the following lemma, which has interest
by its own and concerns an ‘alternative’ resolution of the indeterminacy of a locally bounded
rational function on 2 to make it regular, adapted to our situation, in which one does not care on
the cardinality of the fibers (that are however generically finite).
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LEMMA 1.8 Let  f : 2 be a locally bounded rational function on 2. Then there exists a
generically finite surjective regular map f  : 2 2 such that ff ◦ is a regular function on 2.

Assume Lemma 1.8 and let us see how the proof of Theorem 1.7 arises.

Proof. Let ( ¼ )  f f f, , :m
m

1
2≔ be a regulous map. By Lemma 1.8, one can find a surjective

regular map f  :1
2 2 such that ff1 1◦ is regular. Consider the regulous function fg f2 2 1≔ ◦ .

Again by Lemma 1.8, one can find a surjective regular map f  :2
2 2 such that fg2 2◦ is regu-

lar. Clearly, the composition f ff1 1 2◦ ◦ is also regular. We proceed inductively with ¼f f, , m3
and obtain surjective regular maps f  :k

2 2 such that f ffk k1◦ ◦ ◦ is a regular function
for = ¼k m1, , . At the end, we have a surjective regular map f f f  :m1

2 2≔ ◦ ◦ such
that fg f≔ ◦ is a regular map on 2. As f is surjective, we have f( ) = ( )( ) = ( )  g f f2 2 2◦ ,
as required. □

Structure of the article: The article is organized as follows. In Section 2, we prove Theorem
1.5, while in Section 3, we prove an improved version of Lemma 1.8. Our argument fundamen-
tally relies on the properties of the so-called double oriented blowings-up. These tools allow us to
reformulate Lemma 1.8 using regular maps satisfying the arc-lifting property (see Theorem 3.15),
which is commonly used in the analytic setting to study singularities [16]. Finally, in Appendix A,
we propose a regulous and a regular map  f g, : 2 2 whose common image is the open quad-
rant { > > }0, 0Q x y≔ . These maps are much simpler than the best-known polynomial maps

 2 2 that have Q as their image [4, 8, 13]. In addition, the verification that the images of f g,
are Q is quite straightforward and does not require the enormous effort needed for the known poly-
nomial maps used in [4, 8, 13] to represent Q. Recall that the systematic study of the polynomial
and regular images began in 2005 with the first solution to the open quadrant problem [4].

2. Complement of an algebraic set of codimension at least 2

The purpose of this section is to prove Theorem 1.5. The proof is conducted in several technical
steps and some of them have interest by their own.

2.1. Finite projections of complex algebraic sets

Let Ì X n be a (real) algebraic set and let ( )I X be the ideal of those polynomials Î [ ]f x such
that ( ) =f x 0 for all Îx X . The zero-set Ì

~
X n of ( ) [ ]I X x is a complex algebraic set that is

called the complexification of X . The ideal ( )
~

I X of those polynomials Î [ ]F x such that
( ) =F z 0 for all Î

~
z X coincides with ( ) [ ]I X x . Consequently,

~
X is the smallest complex alge-

braic subset of n that contains X and

[ ]/ ( ) @ ( [ ]/ ( )) Ä~   I X I X .x x

In particular, the real dimension of X coincides with the complex dimension of
~
X . A key result in

this section is the following result concerning projections of complex algebraic sets [18, Theorem
2.2.8]. The zero set in n of an ideal Ì [ ] xa will be denoted ( ) a .

THEOREM 2.1 (Projection Theorem) Let Ì [ ] xa be a non-zero ideal. Suppose that a contains a
polynomial F that is regular with respect to nx , that is, + ( ¢) + + ( ¢)-

-F a an
m

m n
m

1
1

0x x x x≔ 
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for some polynomials Î [ ¢] [ ¼ ]- a , ,i n1 1x x x≔ . Let P  - : n n 1 be the projection
( ¼ ) ( )-x x x x, , ,...,n n1 1 1↦ onto the first -n 1 coordinates of n. Define ¢ Ç [ ¢] x≔a a and let
¢ ( ¢)X ≔ a be its zero set. Then P( ) = ¢X X is a complex algebraic subset of -n 1.

2.2. Recovering an algebraic set from its projections

Denote

p  ( ¼ )  ( ¼ )-
-  x x x x: , , , , ,n n

n n
1

1 1 1

the projection onto the first -n 1 coordinates of n. Pick ( ¼ ) Î { = }v v v, , 0n
n

n1 x≔ ⧹
and

consider the isomorphism

( )f  ( ¼ ) - ¼ - ( )-
-  x x x

v

v
x x

v

v
x

v
x: , , , , , ,

1
2.1v

n n
n

n
n n

n

n
n

n
n1 1

1
1

1↦

that keeps fixed the hyperplane { = }H 0n0 x≔ and maps the vector v

to the vector ne ≔

( ¼ )0, ,0, 1 .
Its inverse map is

f  ( ¼ ) ( + ¼ + )-
- -  y y y v y y v y v y: , , , , , , .v

n n
n n n n n n n

1
1 1 1 1 1↦

Consider the projection

( ) ( )
p p f  ´ { } º ( ¼ )

- ¼ - º - ¼ - ( )

- -

-
-

-
-

   x x

x
v

v
x x

v

v
x x

v

v
x x

v

v
x

: 0 , , ,

, , , 0 , , 2.2

v v
n n n

n

n
n n

n

n
n

n
n n

n

n
n

1 1
1

1
1

1
1

1
1

1
1

≔ ◦

↦

 

of n onto -n 1 (identified with { = }0nx ) in the direction of v

. We have

( )p l l l+ ¼ + = ( ¼ )-
-

-y
v

v
y y

v

v
y y y y, , , , ,v

n
n n

n

n
n n n1

1
1

1
1 1



for each l Î  (in particular, for l = vn). Let Ì X n be a real algebraic set of dimension
£ -d n 2, let

~
X be its complexification and let ( ) = ( ) [ ]

~
 I X I X x≔a . Let Î ( ) { }F I X 0⧹

and write + + +F F F Fm0 1≔  as the sum of its homogeneous components. If ( ) ¹F v 0m


, then
( + ¼ + )- -F y v y y v y v y, , ,n n n n n n1 1 1 1 is regular with respect to yn. We extend pv

 to
P  - :v

n n 1 and observe that if ( ) ¹F v 0m


, then P ( )
~
Xv

 is by Theorem 2.1 an algebraic subset
of -n 1 of dimension £d . Consequently, the Zariski closure p ( )Xv

zar of p ( )Xv
 is contained in

P ( ) Ç
~ -Xv

n 1 , which is a real algebraic subset of -n 1 of dimension£d .
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2.3. Just a small vertical skip

Let Î p Xn⧹ and consider the algebraic cone Ì nC with vertex p and basis X . As X has real
dimension £ -d n 2, the real algebraic set C has (real) dimension + £ -d n1 1. Let Ì nC
be the complexification of C, which is a complex algebraic set of (complex) dimension +d 1. As

ÌX C, the inclusion Ì
~
X C holds. In addition, as C is a cone, then C is also a cone. Denote

{ Î = ¾ Î }v v px x: ,nC C≔
  

and { Î = ¾ Î }w w pz z: ,nC C≔
    .

Pick a vector Î ( È { = })v F 0n
mC⧹ 

. We claim:

LEMMA 2.2 We have p p( ) Ï ( )p X .v v
zar 

Proof. As p ( ) Ì P ( ) Ç
~ -X Xv v

nzar 1  , it is enough to check that p ( ) Ï P ( )
~

p Xv v
  . If

p ( ) Î P ( )
~

p Xv v
  , there exists Î

~
z X such that pP ( ) = ( )z pv v

  . Thus, there exists l Î  and
m Î  such that

l p m+ = ( ) = P ( ) = +p v p z z v .v v
  

Thus, l m( - ) = ¾ Îv pz C
 

. As Ïp X , it holds ¹p z, so l m¹ and Î Ç =v nC C
   , which is a

contradiction. Thus, p p( ) Ï ( )p Xv v
zar  , as claimed. □

LEMMA 2.3 Let Ì X n be a real algebraic set of dimension £ -d n 2 and let
W Ì { = } 0n

nx⧹ be a non-empty open set. Then, there exist £ +r n 1 vectors ¼ Î Wv v, , r1
 

such that

p p= ( ( ) )
=

-X X ,
i

r

i j
1

1 zar⋂

where p pi vi≔  for = ¼i r1, , .

Proof. Given an algebraic set Ì Z n define ( ) ( )e Z Z Xdim≔ ⧹ , that is, the dimension of the con-
structible set Z X⧹ . If ¼Z Z, , k1 are the irreducible components of Z , then ( )e Z is either equal to
-1 if ÌZ Xj for £ £j k1 or the maximum of the dimensions of the irreducible components of
Z that are not contained in X otherwise.
Pick a vector Î Wv1


and denote p pv1 1≔  . Let Y Y,..., s

1
1

1 be the irreducible components of the
algebraic set p p( ( ) )-Y X1 1

1
1

zar≔ , which has dimension £ +d 1. If ( ) = -e Y 11 , we have =X Y1

and we are done. Assume ( ) ³e Y 01 . For each Y j
1 not contained in X , pick a point Îp Y Xj

j
1 ⧹ . By

Lemma 2.2, there exists a vector Î Wv2


such that each p pÏ ( ( ) )-p Y Xj 2 2
1

2
zar≔ , where p pv2 2≔  .

Let T be an irreducible component of ÇY Y1 2. We claim: ( ) < ( )T e Ydim 1 .
As T is not contained in X but ÌT Y1, there exists an irreducible component Y j

1 of Y1 not con-
tained in X such that ÌT Y j

1 . As Ïp Yj 2, we have ( ) £ ( Ç ) < ( ) £ ( )T Y Y Y e Ydim dim dimj j
1 2 1 1 ,

as claimed.
Consequently, ( Ç )e Y Y1 2 is strictly smaller than ( )e Y1 . If ( Ç ) ³e Y Y 01 2 , we pick a point
Îq Y Xj

j
12⧹ for each irreducible component Y j

12 of ÇY Y1 2 not contained in X (and indexed
= ¼j ℓ1, , ). By Lemma 2.2, there exists a vector Î Wv3


such that each p pÏ ( ( ) )-q Y Xj 3 3

1
3

zar≔ ,
where p pv3 3≔  . Again, this implies that ( Ç Ç ) < ( Ç )e Y Y Y e Y Y1 2 3 1 2 .
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We repeat the process £ + £ +r d n3 1 times to find vector ¼ Î Wv v, , r1
 

such that
( Ç Ç ) = -e Y Y 1r1  where p p( ( ) )-Y Xi i i

1 zar≔ and p pi vi≔  . Consequently, = =X Yj
r

j1⋂ , as
required. □

LEMMA 2.4 Let Ì X n be an algebraic set of codimension ³1. Then there exists a polynomial
diffeomorphism f  : n n such that f ( ) Ì {- < < }- -X n n n1 1x x x .

Proof. Let X be the Zariski closure of X in the projective space n. As X has codimension³1,
we may assume that ( ) Ï X0 : : 0 : 1 : 0 . The sets e{ + + + £ }- -n n n0

2
2

2 2 2
1

2x x x x for e > 0
constitute a basis of neighborhoods of ( )0 : : 0 : 1 : 0 in n. Let e< <0 1 be such that

eÇ { + + + £ } = Æ- -X n n n0
2

2
2 2 2

1
2x x x x . As e e³ - -- -n n

2
1

2
1 0

1

4 0
2x x x x (because e +-n

2
1

2x
e e+ = ( + )- -n n1 0

1

4 0
2

1
1

2 0
2x x x x x ), we have

{ }e e+ + + £ - - Ì { + + + £ }- - - -
1

4
.n n n n n n0

2
2

2 2
1 0 0

2
0
2

2
2 2 2

1
2x x x x x x x x x x 

Consequently, eÌ { + + + + > - }- -X n n n
5

4 1
2

2
2 2

1x x x x . Consider the polynomial diffeomorphism

( )( )f
e

 ( ¼ ) ¼ + + + + +- - -  x x x x x x x x x x: , , , , , ,
2 5

4
,n n

n n n n n n1 1 2 1 1
2

2
2 2≔ ↦ 

whose inverse

( )( )f
e

 ( ¼ ) ¼ - + + + +-
- - -  x x x x x x x x x x: , , , , , ,

2 5

4
,n n

n n n n n n
1

1 1 2 1 1
2

2
2 2≔ ↦ 

is also polynomial. We have

( )f
e

( ) Ì
ì
í
ïï
îïï

³ + + + +
ü
ý
ïï
þïï

- -X
1 5

4
.n n n1 1

2
2

2 2x x x x

As e < 1,

( )e
ì
í
ïï
îïï

³ + + + +
ü
ý
ïï
þïï
Ì {- < < }- - - -

1 5

4
,n n n n n n1 1

2
2

2 2
1 1x x x x x x x

as required. □

2.4. Proof of Theorem 1.5

We will represent  Xn⧹ as the image of the composition of finitely many polynomial maps
 f :j

n n whose images contain constructible sets  Yn
j⧹ such that =X Yj j⋂ . The proof

is conducted in several steps:
Step 1. Initial preparation. By Lemma 2.4, we assume Ì ( )X Int K where K≔

{- £ £ }- -n n n1 1x x x . Denote the projection onto the first -n 1 coordinates by
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p  ( ¼ ) ( ¼ )-
-  x x x x: , , , , , .n n

n n
1

1 1 1↦

For each vector ( ¼ ) Î { = }v v v, , 0n
n

n1 x≔ ⧹
consider the isomorphism fv

 that keeps fixed the
plane { = }H 0n0 x≔ and maps the vector v


to the vector ne


(see (2.1)) and let p p fv v≔ ◦  be

the projection of n onto -n 1 (identified with { = }0nx ) in the direction of v

(see (2.2)). We

have

f ( ) = { - ( - ) ³ + ( + ) ³ }- - - -v v v v0, 0 .v n n n n n n n n1 1 1 1K x x x x

If l - >-v v 0n n 1≔ and m + >-v v 0n n 1≔ , then

p p f( { = = }) = ( ( ) { = = }) = { > } Ì- - -
-0, 0 0, 0 0 .v n n v n n n

n
1 1 1

1K Kx x x x x⧹ ⧹ 

Consider the open set W { - > + > } Ì { = }- - 0, 0 0n n n n
n

n1 1x x x x x≔ ⧹ . By Lemma 2.3,
there exist vectors ¼ Î Wv v, , r1

 
such that

p p= ( ( ) )
=

-X X ,
j

r

j j
1

1 zar⋂

where p pj vj≔  for = ¼j r1, , . In particular, each set p p( ( ) )- Xj j
1 zar is an algebraic subset of n

that contains X . For each = ¼j r1, , denote f fj vj
≔  .

Step 2. We claim: There exists a polynomial map  f : n n
1 such that

p p( ( )) = ( ( ) Ç ( ( ) )) Ì ( )-  f X XInt Int . 2.3n n n
1 1 1

1
1

zar
S K K≔ ⧹ ⧹ ⧹

Define f ( )1 1K K≔ and f ( )X X1 1≔ . Write l m{ - ³ + ³ }- -0, 0n n n n1 1 1 1 1K x x x x≔ for
some real numbers l m >, 01 1 and consider the polynomial map

¢  ( ¼ ) ( ¼ ( - ( ) ( ¢)))- - f x x x x x x H x x G x: , , , , , , 1 , ,n n
n n n n n1 1 1 1 1 1

2
1
2≔ ↦

where l m( - )( + ) Î [ ]- - -H ,n n n n n n1 1 1 1 1 1x x x x x x≔ and Î [ ¢] [ ¼ ]- G , , n1 1 1x x x≔ is a
polynomial equation of p ( )X1

zar. We claim:

p p¢ ( ( )) = ( ( ) Ç ( ( ( ) )))- f XInt Int .n n
1 1 1

1
1

zar
K K⧹ ⧹

Pick a point ¢ ( ¼ ) Î-
-x x x, , n

n
1 1

1≔ and let {( ¢ ) Î }¢ ℓ x t t, :x ≔ be the line through
( ¢ )x , 0 parallel to ne


. Consider the polynomial ( ) ( - ( ¢ ) ( ¢)) Î [ ]¢ Q H x G x1 ,x n n n n1

2
1
2x x x x≔ .

We distinguish two cases:
• If p¢ Ï ( )x X1

zar, then ( )¢Qx nx is a polynomial of degree five and negative leading coefficient.
Let £¢ ¢a bx x be real numbers such that

( ) = { ¢} ´ ((-¥ ] È [ +¥))¢ ¢ ¢ℓ x a bInt , , .x x x1K⧹

As ( ) = ¥¥ ¢Q xlim x x nn
 , ( ) =¢ ¢ ¢Q a ax x x and ( ) =¢ ¢ ¢Q b bx x x , we have
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[ +¥)Ì ((-¥ ])
(-¥ ]Ì ([ +¥))

¢ ¢ ¢

¢ ¢ ¢

a Q a

b Q b

, , ,

, , .
x x x

x x x

Thus, = (-¥ ] È [ +¥) Ì ( ( )) Ì¢ ¢ ¢ ¢ b a Q ℓ, , Intx x x x 1K⧹ , so ¢ ( ( )) =¢ ¢f ℓ ℓIntx x1 1K⧹ .
• If p¢ Î ( )x X1

zar, then ( ) =¢Qx n nx x and ¢ ( ( )) = ( )¢ ¢f ℓ ℓInt Intx x1 1 1K K⧹ ⧹ .
Putting all together, we deduce

p p

¢ ( ( )) = ¢ ( ( ))

= È ( ( )) = ( ( ) Ç ( ( ( ) )))
p p

¢Î
¢

¢Ï ( )
¢

¢Î ( )
¢

-

-





f f ℓ

ℓ ℓ X

Int Int

Int Int .

n

x
x

x X
x

x X
x

n

1 1 1 1

1 1
1

1
zar

n 1

1
zar

1
zar

K K

K K

⧹ ⋃ ⧹

⋃ ⋃ ⧹ ⧹

As p pÌ ( ) Ç ( ( ) )-X XInt1 1
1

1
zar

K , we have

p p¢ ( ( )) = ( ( ) Ç ( ( ) )) Ì ( )-  f X XInt Int . 2.4n n n
1 1 1

1
1

zar
1K K⧹ ⧹ ⧹

Recall that p p f=1 1◦ and define f f¢-f f1 1
1

1 1≔ ◦ ◦ . If we apply f -
1

1 to (2.4), we deduce that
f1 satisfy condition (2.3) above.

Step 3. We claim: There exists a polynomial map  f : n n
2 such that

p p p p( ( ) Ç ( ( ) ) Ç ( ( ( ) ))) Ì ( ) Ì ( )- - X X f XInt . 2.5n n
1

1
1

zar
2

1
2

zar
2 2 1K S S⧹ ≔ ⧹

Define f ( )2 2K K≔ and f ( )X X2 2≔ . Write l m{ - ³ + ³ }- -0, 0n n n n2 1 2 1 2K x x x x≔
for some real numbers l m >, 02 2 and consider

¢  ( ¼ ) ( ¼ ( - ( ) ( ¢)))- - f x x x x x x H x x G x: , , , , , , 1 , ,n n
n n n n n2 1 1 1 2

2
1 2

2≔ ↦

where l m( - )( + ) Î [ ]- - -H ,n n n n n n2 1 2 1 2 1x x x x x x≔ and Î [ ¢]G2 x is a polynomial
equation of p ( )X2

zar. Let us check:

p p f p p f( ( ) Ç ( ( ) ) Ç ( ( ( ) ))) Ì ¢ ( ( )) Ì ( )- - X X f XInt . 2.6n n
2

1
2

zar
2 1

1
1

zar
2 2 1 2K S⧹ ⧹

Proceeding as in Step 1 for the vector v1

, we have

p p¢ ( ( )) = ( ( ) Ç ( ( ) ))- f XInt Int .n n
2 2 2

1
2

zar
K K⧹ ⧹

By (2.3) p p( ( ) Ç ( ( ) )) =- XIntn
1

1
1

zar
1K S⧹ , so

f p p f( ( ) Ç ( ( ( ) ))) = ( )- XInt .n
2 2 1

1
1

zar
2 1K S⧹

As p p( ( ) ) = { = }- X G 01
2

zar
2 , we have ¢ =p p p p( ( ) ) ( ( ) )- -f idX X2

1
2

zar 1
2

zar∣ . Thus, ¢ =f idX X2 2 2∣ and
p p f p p f( ( ) ) ( ( ) Ç ( ( ( ) ))) Ì ¢ ( ( ))- -X X fInt1

2
zar

2 2 1
1

1
zar

2 2 1K S⧹ . Consequently,
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p p f p p p p

p p f p p f

( ( ) Ç ( ( ) ) Ç ( ( ( ) ))) = ( ( ( ) Ç ( ( ) )))

È ( ( ( ) ) ( ( ) Ç ( ( ( ) )))) Ì ¢ ( ( ))

- - -

- -

 X X X

X X f

Int Int

Int .

n n
2

1
2

zar
2 1

1
1

zar
2

1
2

zar

1
2

zar
2 2 1

1
1

zar
2 2 1

K K

K S

⧹ ⧹
⧹

As Ì  Xn
1S ⧹ , we have f ( ) Ì  Xn

2 1 2S ⧹ , so f¢ ( ( )) Ì ¢ ( )f f Xn
2 2 1 2 2S ⧹ .

Let us check: ¢ ( ) =-f X X2
1

2 2. Once this is proved, ¢ ( ) Ì f X Xn n
2 2 2⧹ ⧹ and the remaining part

of Equation (2.6) holds.
Pick ( ¢ ) Î y y y, n

n≔ such that ¢ ( ) Îf y X2 2. Then p p¢ = ( ¢ ( )) Î ( )y f y X2 2 , so ( ¢) =G y 02

and = ¢ ( ) Îy f y X2 2. Thus, ¢ ( ) Ì-f X X2
1

2 2. As ¢ =f idX X2 2 2∣ , we deduce ¢ ( ) =-f X X2
1

2 2.

Recall that p p f=2 2◦ and define f f¢-f f2 2
1

2 2≔ ◦ ◦ . If we apply f-
2

1 to (2.6), we deduce
that f2 satisfy condition (2.5) above.

Step 4. We proceed similarly with the remaining vectors vj

for = ¼j r1, , to obtain polynomial

maps  f :j
n n such that

( )p p( ) Ç ( ( ) ) Ì ( ) Ì
=

-
- X f XInt ,n

i

j

i i j j j
n

1

1 zar
1K S S⧹ ⋂ ≔ ⧹

where ( ) Intn
0S K≔ ⧹ .

If we write f ( )X Xj j≔ and f l m( ) = { - ³ + ³ }- -0, 0j j n j n n j n1 1K K x x x x≔ for some
real numbers l m >, 0j j , the sought polynomial map fj is the composition f f¢-f fj j j j

1≔ ◦ ◦ ,
where

¢  ( ¼ ) ( ¼ ( - ( ) ( ¢)))- - f x x x x x x H x x G x: , , , , , , 1 , ,j
n n

n n n j n n j1 1 1
2

1
2≔ ↦

l m( - )( + ) Î [ ]- - -H ,j n j n n j n n n1 1 1x x x x x x≔ and Î [ ¢]Gj x is a polynomial equation of
p ( )Xj

zar.
Step 5. Conclusion. For =j r , we have

( )p p= ( ) Ç ( ( ) ) Ì Ì
=

-  X X XInt .n n

j

r

j j r
n

1

1 zar
K S⧹ ⧹ ⋂ ⧹

Thus, = = ( )( ( )) X f f Intn
r r

n
1S K⧹ ◦ ◦ ⧹ . By [14, Theorem 1.3], the semialgebraic set

( ) Intn K⧹ is a polynomial image of n, so  Xn⧹ is a polynomial image of n, as required. □

3. Resolution of the indeterminacy using double oriented blowings-up

In this section, we prove Lemma 1.8, that is we can make regular each regulous function (or even
each locally bounded rational function) on 2 after composing it with a suitable generically finite
surjective regular map f  : 2 2. It is known in general that a regulous function can be made
regular after composition with a finite sequence of algebraic blowings-up, but of course the source
space is no longer the plane. We prove in this section that we can achieve the desired generically
finite surjective regular map via a finite composition of double oriented blowings-up. Let us begin
with some examples.
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EXAMPLES 3.1 (1) Consider the regulous function  f : 2 given by ( )
+

f x y, x

x y

3

2 2≔ . The

polynomial map j  : 2 2 defined by j ( ) ( ( + ) ( + ))u v u u v v u v, ,2 2 2 2≔ is surjective, and
j( )( ) =f u v u, 3◦ is polynomial. Note that j is a polynomial homeomorphism.

(2) Consider the rational function on 2 given by ( )
+

g x y, x

x y2 2≔ defined and continuous on

{( )} 0, 02⧹ . The polynomial map f  : 2 2 defined by f ( ) ( ( + ) ( - ))u v v uv v uv, 1 , 13≔
is surjective.

Actually, if f ( ) = ( ) ¹ ( )u v a b, , 0, 0 , then ¹v 0 and = + /uv b v1 . Thus, it is enough to
prove that there exists Î { }v 0⧹ satisfying + - =v bv a2 03 2 . This is true if ¹a 0 because the
previous equation in v has odd degree whereas, in case =a 0, we take = -v b

2
.

In addition, the composition f( )( ) = ( + )
( + ) + ( - )

g u v, v uv

v uv uv

1

1 14 2 2◦ is regular. However, the surjective

regular map f is not proper because f (( )) = { = }- v0, 0 01 .

REMARK 3.2 The previous surjective regular map f  : 2 2 has the form

( ) ( ( ) ( ) ( ) ( ))u v P u v Q u v P u v R u v, , , , , , ,k↦

where ³k 1 is an odd integer and Î [ ]P Q R, , ,u v are polynomials such that { = } ÇPQ 0
{ = } = ÆR 0 . The latter condition enables us to soften g by making that the denominator has empty
zero-set after increasing numerator’s multiplicity. Another (more complicate!) possible surjective regular
map such that fg ◦ is regular could be

f  ( ) (( + ) ( ( + ) - )) ( + )( ( + ) + )  u v u v uv u v u v uv u v: , , 1 , 1 .k2 2 2 2↦

A natural question that arise at this point is the following.

QUESTION 3.3 Which rational functions Î ( )f ,P

Q
u v≔ can be softened by means of a surjec-

tive regular map f  : 2 2?

REMARK 3.4 A necessary condition is ( ) Ì ( )Z Q Z P , but it is not sufficient as one can check

considering the rational function ( ) +
+

f x y, x y

x y

2 2

4 4≔ . If we compute the multiplicity of ff ◦ at any

preimage of the origin under a surjective regular function f f f( )  , :1 2
2 2≔ , we observe

that it is always negative (because the multiplicity of the denominator doubles the one of the
numerator), so ff ◦ cannot be regular.

In the following, we will pay a special attention to locally bounded rational functions, that is,
rational functions on 2 that are locally bounded in a neighborhood of its indeterminacy points.
As it happens with regulous functions, a locally bounded rational function on 2 admits only a
finite number of poles.

LEMMA 3.5 Let f P

Q
≔ be a locally bounded rational function on 2 where Î [ ]P Q, ,x y are

relatively prime polynomials. Then the zero-set of Q consists of finitely many points.

Proof. As =f P

Q
is locally bounded and the polynomials Î [ ]P Q, ,x y are relatively prime, one

has { = } Ì { = }Q P0 0 . Let Q1 be an irreducible factor of Q. Using the criterion [1, Theorem
4.5.1] for principal real ideals of [ ] ,x y , we deduce that the ideal ( ) [ ]Q ,1 x y is not real.
Otherwise, the ideal ({ = }) Q 01 of all polynomials of [ ] ,x y vanishing identically on
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{ = }Q 01 is ( ) [ ]Q ,1 x y , so Q1 divides P against the coprimality of P and Q. Consequently, the
zero-set of Q1 has by [1, Theorem 4.5.1] dimension £0, that is, it is a finite set. Applying this to
all the irreducible factors of Q, we conclude that { = }Q 0 is a finite set, so f has only finitely
many poles, as required. □

As we have already mentioned, regulous functions can be made regular after composition with
a finite sequence of blowings-up along smooth algebraic centers [15]. Actually those rational func-
tions on n that become regular after such compositions are exactly the locally bounded rational
functions.

THEOREM 3.6 Let f be a rational function on n. Then f is locally bounded if and only if there
exists a finite sequence s of blowings-up along non-singular centers such that sf ◦ is regular.

SKETCH OF PROOF Assume first that such a sequence exists. Then the preimage under s of a com-
pact Euclidean neighborhood of an indeterminacy point of f is compact by properness of s. Thus,
the continuous function sf ◦ is bounded on such preimage. As a consequence f is locally
bounded at the corresponding indeterminacy point. The converse implication can be proved as [15,
Theorem 3.11]. Let us provide an idea on how the proof works. By means of a finite sequence
s  M: n of blowings-up along non-singular centers, it is possible to make normal crossings the
numerator and the denominator of f . If we choose a suitable local system of coordinates at a point
Îp M , the rational function sf ◦ is equal in such a neighborhood of p to a unit times a quotient

of products of the variables (with exponents). As sf ◦ is also locally bounded, the denominator
must divide the numerator, so sf ◦ is regular at p, as required. □

3.1. Double oriented blowings-up

In the following, we restrict our target to some particular type of surjective regular maps: composi-
tions of finitely many double oriented blowings-up. The oriented blowing-up p+ of 2 at the origin
corresponds to the passage to polar coordinates and it can be achieved using the analytic map

p r r[ +¥) ´  º ( )+    v v: 0, , , .1 2 ↦

The previous map provides a Nash diffeomorphism between the cylinder ( +¥) ´ 0, 1C ≔ and

the punctured plane {( )} 0, 02P ≔ ⧹ whose inverse is p( )  ( )+ - u u: , , u

u
1 P SC∣ ↦  

 
. The

inverse image of the origin under p+ is the circle { } ´ 0 1. We choose a rational parameterization
of 1 (consider for instance the stereographic projection from the North pole) and we obtain the
map

( )p r r r[ +¥) ´  ( )
+

-
+

  t
t

t

t

t
: 0, , ,

2

1
,

1

1
.0

2
2

2

2
↦

The image of this map is {( ) > } t t0, : 02⧹ . We consider the regular extension p of p0 to 2,
whose image is 2 because p r r( ) = ( - ), 0 0, for each r Î .

DEFINITION 3.7 The surjective regular map
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( )p r r r ( )
+

-
+

  t
t

t

t

t
: , ,

2

1
,

1

1
2 2

2

2

2
↦

is called the double oriented blowing-up of 2 at the origin. The double oriented blowing-up of
2 at an arbitrary point Î p 2 is the composition t p t¾

-
¾

p p0 0◦ ◦ where tv
 denotes the translation

t  +  x x v: ,v
2 2 ↦  for each Î v 2

. Let P { + = }  t: 1 02 2 2⧹ be the natural
rational extension of p to { + = } t 1 02 2⧹ .

LEMMA 3.8 The double oriented blowing-up of 2 at the origin p  : 2 2 satisfies the follow-
ing properties:

(i) p is a surjective regular map.
(ii) p r(( )) = { = }- 0, 0 01 is the t-axis.
(iii) p r r{ = }  { = } ( )  ( - ){ = } t x: 0 0 , , 0 0,t 0∣ provides a bijection between the r-axis and

the y-axis.
(iv) The determinant of the Jacobian matrix of p at the point r( )t, values r

+t

2

12 .
(v) Both p r{ = } 02∣ ⧹ and P r{( + ) = } t 1 02 2∣ ⧹ are local diffeomorphisms.
(vi) Both restrictions p r{ = }  { = }r{ = }   t x: 0 0t 0

2 22∣ ⧹ ⧹⧹ and

rP { ( + ) = }  { ( + ) = } t t x x y: 1 0 02 2 2 2 2∣ ⧹ ⧹

are double covers. In fact, p r p r(- - ) = ( )t, ,
t

1 and r rP(- - ) = P( )t, ,
t

1 .

We can relate the double oriented blowing-up to the classical blowing-up as follows. Denote
s  M: 2 the blowing-up of 2 at the origin. We describe M as the subset of ´ 2 1 given by
the equation

{(( ) [ ]) Î ´ = } M x y u v xv yu, , : : ,2 1≔

whereas s  (( ) [ ]) ( )M x y u v x y: , , , : ,2 ↦ .

LEMMA 3.9 The map

( )( )y r r r ( )
+

-
+

[ - ] M t
t

t

t

t
t t: , ,

2

1
,

1

1
, 2 : 12

2

2

2
2↦

satisfies the following properties:

(i) It is a surjective regular map.
(ii) The restriction y { = } { = } t: 0t 0∣ r r{(( - ) [ ]) Î } Ì M0, , 0 : 1 :L ≔ is bijective.
(iii) The restriction y { = } { = }  t M: 0t 0

22 L∣ ⧹ ⧹⧹ is a double cover and it holds
y r y r(- - ) = ( )t, ,

t

1 .
(iv) p s y= ◦ .

EXAMPLE 3.10 Consider the locally bounded rational function on 2 given by the formula

( )
+

f x y, x

x y

2

2 2≔ . Then p r( )( ) =
+ ( - )

f t, t

t t

4

4 1

2

2 2 2◦ is regular.
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3.2. Multiplicity of an affine complex curve at a point

For the sake of completeness, we recall how one can compute the multiplicity at a point of a poly-
nomial equation of a planar curve.

In the following, we use the letter w to denote the order of a power series. Let Î [ ]Q ,x y be
a non-constant polynomial and denote { = } Ì Q 0 2C ≔ . Let Îp C be a point of C and assume
after a translation that p is the origin. Let G ¼ G, , r1 be the complex branches of C at the origin and
let g g g( ) Î { },i i i,1 ,2

2s≔ be a primitive parameterization of Gi. We mean with primitive para-
meterization of Gi a couple of convergent power series g g Î { },i i,1 ,2 s such that

• both series do not belong simultaneously to the ring { } ks for any ³k 2,
• Gi is the germ at the origin of the set g g e{( ( ) ( )) < }s s s, :i i,1 ,2 ∣ ∣ for some e > 0 small enough.

To compute the multiplicity ( )Qmult0 of Q at the origin, write Q as the sum of its homogeneous
components = + + ++Q Q Q Qm m d1  , where each Qk is either zero or a homogeneous poly-
nomial of degree k and ¹Q 0m . Then ( ) =Q mmult0 .

It is possible to express ( )Qmult0 in terms of some invariant associated to the complex branches
G ¼ G, , r1 of C at the origin. Write Q P Pe

s
e

1
s1≔  , where each Î [ ]P ,i x y is an irreducible poly-

nomial and ³e 1i . As ( ) = ( ) + + ( )Q e P e Pmult mult mults s0 1 0 1 0 , it is enough to express ( )Pmult i0

in terms of the complex branches of C that correspond to the factor Pi. Thus, we assume in the following
that Q is an irreducible polynomial.

After a linear change of coordinates, we may assume that Q is a regular series with respect to y
of order ( )Qmult0 , that is, w ( ( )) = ( ) =Q Q m0, mult0y . By Weierstrass’ Preparation Theorem

=Q Q U* , where Î { }[ ]Q* x y is a distinguished polynomial of degree m and Î { }U ,x y is a
unit, that is, ( ) ¹U 0, 0 0. Let ¼ Î { }[ ]Q Q, , ℓ1* * x y be the irreducible factors of Q* in { }[ ] x y ,
which are distinguished polynomials with respect to y such that w( ) = ( )Q Qdeg i i* *y . As

Î [ ]Q ,x y is irreducible, it has no multiple factor in { }[ ] x y . Thus, =Q Q Qℓ1* * * and

å( ) = ( ) + ( ) = ( ) = ( )
=

Q Q U Q Qmult mult mult mult mult .
j

ℓ
j0 0 0 0 1 0* * *

Consequently, it is enough to compute ( )Pmult0 for an irreducible distinguished polynomial
Î { }[ ]P x y with w( ) = ( )P Pdegy . Let x Î { } *x be a Puiseux root of P. It holds that ( )Pdegy

coincides with the smallest ³q 1 such that x b ( ) Î { }/ /q q1 1x x≔ for some b Î { } s . In add-
ition, the polynomial P is associated with exactly one complex branch G for which any primitive
parameterization g g g( ),1 2≔ satisfies w g w g= { ( ) ( )}q min ,1 2 .

Thus, if we define (G)mult as the minimum order of the components of a primitive parameter-
ization of G, we have ( ) = = (G)P qmult mult0 .

3.3. Alternative resolution of indeterminacy

We know that regulous functions become regular after a finite composition of blowings-up (and
this is even true for locally bounded functions as claimed in Theorem 3.6). However, the source
space of the regular function obtained is no longer the same as that of the regulous function we
started with. The following result, which is proved below, is an improvement of Lemma 1.8 from
which we deduce it.
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THEOREM 3.11 Let f be a locally bounded rational function on 2. Then there exists a finite com-
position f  : 2 2 of finitely many double oriented blowings-up and polynomial isomorphisms
such that ff ◦ is a regular function on 2.

The strategy to prove Theorem 3.11 is to follow the same process as in classical resolution of
indeterminacy [18, Section 5.3], but replacing the usual blowing-up along a point by the double
oriented blowing-up. The difficulty is to control the number of indeterminacy points, since the
double oriented blowing-up is no longer an isomorphism outside the center and it is generically a
double cover. A crucial step consists in separating all complex branches passing through an inde-
terminacy point with different tangents. Note, however, that after applying the double oriented
blowing-up at an indeterminacy point, the preimage of that point consists of several points each of
these with less complex branches than the original indeterminacy point, but possibly with more
different tangents! To face this issue, we state first an auxiliary result that will be needed con-
stantly in the proof of Theorem 3.11.

LEMMA 3.12 Let { ¼ } Ì p p, , n1
2≔F be a finite set and let ¢ Ì 2L be a line. Pick

Î { ¼ }i n1, ,0 and Î ¢q L. Then there exists a polynomial isomorphism j  : 2 2 that maps F
into a half-line in ¢L issued from j ( ) =p qi0

. Moreover, consider

• an additional line L through pi0
,

• a collection { ¼ }, , r1H H of complex lines through pi0
different from L,

• a collection { ¢ ¼ ¢}, , s1H H of complex lines through q different from ¢L.

Then we may assume in addition that the differential of j at pi0
maps L onto ¢L and the poly-

nomial extension F  : 2 2 of j to 2 does not map any of the lines iH through pi0
into the

finite union ¢=j
s

j1H⋃ of lines through q.

Proof. After an affine change of coordinates, we may assume that ¢L is the x-axis and the restric-
tion to F of the projection of 2 onto the x-axis is injective. Write ( )p a b,i i i≔ and let Î [ ]P x
be a univariate polynomial such that ( ) =P a bi i for ¹i i0 and ( ) ¹P a bi i0 0. Then the polynomial
isomorphism ( ) ( - ( ))x y x y P x, ,↦ maps the points of F except for pi0

into the x-axis. Let
¹R L be a line through pi0

non-parallel to the x-axis such that the intersection
lÇ { = } = {( )}y 0 , 0R leaves all the points pi for ¹i i0 in the half-line l{ ³ }y . Consider an

affine change of coordinates that keeps the x-axis invariant and maps the line R to the y-axis.
After this change of coordinates m= ( )p 0,i i0 0

for some m ¹ 0i0
and L is not parallel to the y-axis.

Let Î [ ]Q x be a polynomial such that its graph { - ( ) = }y Q x 0 passes through the points pi
and whose tangent at the point pi0

is L. The polynomial isomorphism j  : ,2 2

( ) ( - ( ))x y x y Q x, ,↦ maps the point pi0
to the origin, keeps the points pi for ¹i i0 inside the

x-axis, and the differential of the polynomial isomorphism j at pi0
maps L to the x-axis (that is,

to the line ¢L). After a translation parallel to the x-axis, we may assume in addition that j maps
pi0

to q.
As we have much freedom to choose Q, we may assume that the polynomial extension

F  : 2 2 of j to 2 does not map any of the lines iH through pi0
into the finite union

¢=j
s

j1H⋃ of lines through q, as required. □

Proof of Theorem 3.11 The set of indeterminacy points of f coincides with the zero-set { = }Q 0 ,
and this is a finite set by Lemma 3.5. We may assume in addition that Q is non-negative on 2.
Consider the complex algebraic curve { Î ( ) = }z Q z: 02C ≔ , which is invariant under
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complex conjugation in 2. This means that if Îp C is a real point and G is a complex branch of
C at p, then the conjugated branch G is also a complex branch of C at p. If pT is the tangent line to
G at p, then its complex conjugated pT is the tangent line to G at p. Thus, =p pT T if and only if

pT admits a linear equation with real coefficients. We are going to solve the indeterminacy points
of f by applying a finite chain of double oriented blowings-up centered at the indeterminacy
points and polynomial isomorphisms of 2 like those provided by Lemma 3.12 (that maps a finite
subset of 2 inside a half-line).

Denote { ¼ }p p, , n1≔F the set of indeterminacy points of f . For each point Îp F, let
( )Qmultp be the multiplicity of Q at p. Let Îpi0

F be such that ( ) ³ ( )M mult multp pi0
C C≔ for

each Îp F. By Lemma 3.12, there exists a polynomial isomorphism j  : 2 2 such that if we
substitute f by j-f 1◦ we may assume that the indeterminacy points of f belong to the negative
half y-axis {( ) £ }y y0, : 0 and pi0

is the origin. In case the germ pi0
C has only one tangent line at

the origin, we know that it has to be a real line. If C has a real tangent line at the origin, we may
assume in addition by Lemma 3.12 that this tangent line is the y-axis, whereas the remaining ones
are different from + = 0x iy and - = 0x iy .

Note that the origin is now an indeterminacy point of f with maximal multiplicity and the
y-axis is one of its tangents. Consider the composition pf ◦ , where p denotes the double oriented
blowing-up introduced in Definition 3.7. Denote ¢ { ¹ }p i i:i 0≔F and p ( ¢)-1≔G F and let

P { + = }  t: 1 02 2 2⧹

be the natural rational extension of p to { + = } t 1 02 2⧹ . As p r{ = } 02∣ ⧹ is a local diffeomorph-
ism and p { = }  { = }{ = } t x: 0 0t 0∣ is a bijection between the r-axis and the y-axis, the sets G
and ¢F have the same number of points and, if Îq G, then P ( )-1 C has at q the same number of
complex branches and different tangents as C has at p ( )q .

Let us analyze now what happens at the origin. Let G ¼ G, , r1 be the complex branches of C at the
origin. The germ 0C equals the union of branches G=i

r
i1⋃ and

å( ) = (G)
=

M Q emult mult
i

r

i i0
1

≔

for some positive integers ei. Fix a complex branch Gi and let iT be the tangent line to Gi. We have
r rP (G) = { = } È { = } È L È L- a a0 0i i i i i

1 1 2 1 2, where rÎ { = } Ì { + = }a a t, 0 1 0i i
1 2 2 2⧹

and Li
j is a complex branch at ai

j (as we will see in the following, sometimes there are exactly two
complex branches L L,i i

1 2 and sometimes there is only one and we will consider L = Li i
1 2). As

p r r{ = }  { = } ( )  ( - ){ = } t x: 0 0 , , 0 0,t 0∣ and p r{ = }  { = }r{ = }   t x: 0 0t 0
2 22∣ ⧹ ⧹⧹

is a double cover, one has exactly one point =a a ai i i
1 2≔ if iT is the y-axis and two different

points a a,i i
1 2 otherwise. Let us analyze the germs Li

j for =j 1, 2. Choose a primitive parameter-
ization g g g( ),i i i1 2≔ of Gi. We may assume that it has the form

g
g

g
g

ì
í
ïï

îïï +
£

ì
í
ïï

îïï

+
<

c
k ℓ

c
ℓ k

,

,
if or

,

,
ifi

k

i i
ℓ i i

i i
k

i
ℓ i i

1

2

1

2

i

i

i

i

s

s

s

s

≔
≔

≔
≔



with ³k ℓ, 1i i and Î { }c 0i ⧹ . Recall that (G) = { }k ℓmult min ,i i i . Observe that the tangent line
to Gi at the origin is
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ì

í

ïïïï

î
ïïïï

{ = } <
{ - = } =
{ = } >

k ℓ

c k ℓ

k ℓ

0 if ,

0 if ,

0 if .
i

i i

i i i

i i

T

y

x y

x

≔

If we apply the double oriented blowing-up p at the origin, we make

r r=
+

=
-
+

x
t

t
y

t

t

2

1
,

1

1
,

2

2

2

so r = +x y2 2 2 and the order of r for each complex branch Li
j with respect to the variable s is

{ }k ℓmin ,i i (recall that + ¹c1 0i
2 since the tangent line to Gi is different from + = 0x iy and

- = 0x iy ). We distinguish several situations:

(i) If <k ℓi i, then r =  +kis  and =  +t 1 . Thus, Li
1 and Li

2 are two complex branches
at the points ( )a 0, 1i

1 ≔ and ( - )a 0, 1i
2 ≔ of multiplicities smaller than or equal to

= (G)k multi i .
(ii) If =k ℓi i, then r =  ( + ) +c1k

i
2is  . As + ¹c1 0i

2 , one has = ( ( + ) +t c1 i
2

) +ci . Thus, Li
1 and Li

2 are two complex branches at the points ( ( + ) + )a c c0, 1i i i
1 2≔

and ( - ( + ) + )a c c0, 1i i i
2 2≔ of multiplicities smaller than or equal to = (G)k multi i .

(iii) If >k ℓi i, then r = - +ℓis  and = +-t ci
k ℓ1

2
i is . Thus, there is only one complex

branch that we write L L = Li i i
1 2≔ is a complex branch at the point = = ( )a a a 0, 0i i i

1 2≔
of multiplicity smaller than or equal to = (G)ℓ multi i .

Starting from the locally bounded rational function = /f P Q, we have constructed the rational
function p = ¢/ ¢f P Q◦ for some polynomials ¢ ¢ Î [ ]P Q, ,r t . As pf ◦ remains locally
bounded, { Î ¢( ) = }q Q q: 02 is a finite set. We have seen above that if two tangent lines iT and

¢iT are different, so are the points ai
j and ¢

¢
a

i
j for ¢ Î { }j j, 1, 2 . Thus,

å å( ¢) = (L ) £ (G)
¢ =

¢ ¢
¢ =

¢

¢ ¢

Q e emult mult mult .a
i

i i s
j

i
i i

: :
i
j

i i i iT T T T

Consequently, if C has more than one tangent line at the origin,

å å( ¢) £ (G) < (G) = ( ) =
¢ =

¢
=¢

Q e e Q Mmult mult mult multa
i

i i
i

r

i i
: 1

0
i
j

i iT T

for each point ai
j and, although we have increased the cardinality of the zero set of the new denomin-

ator ¢Q , we have dropped the number of real points on which the denominator has multiplicity M .
Next assume that C has only one tangent line at the origin (which is the y-axis). As in the usual

desingularization process, the multiplicity will decrease, but after a finite number of steps.
Namely, the unique tangent to C at the origin is { = }0x and >k ℓi i (case (iii) above) for
= ¼i r1, , . For each complex branch Li (= L = Li i

1 2) at the origin, we have the following two
possibilities (after reseting the names of the variables and calling x the first variable and y the
second variable):

(iii.1) if ¢ - <k k ℓ ℓi i i i≔ , then (L ) < (G)mult multi i and the tangent line to Li is { = }0y ,
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(iii.1) if ¢ - ³k k ℓ ℓi i i i≔ , then (L ) = (G)mult multi i and we can parameterize the complex branch
Li by a primitive parameterization l l l( ) Î { },i i i1 2

2s≔ such that l +
¢

di i
k

1 is≔  and
li

ℓ
2 is≔ . In this case, the tangent line is either { = }0x if ¢ >k ℓi i or { - = }d 0iy x if
¢ =k ℓi i.

If situation (iii.1) arises for one of the complex branches of C at the origin, we have
( ¢) < ( ) =Q Q Mmult mult0 0 and we have dropped the number of real points Î { = }p Q 0 such

that ( ) =Q Mmultp . Otherwise, all the branches Li are in situation (iii.2) and
( ¢) = ( ) =Q Q Mmult mult0 0 . The worst situation arises if ¢ { Î ¢ ( ) = }z Q z: 02C ≔ has only

one tangent line the origin. We can apply to ¢Q the previous procedure at the origin:

• We construct (using Lemma 3.12) a polynomial isomorphism that maps all the real zeros of ¢Q
into the half line {( ) £ }y y0, : 0 and keeps the origin invariant. If ¢C has a real tangent line,
we assume that one of such real tangent lines has equation = 0x .

• We apply the double oriented blowing-up at the origin and repeat the previous discussion.

As the parametrization of the involved complex branches are primitive and L Ç = {( )} 0, 0i
2 , if

we follow the previous algorithm we realize that the only possibility to get (apparently) stuck in
situation (iii.2) for all the complex branches (which is the only case that do not drop the multipli-
city) is that =ℓ 1i for each = ¼i r1, , . Assume that such is the case and choose a parameterization
g g g( ),i i i1 2≔ of the complex branch Gi (at the origin), that is,

g
g

ì
í
ïï
îïï

+ + + ++
+c c c ,

,
i m

m
i m

m

i

1 2
2

, 1
1

2

*s s s
s

≔
≔

 

where ¼ Î c c, , m2 (these coefficients are the same for each i because we are ‘apparently’ stuck
in situation (iii.2)), Î+ ci m, 1 for = ¼i r1, , and for instance Î+  c m1, 1* ⧹ (because the
branches of C are all complex as Ç 2C is a finite set). Thus, if we apply our algorithm +m 1
times at the origin, we achieve from the complex branch G1 a complex branch Q1 that admits a
primitive parameterization q q q( ) Î { },1 11 12

2s≔ such that

q
q

ì
í
ïï
îïï

++c ,

.
m11 1, 1

12

* s

s

≔
≔



The tangent line to Q1 is { - = }+c 0m1, 1*x y whereas the tangent line to its conjugated complex
branch Q1 is { - = }+c 0m1, 1*x y , which is different from { - = }+c 0m1, 1*x y . Hence, it is not pos-
sible to get stuck in situation (iii.2) indefinitely.

Thus, we are always able to reduce the number of points of multiplicity M with respect to the
denominator, using finitely many (polynomial isomorphisms and) double oriented blowings-up.
Consequently, after applying suitably the algorithm above finitely many times, we find a regular
map f  : 2 2 which is a finite composition of (polynomial isomorphisms and) double oriented
blowings-up such that ff ◦ is a locally bounded rational function whose denominator has empty
zero-set, that is, ff ◦ is a regular function, as required. □
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3.4. Arc-lifting property

As we have seen above, any locally bounded rational function on the plane becomes regular after
a composition with a generically finite surjective regular map, which can be chosen as a compos-
ition of a finite sequence of double oriented blowings-up and polynomial isomorphisms. We have
seen also in Example 3.1 that other rational functions may becomes regular after composing with a
surjective regular map. We propose here to add a geometric condition to the involved surjective
regular maps in order to characterize this property.

DEFINITION 3.13 A map f  : 2 2 satisfies the arc-lifting property if for any analytic arc
g ( )  ( )  p: , 0 ,2 , where Î p 2, there exists an analytic arc g ( )  ( )  p: , 0 ,2˜ ˜ , where

Î p 2˜ , such that f g g=◦ ˜ .

Arc-lifting property is a natural condition when dealing with blowing-analytic equivalence [16].
In particular, a blowing-up along a non-singular center satisfies the arc-lifting property, but also a
blowing-up along an ideal, or even a real modification [16, p. 99].

PROPOSITION 3.14 A double oriented blowing-up satisfies the arc-lifting property.

It is possible to use Lemma 3.9 together with the arc-lifting property of the blowing-up along a
point to prove the arc-lifting property of a double oriented blowing-up. However, we prefer to pro-
duce a direct elementary proof of this fact in order to enlighten the special behavior of a double
oriented blowing-up, namely to describe in full details when an arc admits one or two liftings.

Proof of Proposition 3.14. Let g g g( ) ( )  ( )  p, : , 0 ,1 2
2≔ be an analytic arc in 2 defined

on a neighborhood of the origin in . If we consider the double oriented blowing-up at the origin
of 2, the statement is obvious if p is not the origin. Assume in the following: ( )p 0, 0≔ and con-
sider g g,1 2 as elements of the ring { } s of analytic series in one variable with coefficients in .
By definition of the double oriented blowing-up at the origin, we must find analytic series
r Î { }t, s such that

( )r r g g
+

-
+

= ( ) ( )
t

t

t

t

2

1
,

1

1
, , 3.1

2

2

2 1 2

hence the tuple g r( )t,˜ ≔ satisfies the required conditions. If g = 01 , we take t 0≔ and r g- 2≔ .
If g = 02 , we take t 1≔ and r g1≔ . Thus, we assume in the following g g ¹, 01 2 and write

g g+ +a band ,k ℓ
1 2s s≔ ≔ 

where Î { }a b, 0⧹ and ℓ k, are positive integers. Using Equation (3.1), we deduce

r e g g d
r g
r g

= + =
+
-

( )tand 3.21
2

2
2 2

2

for some e d Î {- + }, 1, 1 , as soon as the previous expressions have sense and provide analytic
series. We analyze the following three situations:

• Assume first that <k ℓ. Then r g g= + = ( + )a 1k2
1
2

2
2 2 2s  so that the two possible analytic

choices for r are given by
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r e e+ = ( + )a a1 1 ,k ks s≔  

where e = 1. Analogously

r g
r g

e
e

=
+
-

=
( + ) + ( + )
( + ) - ( + )

= +t
a b

a b
1 .

k ℓ

k ℓ
2 2

2

s s

s s

 
 



Therefore, we obtain two possible analytic solutions d d+ = ( + )t 1 1≔   , where d = 1.
The analytic arc g r= ( )t,˜ is a lifting of g if Equation (3.1) is satisfied, which is the case if and
only if ed = +1. Thus, we have obtained two analytic liftings for g .

• Assume next =k ℓ. Proceeding as in the previous case r e + +a b k2 2s≔  (with e = 1),
whereas

e

e
=

+ + +

+ - +
= +et

a b b

a b b
c2

2 2

2 2






and >e
e

e

+ +

+ -
c 0a b b

a b b

2 2

2 2
≔ for both choices of e = 1, so d +et c≔  for some d = 1. Using

again Equation (3.1), there exist two analytic liftings of g corresponding to the choice
ed = ( )asign .

• The situation in the remaining case >k ℓ is slightly different. The analytic series

r e g g e+ = +b ℓ
1
2

2
2 s≔ ∣ ∣ 

for some e = 1, whereas t must satisfy the equation

r g
r g

e
e

=
+
-

=
( + ) + ( + )
( + ) - ( + )

( )t
b b

b b
. 3.32 2

2

∣ ∣
∣ ∣

 
 

The previous equation has an analytic solution t if and only if e = - ( )bsign , that is,
r - +b ℓs≔ . We rewrite Equation (3.3) as

r g
r g

g g g

g g g

g g

g g
=

+
-

=
- ( ) + + ( )

- ( ) + - ( )
=

+ ( / ) -

+ ( / ) +
= +( - )t

b b

b b

a

b

sign sign

sign sign

1 1

1 1 4
.k ℓ2 2

2

1
2

2
2

2
2

1
2

2
2

2
2

1 2
2

1 2
2

2

2
2s 

Thus, there exist two possible analytic solutions to (3.3) given by the formula

d +-t
a

b2
,k ℓs≔ 

where d = 1. The couple r( )t, provides analytic lifting of g if Equation (3.1) holds and this hap-
pens if and only if d = -1, that is, - +-t a

b
k ℓ

2
s≔ . Consequently, in this case, we have only

one analytic lifting of g .
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After the analysis made, we conclude that the double oriented blowing-up at the origin satisfies
the arc-lifting property, as required. □

The last result allows us to establish that the locally bounded rational functions are exactly
those rational functions on 2 that become regular after composition with a surjective regular map
satisfying the arc-lifting property (compare this with Theorem 3.6).

THEOREM 3.15 Let f be a rational function on 2. There exists a surjective regular map
f  : 2 2 satisfying the arc-lifting property and such that ff ◦ is regular if and only if f is
locally bounded.

Proof. By Theorem 3.11 and Proposition 3.14, it is enough to prove that if f  : 2 2 is a sur-
jective regular map satisfying the arc-lifting property and ff ◦ is a regular function, then f is
locally bounded. Otherwise, there exists an analytic arc g ( )  ( )  p: , 0 ,2 such that g( )( )f s◦
goes to infinity as s tends to zero. By the arc-lifting property, there exists an analytic arc
g ( )  ( )  p: , 0 ,2˜ ˜ such that f g g=◦ ˜ . In particular, the analytic arc g f g=f f◦ ◦ ◦ ˜ is not
bounded at the origin, which is a contradiction. □
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Appendix A. The open quadrant

As announced in the Introduction, we represent the open quadrant { > > }0, 0Q x y≔ as the image of
simple regulous and regular maps  f g, : 2 2.

A.1. A regulous map whose image is the open quadrant

Consider the regulous map

( )( ) ( )( )  ( )
+

+
( + )
+ ( + ) +

+
( + )
+ ( + )

 f f f x y x
x y

x y

xy

x y
y

x y

x y

xy

x y
, : , ,

1

1
,

1

1
.1 2

2 2 2
2 2

2 2

2

2
2

2 2

2 2

2

2
≔ ↦

We claim: ( ) =f 2 Q.

Proof. Observe first that f f,1 2 are strictly positive on 2. Thus, ( ) Ìf 2 Q. Let us prove next the converse
inclusion. Pick a point ( ) Îa b, Q. Let us show first: if =a b, then ( ) Î ( )a a g, 2 .
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We have

( )( ) = +
( + )

+
+

( + )
+

f t t
t t

t

t t

t
,

2

1

1 4
,

2

1

1 4

4 2 2

2

4 2 2

2

and the image of the previous map contains the half-line {( ) ³ }s s s, : 1 . In addition,

( )( ) =
+ +

f t
t t

, 0
1

1
,

1

12 2

and its image contains the segment {( ) < £ }s s s, : 0 1 . Thus, ( ) Î ( )a a f, 2 for each >a 0.
If ¹a b, we may assume <a b. We search Î x y, such that ( ) = ( )f x y a b, , . Write l=y x where

l Î . We obtain

( )
( )

l
l

l
l

l
l

l
l

+
+

( + )
+ ( + )

=
+

+
( + )
+ ( + )

=

+
+

( + )
+ ( + )

=
+

+
( + )
+ ( + )

=

x
x y

x y

xy

x y

x x

x
a

y
x y

x y

xy

x y

x x

x
b

1

1 1

1

1 1
,

1

1 1

1

1 1
.

2
2 2

2 2

2

2

4 2

2

2 2

2 2

2
2 2

2 2

2

2

4 4

2

2 2

2 2

Consequently,

l l
l

l
l l

- =
( - )
+

=
( + )( - )

( - )
b a

x
x

b a1

1

1

1

4 2 2

2

2

2 2
4↝

for some l > 1 (recall that <a b). We deduce

( )
j l

l
l l

l
l

l

l
( )

( + )( - )
( - ) +

+
+

+ ( + )
=

l
l l

l
l l

( + )( - )

( - )

( + )( - )

( - )

b a
a

1

1 1

1

1 1

b a

b a

2

2 2

2

2

1

1

2

2 1

1

2

2 2

2

2 2

≔

for some l > 1. Simplifying we conclude

( )
j l

l
( ) =

( - )
-

+
 +

+

l
l

l
l

l
l

( + )( - )

( - )

( + ) ( + )( - )

( - )

b a

1

1

1
.

b a

b a2

1

1

2

1 1

1

2

2

2 2

2∣ ∣

Observe that j l( ) =l+¥lim 0 while j l( ) = +¥l +lim 1 . Thence, there exists l > 10 such that
j l( ) = a0 . If we take

l
l l

l
( + )( - )

( - )
x

b a
y x

1

1
and ,0

0
2

0
2

0
2 0 0 04≔ ≔

we have ( ) = ( )f x y a b, ,0 0 , as required. □
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REMARK A.1 Observe that the set of indeterminacy of f is {( )}0, 0 and ( ) = ( )f 0, 0 1, 1 . In addition,

( - + - + ) = ( )f 6 2 73 , 6 2 73 1, 11

4

1

4
. Thus, if  h: 2 2 is a polynomial map such that

( ) = {( )} h 0, 02 2⧹ (see Lemma 1.5 and [4, Ex. 1.4(iii)]), then  g f h: 2 2≔ ◦ is a regular map such
that ( ) =g 2 Q. The polynomial map  h: 2 2 proposed in [4, Ex. 1.4(iii)] that has the punctured plane

{( )} 0, 02⧹ as image is given by the formula ( ) ( - ( - ) - )x y xy xy x y, 1, 1 2↦ .

A.2. A regular map whose image is the open quadrant

A simpler regular map  g: 2 2 than the one proposed in Remark A.1 that has Q as its image is provided
next. Consider the regular map

( )( )  ( ) ( - ) +
( + )
+ ( + )

( - ) +
( + )
+ ( + )

 g g g x y x xy
xy

x y
y xy

xy

x y
, : , , 1

1

1
, 1

1

1
.1 2

2 2 2 2
2

2
2 2

2

2
≔ ↦

We claim: ( ) =g 2 Q.

Proof. We proceed analogously to the preceding case, but replacing the lines l=y x by hyperbolas
l= /y x. As g g,1 2 are strictly positive on 2, we have ( ) Ìg 2 Q. To prove the converse inclusion, pick a

point ( ) Îa b, Q. Let us show first: if =a b, then ( ) Î ( )a a g, 2 .
We have

( )( ) = ( - ) +
( + )

+
( - ) +

( + )
+

g t t t t
t

t
t t

t

t
, 1

1

1 4
, 1

1

1 4
.2 2 2

2 2

2
2 2 2

2 2

2

The image of ( )g t t, contains the half-line { }( ) ³s s s, : 4

5 ( )( )= ( ) =t gfor 1, we have 1, 1 ,4

5

4

5
. In

addition,

( ) ( )( / ) =
+ ( + / ) + ( + / )

=
+ ( + ) + ( + )

g t t
t t t t

t

t t

t

t t
, 1

4

1 1
,

4

1 1

4

1
,

4

12 2

2

2 2 2

2

2 2 2

and its image contains the segment { }( ) < £s s s, : 0 4

5 ( )( )= ( ) =t gfor 1 we have 1, 1 ,4

5

4

5
.

Consequently, ( ) Î ( )a a g, 2 .
If ¹a b, we may assume >a b. We search Î x y, such that ( ) = ( )g x y a b, , . Write l= /y x for some

l Î . Then

l l l l- = ( / ) - ( / ) = ( - ) ( - / )a b g x x g x x x x, , 1 .1 2
2 2 2 2

Consequently, for l ¹ 1

( )l
l l

l l
l-

-
( - )

- = = ( )
-

( - )
+

( - )
( - )

+x
a b

x x r
a b a b

1
0

1 1
4 2.4

2
2 2 2

2

2

4
2↝ ≔

We have l( ) = +¥l+¥rlim and l l( - ) ( ) = -l + r a blim 11
2 .
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Consider the equation l( / ) =f x x a,1 , that is,

l
l

l
( - ) +

( + )
+ ( + )

=x
x

x x
a1

1
,2 2

2 2

2 2 2

and replace x2 by l( )r to obtain

j l l l
l l

l l l
( ) ( - ) ( ) +

( + ) ( )
( ) + ( ( ) + )

=r
r

r r
a1

1
.2

2

2
≔

Observe that j l( ) = +¥l+¥lim while j l( ) = -l + a blim 1 . As > -a a b, there exists l > 10 such
that j l( ) = a0 . If we take

( )l l
l l

-
( - )

+
( - )
( - )

+ /x
a b a b

y x
1 1

4 2 and ,0
0

2

2

0
4 0

2
0 0 0≔ ≔

we have ( ) = ( )g x y a b, ,0 0 , as required. □
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