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On a Nash curve selection lemma
through finitely many points

José F. Fernando

Abstract. A celebrated theorem in real algebraic and analytic geometry (originally
due to Bruhat—Cartan and Wallace, and stated later in its current form by Milnor) is
the (Nash) curve selection lemma, which has wide applications. It states that each
point in the closure of a semialgebraic set 8 C R” can be reached by a Nash arc
of R” such that at least one of its branches is contained in 8.

The purpose of this work is to generalize the previous result to finitely many points.
More precisely, let 8§ C R” be a semialgebraic set, let x1,...,x, € 8 be r points
(that we call ‘control points’) and let 0 =: ¢#; < --- < #; := 1 be r values (that we
call ‘control times’). A natural ‘logistic’ question concerns the existence of a smooth
and semialgebraic (Nash) path «: [0, 1] — S that passes through the control points at
the control times, that is, «(f) = x; fork = 1,...,r. The necessary and sufficient
condition to guarantee the existence of & when the number of control points is large
enough and they are in general position is that S is connected by analytic paths. The
existence of generic real algebraic sets that do not contain rational curves confirms
that the analogous result involving polynomial paths (instead of Nash paths) is only
possible under additional restrictions. A sufficient condition is that 8§ C R” has, in
addition, dimension 7.

A related problem concerns the approximation by a Nash path of an existing con-
tinuous semialgebraic path f: [0, 1] — 8§ with control points x1, ..., xr €8 and
control times 0 =: 1 < --- <, := 1. As one can expect, apart from the restrictions
on 8, some restrictions on 8 are needed. A sufficient condition is that the (finite) set
of values 7(f) at which f is not smooth is contained in the set of regular points of &
and n(B) does not meet the set of control times.

If 8§ C R” is a finite union (connected by analytic paths) of n-dimensional convex
polyhedra, we can even ‘estimate’ (using Bernstein’s polynomials) the degree of the
involved polynomial path. This requires: (1) a polynomial double curve selection
lemma for convex polyhedra involving only degree 3 cuspidal curves; (2) to find
the simplest polynomial paths that connect two convex polyhedra (whose union is
connected by analytic paths), and (3) some improvements concerning well-known
bounds for Bernstein’s polynomials (and their high order derivatives) to approximate
continuous functions that are not differentiable on their whole domain.
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1. Introduction

A natural ‘logistic’ problem in real geometry, whose affirmative solution would generalize
the curve selection lemma (see p. 989 of [4], Section 3 of [22], and Lemma 18.3 in [27]),
is the following (see also Section 4.C in [12]). Let X be a connected topological space of
certain type, let x1, ..., x, € X be finitely many points (control points) and let 0 =: #; <
-+ < t, := 1 be finitely many values (control times).

Problem 1.1 (Curve selection lemma through finitely many points). Is there a (continu-
ous) path «: [0, 1] — X of ‘certain prefixed type’ such that a(t;) = x; fori =1,...,r?

Suppose we already have a continuous path §: [0, 1] — X such that B(¢;) = x; for
i =1,...,r, that X is a metric space, and fix ¢ > 0.

Problem 1.2 (Approximation of curves through finitely many points). Is there a (contin-
uous) path : [0, 1] — X of ‘certain prefixed type’ such that «(t;) = x; fori =1,...,r
and dist(a(t), B(t)) < & foreacht €]0,1]?

1.1. Semialgebraic setting

A subset & C R” is semialgebraic when it admits a description by a finite boolean com-
bination of polynomial equalities and inequalities. The category of semialgebraic sets is
closed under basic boolean operations, but also under usual topological operations: taking
closures (denoted by CI(-)), interiors (denoted by Int(-)), connected components, etc. If
8 C R™ and T C R” are semialgebraic sets, a map f:8 — T is semialgebraic if its graph
is a semialgebraic set.

In the following, smooth means €*°. A map f:U — R™ on an open semialgebraic
set U C R" is Nash if it is smooth and semialgebraic. Recall that Nash maps are analytic
maps (Proposition 8.1.8 in [2]). If § C R” is a semialgebraic set, a map f:8 — R™ is
Nash if there exist an open semialgebraic neighborhood U C R” of § and a Nash exten-
sion F: U — R™ of f to U. Analogously, a Nash manifold is a semialgebraic subset
8 C R” that is a smooth submanifold of R”. As an application of Proposition 8.1.8 in [2],
one deduces that Nash manifolds are analytic manifolds. Recall that open semialgebraic
subsets of R” admit, by the finiteness theorem (Theorem 2.7.2 in [2]), a description as
a finite union of basic open semialgebraic sets, that is, semialgebraic sets of the type
{fi >0,..., fr >0}, where f; e R[x] := R[xy,...,x,]. Along the article, we will use
typewriter symbols x, y, z, t to denote variables or tuples of variables, whereas we use the
symbols x, y, z, t to denote values or points that we substitute in variables or tuples of
variables x, y, z, t.

1.2. State of the art for semialgebraic sets and Nash paths

In this work, we study Problems 1.1 and 1.2 when X = 8 C R” is a semialgebraic set and
a:[0, 1] — 8 is a Nash path. We prove results that involve a tight control of the behavior
of the obtained Nash/polynomial path (Theorem 1.6 (polynomial case) and Main Theo-
rems 1.8 (Nash case) and 1.9 (PL case)). Using these results, we deduce that a sufficient
condition to solve Problems 1.1 and 1.2 is that § is connected by analytic paths. In fact,
if the number of points x; is large enough and they are in general position, the connexion
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by analytic paths is a necessary condition. A ‘theoretical’ (but not constructive) solution
to Problem 1.1 follows straightforwardly from Main Theorem 1.4 in [10], where we char-
acterize the semialgebraic subsets of R” of dimension d that are images of R under a
Nash map. Namely,

Theorem 1.3 (Nash images of affine spaces, Main Theorem 1.4 in [10]). Let § C R" be
a semialgebraic set of dimension d. The following conditions are equivalent:

(i) There exists a Nash map f:R% — R”" such that f(R?) = 8.

(ii) 8 is connected by analytic paths.

1.2.1. Nash curve selection lemma through finitely many points. The announced ‘the-
oretical’ (but not constructive) consequence of Theorem 1.3 is the following.

Corollary 1.4 (Nash curve selection lemma through finitely many points). Let § C R”
be a semialgebraic set connected by analytic paths. Fix control points x1, ...,x, € 8 and
control values 0 =: t; < --- < t, := 1. Then there exists a Nash path «: [0, 1] — 8 such
that a(t;) = x; fori =1,...,r.

Proof. Let f:R? — R" be a Nash map such that f(R¢) = 8, and let zy,...,z, € R? be

such that f(z;) = x; fori = 1,...,r. Using for instance Lagrange’s interpolation, we find
a polynomial path :[0, 1] — R¢ (of degree < r — 1) such that (t;) = z; fori =1,...,r.
Thus, o := f o B:]0, 1] — § is a Nash path that satisfies the required conditions. |

Remark 1.5 (Classical curve selection lemma). In Section 9 of [10], it is proved that
each semialgebraic set & C R” is the union of its connected components by analytic
paths, which are finitely many semialgebraic sets 81,...,S,. If x € CI(8), we may assume
x € CI(8;). Thus, 8; U {x} is again connected by analytic paths (Main Theorem 1.4 and
Lemma 7.4 in [10]), and by Corollary 1.4, there exists a Nash path «: [0, 1] = 8; U {x} C
8 U {x} such that «(0) = x and «((0, 1]) C 8; C 8. Thus, Corollary 1.4 provides the
classical curve selection lemma as a straightforward consequence.

The main results of this article provide a different proof of Corollary 1.4 (Problem 1.1)
with a more constructive flavor, which is not based on the existential use of Main Theo-
rem 1.4 in [10]. We will simultaneously face the problem of approximating some existing
continuous semialgebraic path passing through the control points at the control times
(Problem 1.2). As the reader can expect, the previous continuous semialgebraic path shall
satisfy some additional restrictions.

1.2.2. Polynomial curve selection lemma through finitely many points. Let
a:=(xg,...,q) : [a,b] > R"

be a continuous semialgebraic path. We claim: There exists a minimal finite set n(a) C
[a, b] such that o|[g p)\n () is @ Nash map.

Proof. Consider the continuous semialgebraic map B: [a, b] = R?, ¢t — (¢, oy (¢)) for
k =1,...,n. By Proposition 2.9.10 in [2], there exist finitely many points ¢1, ..., €
[a, b] such that My; := Br((t;,ti+1)) is a Nash submanifold of R? fori = 1,...,r — 1
and k = 1,...,n. For each p € My;, denote the tangent line to My; at p with T, M;.
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Consider the projection 7;: R? — R onto the first coordinate and let Ry; := {p € My, :
dim(m(TpMki)) = 0}

We claim: The semialgebraic set Ry; is finite for eachi = 1,...,r — 1 and each
k=1,...,n.

If pe Ry; (forsomei =1,...,r—landk =1,...,n), then o is not differentiable at

1(p). By Theorem (3.2) (II,,,) on Chapter 7, p. 115 of [24], the non-differentiability locus
of oy, is a semialgebraic set of dimension < 0, that is, it is a finite set. Consequently, Rg;
is a finite set, as claimed.

We conclude that n(a) C {1,....4} U Ug—; ;=1 Rik is a finite set, as required. m

By Proposition 8.1.12 in [2], and after reparameterizing (locally at a and b if nec-
essary), we may assume that « is analytic at the points a and b, and consequently, that
n(x) C (a,b). Let 81,8, C R” be two Nash manifolds. A (Nash) bridge between 81
and 8, is the image I" of a Nash arc «: [—1, 1] = R” such that «([—1,0)) C 8; and
a((0,1]) C 8,. The point «(0) is called the base point of I'. In case 81,8, C R” are open
semialgebraic sets and there exists a Nash bridge «: [—1, 1] — R” between 81 and 85, we
can modify « to have a polynomial arc «: [—1, 1] — R” such that a([—1,0)) C 8; and
a((0,1]) C 85 (see Lemma 4.1 in [15]).

In [15], we study the images of the closed unit ball under polynomial maps. As a
main tool, we prove there the following result (Lemma 3.1 in [15]), which is stronger than
only a solution to Problems 1.1 and 1.2. The main difficulty focuses on guaranteeing that
the approximating polynomial paths have their images inside the chosen semialgebraic
set. These types of problems of keeping the same target space after approximation are
analyzed carefully in [13, 14].

Theorem 1.6 (Smart polynomial curve, Lemma 3.1 in [15]). Let 8q,...,8, C R" be
connected open semialgebraic sets (not necessarily pairwise different) and denote § :=
Ui, 8i. Pick control points p; € CI(S;) and assume there exists a polynomial bridge T;
between 8; and S; +1. Denote the base point of T'; with g; € C1(8;) N CI(8;+1). Fix control
timessg:=0<t; <---<t, <l =:s,ands; €t tiy1)fori =1,...,r — 1. Then there
exists a polynomial path a: R — R”" that satisfies

(l) a([oal])CSU{pl,--wl)erIlw--»Qr—l},
() a(t;)) = p; fori =1,...,r,
(iii) a«((t;,8)) C Si, a((si, ti+1)) CSiyr1anda(s;) =gqi fori =1,...,r —1.
In addition, if ¢ > 0 and B: [0, 1] — R" is a continuous semialgebraic path such that

n(B) C O, D)\ {t1,....tr,51,...,5—1} B(m(B)) C S and B satisfies conditions (i), (ii)
and (iii) above, we may assume that ||o — B| < e.

Remark 1.7. Contrary to what we have stated in Problems 1.1 and 1.2 above, here the
control times are inside the interval (0, 1). This is done to simplify the proof (and it will
happen again in Main Theorem 1.8), but it is not limiting. As we have commented, if
B:[0, 1] — R" is a continuous semialgebraic path, we can reparameterize 8 locally at O
and 1 in order to have n(8) C (0, 1). This means that we can analytically extend § around 0
and 1 to an interval [—§, 1 + §] for some § > 0, and after rescaling (to work in the inter-
val [0, 1]), we may assume that the control times ¢; € (0, 1).



On a Nash curve selection lemma through finitely many points 5

1.3. Main results

The first part of Theorem 1.6 concerns Problem 1.1, whereas its second part concerns
Problem 1.2. We cannot expect a general result (that is, without the assumption that the 8;
are open semialgebraic subsets of R”) of similar nature involving polynomial paths instead
of Nash paths. In general, semialgebraic sets do not contain rational paths. By [7,25], a
generic complex hypersurface Z of CP” of degree d > 2n — 2 for n > 4 and of degree
d > 2n — 1 forn = 2,3 does not contain rational curves. If § C R” is a semialgebraic set
whose Zariski closure X in RP” is a generic hypersurface of RIP” of high enough degree,
then its Zariski closure Z in CIP” does not contain rational curves, so 8§ cannot contain
rational paths. This means in particular (as general real algebraic sets are birational to real
hypersurfaces) that general semialgebraic sets do not contain polynomial paths.

1.3.1. General case. In this article, we prove Main Theorem 1.8 (Figure 1) and we pro-
vide a somehow constructive proof. This requires to improve some results [9, 16, 26]
concerning the convergence at compact sets of the derivatives of Bernstein’s polynomi-
als to the derivatives of the function f: [0, 1] — R we want to approximate, even if f
only admits derivatives on an open strict subset of the interval [0, 1] (Theorem 2.9). More
precisely, we need to estimate the derivatives of the Bernstein’s polynomials of a contin-
uous semialgebraic function on the closed interval [0, 1]. Such function f is analytic on
[0,1]\ &, where & is a finite subset of [0, 1]. A possibility would be to smoothen f until
certain order £ around the points of ¥, but this requires to modify f and supposes an
increase on the complexity of the construction. To avoid this smoothening of f, we prove
Theorem 2.9 to provide bounds about the convergence of the derivatives of Bernstein’s
polynomials of f on the compact subsets of [0, 1] \ &.

Main Theorem 1.8 (Smart Nash curve). Let 8§ C R” be a pure dimensional semialge-

braic setand 81, . ..,8, open connected semialgebraic subsets of Reg(8) (not necessarily
pairwise different). Pick control points p; € CI(8;) for i = 1,...,r and assume there
exists a Nash bridge T'; between S; and S;+1 fori = 1,...,r — 1. Denote the base point
of Ty with q; € CI(8;) N CI(8;+1). Fix control times sg :=0<t; <---<t, <1 =8,
and s; € (t;,ti+1) fori = 1,...,r — 1. Then there exists a Nash path a: [0, 1] — R” that
satisfies:

i) «(0,1) C Uiz, 8 U{piseees Proqis-- - qr—1),
(i) a(t;)) = p; fori =1,...,r,
(iii) o((ti, i) C 8i, a((si,ti+1)) C Siv1and a(s;) = g; fori =1,...,r — 1.
In addition, if ¢ > 0 and B: [0, 1] — R”" is a continuous semialgebraic path such

that n(B) C (0, )\ {t1,....tr,51,....5.—1}, B((B)) C Ui, 8i, and B satisfies condi-
tions (1), (ii) and (iii) above, we may assume that ||o — B < e.

As a consequence of Main Theorem 1.8, we provide in Section 1.3.4 an alternative
proof of Corollary 1.4. Following the proof of Main Theorem 1.8, the reader realizes
that, up to resolution of singularities and the use of a Nash tubular neighborhood, the
proof of Main Theorem 1.8 is reduced to showing Theorem 1.6, which is constructive
up to polynomial approximation (controlling the behavior of a large enough number of
derivatives) of continuous semialgebraic paths (which are analytic outside a finite set)
combined with Hermite’s interpolation. In the proof of Theorem 1.6 provided in [15], we
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Figure 1. Statement of Main Theorem 1.8.

smoothen corners of continuous semialgebraic paths, whereas in this article we use the
announced Theorem 2.9. In [5, 6], we make an extended use of Main Theorem 1.8 to
represent compact semialgebraic sets connected by analytic paths as images of closed unit
balls under Nash maps.

1.3.2. Piecewise linear semialgebraic sets. In Section 4, we simplify the proof of Main
Theorem 1.8 for piecewise linear semialgebraic sets (PL case), that is, when the involved
semialgebraic sets are the interiors of convex polyhedra of dimension 7. In this case, we
approximate the polygonal path that connects the control points (and base points of the
polynomial bridges) at the prescribed control times. In order to get better bounds for the
degrees of the polynomial paths provided by Main Theorem 1.8 (see Section 4.4): (1) we
state a (polynomial) curve selection lemma for convex polyhedra that involves degree 3
cuspidal curves (Lemma 4.1), and (2) we prove that the simplest polynomial paths that
connect two convex polyhedra (whose union is connected by analytic paths) are moment
curves (Theorem 4.2).

Main Theorem 1.9 (PL case). Let 81,...,8, C R" be the interiors of n-dimensional
convex polyhedra (not necessarily pairwise different), and denote 8 =\ J;_, 8;. Pick
control points p; € CI(8;) fori = 1,...,r and suppose that there exists a Nash bridge T;
between 8; and S; 11 fori = 1,...,r — 1. Denote the base point of T'; with q; € C1(8;) N
CI(8;+1). Fix control times sg :==0<t; <---<t, <1 =:5.ands; € (tj, ti41) fori =
1,...,r — 1. Then there exists a polynomial map a: R — R”" that satisfies:

@ a(0,1) CSU{p1,---s Preq1s---sqr—1}-

() a(t;)) = p; fori =1,...,r.

(iii) «((t;,$)) C Si, a((sj,ti+1)) C Sit1anda(s;)) =¢q; fori =1,...,r — 1.
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(iv) The restriction a|fs, 4,1 is as close as wanted to the piecewise linear parameteriza-
tion
B : [t 1] = CI(S)

of the polygonal path that connects the points p1,q1, P2, .., Pr—1-4r—1, Pr, Passes
through these points at the control timest; < §1 <ty <:++ <tp_1 < S§p—1 <1, and

satisfies N(B) C{ta, ..., tr—1,51,+ > Sr—1}-

1.3.3. Graph. Let S C R” be a d-dimensional semialgebraic set and let Sy,...,8, C R”
be connected open semialgebraic subsets of Reg(8) of dimension d. Observe that §; is a
Nash manifold fori = 1,...,r. Assume | J_; 8; C 8 C CI({J;_, ;) and 8 is connected
by analytic paths. We construct a graph A to approach (Nash) logistic problems in § in the
following way. The vertices of the graph are 81, ..., 8,, and we have an edge between the
vertices §; and §; if there exists a Nash bridge inside 8§ between the Nash manifolds §;
and §;. By the following lemma (see also Main Theorem 1.4 and Corollary 7.6 in [10], and
Lemma 4.2 in [15]), the previous graph is connected (because § is connected by analytic
paths) and one can approach with the help of Main Theorem 1.8 (Nash) logistic problems
between the ‘regions’ 8y using the existing Nash bridges between them (see below the
alternative proof of Corollary 1.4 as an example of application of this strategy).

Lemma 1.10. The graph A is connected.

Proof. 1t is enough: fo reorder recursively the indices i = 1,...,r in such a way that
foreachi =2,...,r, there exists a Nash bridge inside & between §; and some 8; with
1<j<i-1

Suppose we have chosen S, ..., S satisfying the previous conditions and let us
choose a suitable S 41. Denote

T :=Usj and T, := Lrj Sy.

j=1 {=k+1

If Ty N T, # @, there exists anindex £ € {k + 1,...,r} such that §; N §; # & for some
j €{l,...,k}. We interchange k + 1 and £ in order to have Sy = 8. Pick a point
X €8; N 841 and any Nash arc o: [-1, 1] — §; N 8 such that «(0) = x. Observe
that o provides a Nash bridge inside § between some 8; with 1 < j < k and 8.

Assume next T and T are disjoint (open semialgebraic subsets of Reg(8)). Let Y be
the Zariski closure of (C1(T7) \ 1) U (CI(T3) \ T2), which by Proposition 2.8.13 in [2],
has dimension < d — 1. We have

(1.1)  8ccCl8) =l ( U 8,-) — CI(T) U CI(T)
i=1

=T, UT, U (CI(T1) \ T1) U (CI(T2)\ To) C T, UT> U Y.

As dim(77) = dim(77) = d, the differences T; \ Y and T, \ Y are non-empty semialge-
braic sets. Pick points x €T1 \ Y =T \ (Cl(T)UY)and y €T\ Y = T\ (C1(T;) U Y)
(recall that T; and T, are disjoint and that Y is the Zariski closure of (C1(T7) \ 77) U
(C1(T32) \ T2)). As S is connected by analytic paths, there exists a Nash path «: [0, 1] — &
such that (0) = x and @(1) = y. Asa~!(Y) is both a closed subset of [0, 1] and the zero
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setin (0, 1) of a Nash function defined on [0, 1] (because x, y ¢ Y'), we deduce by the iden-
tity principle that o ~!(Y) has dimension 0, so it is a finite subset of [0, 1]. By (1.1), we
deduce [0, 1]\ (@ /(T \Y)Ua 1 (T2 \ Y)) Ca}(Y)isafiniteset. AsO € a1 (Ty \ ¥)
=a 1T\ N (Cl(T)UY)and 1 ca~ (T, \ Y), wehave 0 < ty := inf(a~ ' (7)) < 1.
Observe that [0,7) \ @ ' (Y) C « (T, \ Y) and 1y € Cl(e™'(72)). As a~}(Y) is a
finite set and o~ (J7) is a non-empty open semialgebraic subset of [0, 1], there exists
a small enough & > 0 such that a([ty — &,19)) C T = U;-‘:l 8; and a((fo, to + €]) C
T2 = Uj—i41 S¢. Shrinking & > 0 if necessary, we may assume a([to — €, 1)) C 8; for
some 1 < j <k and a((tg,to + €]) C 8¢ forsome k + 1 < £ <r. As « is a (non-constant)
Nash path, we may assume (shrinking ¢ > 0 again if necessary) by semialgebraic trivial-
ity (Theorem 9.3.2 in [2]) that the restrictions &|[;y—g,zo) and o],z +¢] are injective. As
§; N8y = &, we deduce o|[z,—.ry+¢ is @ Nash arc. We interchange kK + 1 and £ in order
to have 8g1 = 8. Thus, there exists a Nash bridge inside § between 8x; and some §;
with 1 < j <k, as required. n

In case 8;,...,8, C R” are open semialgebraic subsets of R”, we can study the
previous problems from the polynomial point of view. Using Bernstein’s polynomials
(Theorem 2.9), we can estimate the degree of the constructed polynomial paths, espe-
cially if each S is in addition the interior of an n-dimensional convex polyhedron (proof
of Main Theorem 1.9 in Section 4, and Subsection 4.4). This also allows to estimate in
Remark 4.6 the degree of the polynomial maps that appear in Theorems 1.2 and 1.3 of [15]
to represent compact semialgebraic sets that are connected by analytic paths as the image
of closed unit balls under polynomials maps.

1.3.4. Alternative proof of Corollary 1.4. Let Tq, ..., Js be the connected compo-
nents of Reg(8), which are connected Nash manifolds. Let U € {T1, ..., Ts} be such
that x; € CI(U;) for i = 1,...,r. Consider the graph A whose vertices are the con-
nected Nash manifolds T; and such that there exists an edge between a pair of vertices T;
and 7J; if and only if there exists a Nash bridge I' inside 8§ between the Nash mani-
folds T; and 7;. As § is connected by analytic paths, the graph A is by Lemma 1.10
connected. Thus, given the sequence of vertices Uy, ..., U,, there exists a path P in the
graph A that passes through Uy, ..., U, in this order. We collected all the ordered ver-
tices of P (including repetitions if needed) and denote them by 8, ..., S, in such a way
that there exists a Nash path I'; between 8; and 8;4+; fori = 1,...,£ — 1. In addition,
there exist indices 1 =: j; <--- < j, := £ suchthat§; = Uy fork =1,...,r. Foreach
ief{l,....03\{Jj1,...,jr}, wepick a point p; €8; and denote p;, :=xp fork =1,...,r.
Denote the base point of I'; with ¢; € C1(8;) N C1(8;41) C Sfori =1,...,£ — 1. Take
times 0 =: wy <:-- < wy := lsuchthat w;, =t fork =1,...,r,5 € (w;, wi4+1) for
i=1,...,£—1,59 <0 and sy > 1. By Main Theorem 1.8, there exists a Nash path
o:[sg,s¢] — R” that satisfies

1) a(so.s¢]) C Uiy Si U{p1.... proq1, ..o gr—1} C 8,
(i) a(w;) = p;fori =1,...,r,
(iii) o((wi,si)) C i, a((si, wi+1)) C Si+1and a(s;) = g; fori =1,...,r — L.

Consequently, a|o,17 : [0, 1] — & is a Nash path such that a(¢tx) = xx fork =1,...,r, as
required. n
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1.4. Structure of the article

The article is organized as follows. In Section 2, we present some preliminary concepts
and tools. We would like to mention some results concerning Stone—Weierstrass’ polyno-
mial approximation using Bernstein’s polynomials (Theorem 2.9, that follows the ideas
developed in [16] and whose proof is postponed until Section 5), and some of its main
consequences (Lemmas 2.10 and 2.12). In Section 3, we prove the main result (Main The-
orem 1.8), whereas in Section 4 we estimate the degree of the polynomial paths provided
by Theorem 1.6 when the involved semialgebraic sets are piecewise linear (Main Theo-
rem 1.9). Consequently, one can provide bounds for the degrees of the polynomial maps
that appear in Theorems 1.3 and 1.4 in [15] (see Remark 4.6). We postpone some of the
technicalities of the proof of Main Theorem 1.8 until Appendix A, in order to make its
proof more discurse and intuitive.

2. Basic concepts and preliminary results

In this section, we recall and present some preliminary concepts and results that will be
the key to prove Main Theorem 1.8.

2.1. Regular and singular points of a semialgebraic set

Recall that the set of regular points of a semialgebraic set 8§ C R” is defined as follows.
Let X be the Zariski closure of § in R” and let X be the complexification of X, that is,
the smallest complex algebraic subset of C” that contains X . The set Sing(f ) of singular
points of X corresponds to the collection of those points of X that do not admit a neigh-
borhood diffeomorphic to a complex manifold. Define Reg(X) := X \ Sing()? ) and let
Reg(8) be the interior of 8 \ Sing()? ) in Reg(X). Observe that Reg(8) is a finite union of
disjoint Nash manifolds maybe of different dimensions. We refer the reader to Section 2.A
of [10] for further details concerning the set of regular points of a semialgebraic set.

2.2. Hironaka’s desingularization

A rational map f:= (f1,..., fn): Z — R” on an algebraic set Z C R™ is regular if its
components are quotients of polynomials f; := gx/hx such that Z N {h = 0} = @.
Hironaka’s desingularization results [17, 18] are powerful tools, and we recall here the
one we need.

Theorem 2.1 (Desingularization). Let X C R” be an algebraic set. Then there exist a
non-singular algebraic set X' C R™ and a proper regular map f: X' — X such that

Slxns1singxy © X'\ ST (Sing(X)) — X \ Sing(X)
is a diffeomorphism whose inverse map is also regular.

Remark 2.2. If X is pure dimensional, X \ Sing X is dense in X. As f is proper, it is
surjective.
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2.3. Topology of spaces of continuous functions

Let [a, b] C R be a compact interval and Q C [a, b] an open set. For each £ > 1, con-
sider the space ‘Cé([a, b], R) of continuous functions on [a, b] that are €% on Q. We
endow ‘Gé([a, b], R) with the ‘65 topology that has as basis of open neighborhoods of
gE€ ‘Gé ([a, b], R) the family of sets of the type

U g, = {feC(abLR) : If —glap <& 1 /P —g®lx <& k=1.....¢},

where K C €2 is a compact set, ¢ > 0 and ||&| 7 := max{h(x) : x € T'} for each compact
subset T C [a, b]. Sometimes we will omit the subindex T when it is clear from the con-
text. If Q = [a, b], the previous topology is the usual €¢ topology of €*([a, b]). Observe
that ‘C’é ([a. b],R") = ‘C’é([a, b, R) x --- X ‘C’é([a, b], R) and we consider the product
topology in this space. In particular, if £ := (f1,..., fn) € €5 ([a,b],R") and T C [a,b]
is a compact set, we denote to lighten notation

£ = [ 12+ f2 | = max { f20) + o+ £200) 5 xeT).

If X C [a, b], one defines analogously the ‘C’ém x-topology of the space t)s{m ¥ (X, R).

The following result follows from Exercise 10 in Section 2.5, pp. 64—65 of [19], using
standard arguments.

Lemma 2.3. Let U C R” be an open set and ¢: U — R™ a €¥ map for some 0 < k < L.
Consider the map ¢*: ‘C’é([a, b,U) — ‘C’é([a, b, R™), f + @ o f, where both spaces
are endowed with their ‘C’é -topologies. Then @™ is continuous.

In addition, one has the following.
Lemma 2.4. Let X C [a,b] and consider the restriction map
p:€5(a.b.R") = €5 x (X.R™), f > flx.

where the spaces are endowed with their respective ‘(fé and ‘(?fm x topologies. Then p is
continuous, and if in addition X C [a, b] is closed, then p is surjective.

2.4. Stone-Weierstrass’ approximation and Bernstein’s polynomials

The proof of Theorem 1.6 provided in [15] involves Stone—Weierstrass’ approximation
(controlling the behavior of a large enough number of derivatives). We want to analyze
the crucial role that Stone—Weierstrass’ approximation plays. There are many constructive
results in this direction and we refer the reader to Section 2 in Chapter 7 of [9], where
estimations of the approximation errors are available. In this article, we will use Bern-
stein’s polynomials, which provided a pioneer constructive proof of Stone—Weierstrass’
approximation theorem [1]. We suggest the reader Chapter 10 of [9] and Section 1 of [21]
for further references. Although Bernstein’s polynomials converge slowly to the approx-
imated function, they have shape preserving properties (see Theorem 3.3 in Chapter 10
of [9]) and a ‘good local behavior’ (see (3.3) in Chapter 10 of [9]): If two continuous func-
tions coincide on a subinterval of their common domain, their Bernstein polynomials of
high degree are very similar in (the compact subsets of ) such subinterval, even when we
compare their high order derivatives (Lemma 5.1).
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We recall some properties of the celebrated Bernstein polynomials and we present
some improvements in this work to fit our requirements (Theorem 2.9). The Bernstein
approximation polynomial (of degree v) of a real function f:[0,1] — R is

Vv

By(f):= Zf(%)Bk,v(x), where By, (x) := (k)xk(l—x)”_k, fork=0,...,v.
k=0

2.4.1. Basic properties of Bernstein’s polynomials. Each Bernstein’s basis polynomial
By v (x) of degree v is strictly positive on the interval (0, 1). In fact, for each x € (0, 1),
the values { By, (x)}; _, constitute the probability mass function of the binomial distribu-
tion B(v, x). This means (see [21], p. 6):

° leé:o Bk,v(x) =1,
e > i _okBky(x) = vx,asitis the mean of B(v, x),
o > _o(wx —k)?By,(x) = vx(1 —x), as it is the variance of B(v, x).
In addition,
1) Ifm< f <M,thenm < B,(f) < M (see equation (2) on p. 5 of [21]).

(ii) Bk,y(x) = (1 —x)Bk,y—1(x) + xBg—_1,,—1(x) (which follows from the properties
of binomial numbers).

(iii) For each i € R, denote Ay f(x) := f(x + h) — f(x) and

k

A £ = 808 1) = Y0 () s,

j=0

If B\gk)(f) denotes the k™ derivative of B, (f), we have by equation (2) on p. 12

of [21],
k) v! vk k I
Bv (f)(X) = (U_—k)!iioAl/vf(;)Bi’v_k(X), for k 20,...,1).

Remark 2.5. If f € €([a, b]), write f*:[0,1] > R, — f(a + t(b — a)). Observe that
f=/f"(3=5) and define B}(f) := B,(f*)(3=%), the Bernstein’s polynomial of f of
degree v for the interval [a, b]. The changes one makes in subsequent formulas for the
interval [0, 1] to obtain the corresponding ones for the interval [a, b] are of the following
type: the polynomial x is changed by (x — a) /(b — a), so the polynomial 1 — x is changed
by (b —x)/(b — a). For instance,

(x—a)(b—x)
(b —a)?

((b—a)—2(x—a))

1—
x( X) ~> -

and (1—2x)~

2.4.2. Derivatives of Bernstein’s polynomials. One of the most remarkable properties
of Bernstein’s approximation, which is very useful for our constructions, is that the deriva-

tives B,Se)( f) of B, (f) of each order £ converge to the corresponding derivatives of f,
see [20]: If f € €4([0, 1]) for some £ > 0, then lim, _ oo B,Ee)(f) = O uniformly on the
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interval [0, 1]. This property can be viewed as a compensation for the ‘slow’ convergence
of B,(f)to f.If | - |l[o,1] denotes the maximum norm on [0, 1], the error bound

e Bu(/)0) ~ 0] = 5o x (=01l

provided in equation (3.4) in Chapter 10, p. 308, of [9], shows that the rate of conver-
gence is at least 1/v for f € €2([0, 1]). On the other hand, Voronovskaya’s asymptotic
formula [26] (or Section 1.6.1 of [21]),

) Jim v(By(£)() — f() = 3 x(1 =) 1" (),

shows that for x € (0, 1) with f”(x) # 0, the asymptotic rate of convergence is pre-
cisely 1/v. In [16] it is shown that all derivatives of the operator B,, converge at essentially
the same rate by extending both the error bound (2.1) and Voronovskaya’s formula (2.2).
The error bound is generalized in [16] to the following.

Theorem 2.6 (Error bound, Theorem 1 in [16]). If f € €¢+2([0, 1]) for some £ > 0, then
23) B (N = O]
1
=5, (- DILF O lio,1y + €11 = 2x] 11 £ Vo1 + x (1 = 0)ILF 2 1 go,17)

for each x €10, 1].

Remark 2.7. The reader can prove inductively that

)4
(=0 1) = =1 fO 0 =20 fED (-0 7

is the £ derivative of x (1 — x) " (x).

In addition, Voronovskaya’s formula (2.2) can be ‘differentiated’ to determine the
asymptotic behavior of the error for the high order derivatives of the Bernstein polyno-
mials:

Theorem 2.8 (Asymptotic behavior, Theorem 2 in [16]). If fe €**2([0, 1]) for some
£ >0, then

1 d*
Jim v(BI (/)00 = fO0)) = 5 T (x(1=x) ()
uniformly in the interval [0, 1].

Thus, the £th derivative of B, (f) converges to f© (x) at the rate of 1/v when the £th
derivative of x (1 — x) f”(x) is non-zero.

2.4.3. Control of the derivatives of Bernstein’s polynomials on compact subsets. In
this paper, we deal with continuous functions f: [0, 1] — R that are € only on an open
subset 2 C [0, 1], and we need to control the behavior of a large enough number of deriva-
tives of the Bernstein’s polynomials of f on a compact subset K C . A first attempt is
to smooth our function f on [0, 1] \ €2 and to make use of Lemma 5.1 together with Theo-
rems 1 and 2 in [16]. To avoid an increase of complexity when smoothing the initial data,
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we amalgamate in Theorem 2.9 the quoted results (Theorems 1 and 2 in [16] and Sec-
tions 2 and 3 in Chapter 10 of [9]) to approach the situation we need. Summarizing, we
provide a bound for the error of each derivative on the chosen compact set and show how
the error behaves asymptotically. To make the presentation of the article more discursive,
we postpone the proof of the following result until Section 5.

Theorem 2.9 (Convergence of derivatives on compact subsets). Let f:[0,1] — R be a
continuous function that is €**t* on an open subset 2 C (0, 1) for some £ > 0. Let K C Q
be a compact set. Then there exists a constant Cr, g ¢ > 0 such that

£+3

(k)
1B.()Px) — fOw) < —(f(e —1) Z L

(k= 0!

43 k) €43 ) c
-0 Y [ ||K) S (||f & >+ 1K

¢ 2
k=z+1(k t kl+2k t-2)! v

for each x € K (error bound).
In addition, for each & > 0, there exists a constant C} Kt 0 such that

Cr
U(Bv(f)(e)(.x)_f(l)(x))—— (x(l_x)f//(x)) <E+ f,K@s

for each x € K and v > £ (control of the asymptotic behavior).

2.5. Polynomial approximation combined with interpolation

We adapt [3] to prove the following result, that combines Bernstein’s polynomial approx-
imation (controlling the behavior of a large enough number of derivatives on a compact
subset) with interpolation on a finite set. We include full details for the sake of complete-
ness.

Lemma 2.10. Let [a,b] C R and let Q@ C [a,b] be an open set. Leta <t; <--- <t <b
be real numbers such that each t; € Q, and let f:|a,b] — R be a €é+4-function for
some £ > 0. Fix ¢ > 0 and let K C Q be a compact set. Then there exists a polynomial
g € R[t] such that

@ Nf — gl <&
Gi) |f® —g®|g <e fork=1,...,4
(i) g® @) = f® @) fori =1,....randk =0,... 4.

Proof. Take polynomials P;; such that

(m)(t) 0 ifi # jork #m,
S ifi = jandk = m,

fori = 1,...,r and 0 < k,m < £. For instance, we may choose

(24 Py = cie (6 — 1) [ J(& = )" = (1 — ) THH,
J#i
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where
1 (_1)(l+1)(r—1)
Cik -

KN — )02
The Taylor expansion of P;jx at ¢; has the form

Py = %(t — ) +di (& — 1)+
for some d;x € R, whereas the Taylor expansion of P;; at #; (for j # i) has the form
Pir = et — 1) -,
where
eiji = cir(t; — ) (L + D =)D [T (@4 =) = (2 — )
AL, j

In both cases above, the symbol + - - - means ‘plus terms of higher degree’ with respect to
either t — #; or t —¢;, depending on each case. To compute e;;, it is enough to figure out
the first non-zero monomial of the Taylor expansion at ¢; of each factor of the product P;x
and then to multiply them.

Define K’ := K U {t1,...,t-} and

25 M= max {|Pilan 1PY Nk 1<i<r,0<k<€ 1<m<{),

&
O =y v

By Theorem 2.9, there exists a Bernstein polynomial & € R[t] of f (in the interval [a, b])
such that |h — f||[a,) < § and [h® — fU)| g < §fork = 1,..., L. Define

r £
gi=h+> Y bxPy

i=1k=0

where b 1= f(k)(ti) —h(k)(li) fori =1,...,randk =0,...,L. Thus,

r 4
g™ () = h™ ;) + >3 b P (1) = h™ () + bjm = f™ (1))
i=1k=0

forj=1,...,randm =0,...,¢.
As |bix| = | f® ) —h® @) <Sfori =1,....randk =0,...,£, we have

L

r
lg = fller < 18— Fllaer + Y Y ikl | Pikclliasy < 8 + r(€ + DMS = &,
i=1k=0

r £
g™ — F™ g < AU — £+ 373 b 1P Ik <8+ r@+1HMS =¢
i=1k=0

foreachm = 1,..., ¢, as required. [
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Remark 2.11. In the previous result, we have chosen the same number £ of known deriva-
tives for all the values #; in order to simplify the presentation, but it is possible to choose
different numbers of known derivatives for each value #;. The proof is quite similar, but
the notation is more intricate and the concrete details more cumbersome.

The proof of Main Theorem 1.8 still requires some preliminary work that we approach
next.

2.6. Polynomial paths with prescribed behavior at points and intervals

We prove next (as a consequence of Lemma 2.10) a key result to prove Main Theorem 1.8.
When we write a series in the form / = aktk + ---, we mean that the lowest order term
is agtk (with ay # 0) and the remaining terms have higher order and are not relevant for
our computation. Recall that R[x] := R[xy, ..., x,].

Lemma 2.12. Let 8y, ...,8, C R” be connected open semialgebraic sets (not necessarily
pairwise different) and pick points x; € CI(8;—1) N CI(§;) fori = 1,...,r. Assume that
there exist a continuous path B:[a, b] — Up—o Sk U {x1, ..., X} and values a := ty <
1 <o+ <ty <try1 .= b satisfying the following properties:

i)  B([to.t1)) C S0, B((tkstk+1)) C Sk fork =1,...,r — 1 and B((t;,tr+1]) C S,

(ii)) B(t) = x; and B is an analytic path on a neighborhood of t; fori = 1,...,r,

(iil) there exist polynomials f;; € R[x] such that { f;1 > 0,..., fis > 0} C 8;_1 is adher-
ent to x; and the analytic series (fij o B)(t; —t) = a;jt"V + --- satisfies a;; > 0,

(iv) there exist polynomials g;; € R[x] such that {gi1 > 0,...,gis > 0} C 8; is adherent
to x; and the analytic series (gij o B)(t; + t) = b;jtP¥ + .- satisfies b;; > 0,

Let £ :=max{n;j, p;j : 1 <i <r, 1 £ j <s}andlet Q C [a,b] be an open neigh-
borhood of {t1,...,t} such that 8|q is analytic.

(1) There exists an open neighborhood U of f € ‘(‘,’é+4([a, b)) in the fé-topology such
that if o € U and ™ (1;) = B (t;) foreachi =1,...,r and eachm =0, ... 4,
then o((tg, tx4+1)) C Sk fork =0,...,r.

(2) There exists a polynomial path o [a,b] = Ug—o Sk U {x1,...,x,} close to B in
the I?é—topology such that a(t;) = x; fori = 1,...,r and a((tk, tk+1)) C Sk for
k=0,...,r.

Proof. We prove this result as an application of Lemma 2.10. Observe that
(=" (fij o )"V (t) >0 and (gij 0 f)P7 (1) > 0

for each pair i, j. Thus, there exists § > 0 such that for the compact interval I; := [t; —
8,6 + 81 C Q, (=1)"i(fij o Blz,)" > 0and (g;; o Bl1,)P#) > 0fori =1,...,r and
j=1,...,s.Denote Jo :=[a,t; — 8], Jx := [ty + 6, tk+1 — 6] fork =1,...,r — 1 and
Jr := [ty + 8, b]. By Lemmas 2.3 and 2.4, the maps

i €54 ([a, b R") — €41, R) y = fij oyl
¢ij 1 €5 ([, b, R") — €4 (1, R), y > gij oy,
Vi s €54 ([a, b, R") — €°(Jg, R), y > dist(y|s, (£), R" \ 8)
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are continuous. In addition, as B(J;) C S, each function Y (B) is strictly positive for
k=0,...,r.Define

e := min {min {(~1)" (fij o Bl5,) ™}, min {(gi; o 11,) 7}, min{ye(B)}} > 0

L]

and consider

Uo = ([ [y € €& *(a.BL.R") : [loij )T — 01 (B) "V l1; < &}

i=1j=1

N[y € €& (a. bL.R") : iy (1) P — iy (B) PP |1, < e}

i=1j=1

N ({r € €5 (a. LR : [[Y(y) = Vi (B)ll s, < ).

k=0

which is an open subset of ‘(f’é+4([a, b],R"™) in the ‘C’é -topology. Consider the compact set
K :=Ji_, I; C Q. There exists p > 0 such that

U:={y € €5 *([a.bL.R"): |y — Blliapy <o, y™ —B™|x <p. m=1,....£}CUp.

We are ready to prove the assertions in the statement.

(1) We claim: If @ € U and «"™ (t;) = B (;) fori =1,....,randm =0, ... 4,
then a((tx,tk+1)) C Sk fork =0,...,r.

It holds «(Jz) C 8 fork = 0,...,r, because

aely e €5t (a, b)) : [Ye(yls) — ¥k (Bl <eb fork =0,...,r.

Thus, to prove the claim it is enough to check

2.7 a([ti —=6,t)) C{fi1>0,..., fis >0} C 8j_1,
2.8) a((ti, t; +68]) C{gi1 >0,...,gs >0} CS;

fori =1,...,r. We show only (2.7), because the proof of (2.8) is analogous.
Using Taylor’s expansion, we know that o around #; has the form

L
a®) = 3 ™) (6~ 1) + (5 - 1) (e~ )

m=0

L
1
=Y =B —0)" + & —0) T e —n),
= m!
where 7 is a continuous map defined on an interval around 0 (we recall here that o belongs
to ‘C’é“([a, b],R™). As B is analytic in a neighborhood of #;, there exists a tuple of analytic
series T € R{t}” such that

14

B) =) % B () (6 — )™ + (£ — 1) T T (e — 1y).

m=0
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Thus, if { := n — 7, which is a continuous function around 0, we deduce

a(t) =)=t —t)T et —t) ~ alti—t)— Bt —t) = ()T ().

Recall that x := (x1,...,X,), write y := (y1,...,¥,) and let z be a single variable. As the
polynomial f;; (x + zy) — f;;j (x) vanishes on the real algebraic set {z = 0}, there exists a
polynomial Fj; € R[x,y, z] such that

.ﬁ/ (X + Zy) = .ﬁ/ (X) + ZEI (X’ NE Z)'

As £ > n;;, we deduce

Jij(a(ti —t))
= fiy(Bti —t) + a(ty —t) — B(t: —t)) = fi; (Bt —t) + (—t)* e (—t))
= fij(B(ti — 1)) + (=D (Bt — 1), L(—t), (=D IeHY) = g8 4

Consequently, ( f;; oa)™(1;)=0form=0,... ,nj; —1 and (—1)(”1./)(ﬁj oa)®i)(1;) =
nijta;; > 0.In addition, oe(t; —t) € {fi1 > 0,..., fis > 0} fort € (0, §) close to 0.

As (=1 (fij 0 Bl1) ™) (1 — £) > & > 0 on [=8, 8] and |(fij © Bl1,) ™ — (fij o
alr,)™)| < &, we conclude that (— 1)(”11)(f] oalr )(”U)(t, —t) > 0 on [-4, §] for each
] =1,...,s. Suppose there exists a point t* € [t; — 8, #;) such that a«(z*) ¢ {fi1 >

,f,s > 0} and assume (fj; c@)(t*) <0. As a(t;i —t) €{fi1 > 0,..., fis > 0}
for t €(0,6) close to 0, there exists & € (0, 8) such that ( f;; o @)(t; —&p) = 0. Assume by
induction on m < n;; — 1 that there exist values 0 < &, <--- <&} <&y < § such that (fj; o
) D(t; — &) =0for j =0,...,m. As (fi1 o)™ (t;) = 0and (f;1 o)™ (t; — &) =0,
there exists by Rolle’s theorem £, 1 € (0, £5,) such that (f;; o &)™V (t; — £,41) = 0.
In particular, ( f;; o o) (f; — £n;,) = 0and &,,, € (0,8), which contradicts the fact that
(=D (fiy 0 a|11.)(”“)(ti —t) > 0on [—4,8]. Consequently, a(t) €{ f;1 >0, ..., fis>0}
for each ¢ € [t; — §, t;). Observe that to prove the latter assertion we have only used that
|(fij © Blr) ™ — (fij o alr,)®)| < & and not that [( f;j 0 B11,)™ — (fij o a|r,) ™| <&
form =1,...,n;; — 1. We will go deeper into this fact in Remark 2.13 (i).

(2) Let K’ C 2 be a compact set that contains K and let 0 < ¥ < p. By Lemma 2.10,
there exists a polynomial tuple o € R[t]” such that ||o — B1|[4,5] <k, @™ — B | <k
form=1,...,¢ (soae‘ll)anda(m)(t,-) = ﬂ(’")(t,-) fori =1,...,randm =0,...,L
By (1), we deduce a((t;,t;+1)) C 8; fori = 0,...,r. In addition, « is close to B in
the E’é-topology of E’é“[a, b], as required. |

Remarks 2.13. (i) Suppose that in the statement of Lemma 2.12 each semialgebraic set §;
is the interior of an n-dimensional convex polyhedra. Then we may assume that each §; :=
{hin > 0,..., hijs > 0}, where h;; € R[x], is a polynomial of degree 1 fori =0,...,r
Recall that J; := [tx + 6, tg+1 — 6] for k = 0,...,r and that I; :=[t; — §,t; + §]
fori = 1,...,r. We keep the notations introduced in the statement and the proof of
Lemma 2.12(1) and we analyze how we can simplify the conditions that appear in the
statement and the proof of Lemma 2.12(1) to guarantee that a((¢x, fx+1)) C Sk for k =
0,...,r —1. Weconsider f;; :==h;—y,;and g;; :=h;jfori =1,...,randj =1,...,s
First, to have a(Jg) C 8, it is enough that

[l dist(at| s, R" \ 8g) — dist(Bls. R" \ 8¢)lls, < min{dist(B]y, . R" \ S)}
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fork =0,...,r — 1. By hypothesis, the Taylor polynomials of & and f at #; coincide until
degree £. To guarantee that

(2.9 a(fti =8,t:)) C8i—1 ={hi—1,1>0,...,hi_15> 0},

(2.10) Oé((l‘i,l‘i+5])CSi Z{hil >O,...,hi5>0}

fori =1,...,r itis enough to have, in view of the proof of Lemma 2.12(1), the following
properties:

[Grim,j 0 Bli) ™7 = (hicr,j 0 )™ < mind (=)@ (i, © Bl1) "),
Grij 0 Bli) P = (hij o ) P75, < mind (hij o Blz,) P}
fori =1,...,r. Thus, we do not have to care about the derivatives of order strictly smaller
than n;; or p;; (depending on the case). This reduction will be used in the proof of Main

Theorem 1.9 in order to simplify the estimations provided in §4.4.
(@ii) In view of Remark 2.11, it is not necessary to use in Lemma 2.12(1) that the

derivatives of & and 8 at t; coincide form =0,...,£, butonly form =0,..., max{n;;, p;; :
j=1,...,s}
(i) If §;_1 = §; for some i = 1,...,r in the statement of Lemma 2.12, the condi-

tion x; € CI(8;—1) N CI(8;) means x; € CI(S;) and condition (i) reads as B((¢;—1,ti+1) \
{t;}) C 8;. The reader has to take this into account when applying Lemma 2.12 to prove
Main Theorem 1.8.

3. Drawing Nash paths inside semialgebraic sets

In this section, we prove Main Theorem 1.8. Before that, we need a preliminary result.
Again, if we write a series in the form & := aktk + ---, we mean that the lowest order
term is ax t* (with ag # 0) and the remaining terms have higher order and are not relevant
for our computation.

3.1. Double Nash curve selection lemma

The following result is an amalgamated modification of the classical (Nash) curve selec-
tion lemma (see Proposition 8.1.13 in [2]) and double polynomial curve selection lemma
(see Lemma 3.8 in [15]).

Lemma 3.1 (Double Nash curve selection lemma). Let 8 C R” be a semialgebraic set
of dimension d > 2 and let 84 be the set of points of 8 of dimension d. Pick a point
p € CI(8y). Then there exists a Nash arc a:[—1, 1] — R” such that «(0) = p, a([—1,1] \
{0}) C 84 and a([—1,0)) Na((0,1]) = @. If 8 has dimension n, we may assume o is a
polynomial arc.

Proof. Let X be the Zariski closure of 8 in R”, which is an algebraic set of dimension d.
By Theorem 2.1, there exist a non-singular algebraic set X’ C R™ and a proper regular
map f: X" — X such that f[xn -1 (sinex)): X'\ f 1 (Sing(X)) — X \ Sing(X) is a
Nash diffeomorphism whose inverse map is also regular. As dim(Sing(X)) <d — 1, we
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have 8; \ Sing(X) is dense in 84. As p € CI(S;) = CI(S,4 \ Sing(X)) and f is proper,
there exists a point p’ € C1(f (84 \ Sing(X))) such that f(p’) = p. Assume that we find
aNash arc B:[—1, 1] — R™ such that 8(0) = p/, B([—1.1]\ {0}) C f~1(84 \ Sing(X))
and B([—1,0)) N B((0,1]) = @. As f is a regular map and in particular a Nash map, if
we define @ := f o 8, we will be done.

So let us assume: the Zariski closure X of 8 in R" is non-singular (and conse-
quently X is a disjoint union of finitely many Nash manifolds maybe of different dimen-
sions) and we have an algebraic set Y C X of dimension strictly smaller than d ‘to be
avoided’. Let U C R" be an open semialgebraic neighborhood of p in X endowed with
a Nash diffeomorphism ¢: U — R? such that ¢(p) = 0. Let 8” := ¢((S4 \ Y) N U) and
assume that we find a Nash arc y:[—1, 1] — R¢ such that y(0) = 0, y([—1, 1]\ {0}) C 8"
and y([—1,0)) N y((0,1]) = @. If we define B := ¢~ ! o y, we will be done.

Thus, we can suppose the following: § is pure dimensional of dimension n > 2, the
Zariski closure of S in R" is R”", and p € CI(8) is the origin. As Int(8) is dense in &
(because 8 is pure dimensional), there exists, by Proposition 8.1.13 in [2], a Nash arc  :=
M1y...,nn):[—1,1] = R” such that n(0) = p and n((0, 1]) C Int(8). After shrinking the
domain of 7, we may assume that each ; € R[[t]]a is an algebraic analytic series. After a
linear change of coordinates and a reparameterization of 7, we may assume that 7, := %
for some £, > 1 (recall that n > 2). As Int(S) is an open semialgebraic subset of R” and
p € CI(8) = ClI(Int(8)), there exist polynomials fi,..., f; € R[x] such that f;(p) =0
fori =1,...,r,and

n(0,e)) C{f1 >0,..., fr >0} CInt(S)

for some 0 < ¢ < 1 (because Int(8) can be written, by Theorem 2.7.2 in [2], as a finite
union of basic open semialgebraic sets, see Section 1.1). Consider the algebraic series
i () € R[[t]]ag, which satisfies f;(n) = ajtkf + --- forsome a; > 0 and k; > 1. Define
m:=max{k; : j=1,...,r} +{, 4+ 1 and let g > 2m be an odd positive integer. Let
¢j € R[[t]]ag be an algebraic series such that §; := n; + t™{; € R[t] is a univariate poly-
nomial for j = 1,...,n and & = 1, = t (that is, &, = 0). Denote £ := (£;,...,&,) and
C:=(l1.....Ly). Define y := £(t2) + tle; € R[t]", where e; := (1,0,...,0). As the
exponent ¢ is odd, all the exponents of the non-zero monomials (if any) of the polynomial
£1(t2) are even and & (t2) = t2¢2, we deduce y([—¢,0)) N y((0, ¢]) = @ for each & > 0.
Letx := (x1,...,%n), ¥ := (y1,-..,¥n) and let z be a single variable. Write

fix+zy) = fi(x) +zhj(x.y.2)
where 1; € R[x,y, z]. Then
i) = fiEE?) +t7e1) = fi(n(t?) + 2" ((£?) + t77ey))
= i) + 2" hi(n(£), L&) + 177 er, £77) = a; 8% -
so for ¢ > 0 small enough y: [—¢, e] — R” is a polynomial arc such that, in addition,
y([—&.e]\{0}) € {/1 > 0..... fr > 0} C Int(S)

and y(0) = 0 = p. After an affine reparameterization in order to have the interval [—1, 1]
as the domain of y, we deduce y is the searched polynomial path. ]
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3.2. Smart Nash curve selection lemma

Recall that a d-dimensional Nash manifold M C R” with boundary is a d-dimensional
smooth submanifold with boundary of R” that is in addition a semialgebraic set. We
are ready to prove Main Theorem 1.8 (although we postpone some technicalities until
Appendix A for the sake of clearness).

Proof of Main Theorem 1.8. Let X C R” be the Zariski closure of § in R”, T := CI(8) \
Reg(8) and Y C X the Zariski closure of T U Sing(X). If d := dim(8), then dim(X) = d
and dim(Y) <d —1,s0 8\ Y # O is dense in S, because S is pure dimensional. The
proof is conducted in several steps:

STEP 0. Reduction of the 1-dimensional case to the 2-dimensional case.

To avoid a misleading use of some preliminary results that only work for dimen-
sion > 2, we study this case separately. Assume that dim(X) = 1. Define 8* := 8§ U
{p1,.--»Pr-q1,-.-,4r—1}, Which is irreducible, by Lemma 7.3 and Corollary 7.6 in [10].
Observe that X is also the Zariski closure of 8°, because 8* C CI(S). Let X C C" be the
Zariski closure of X in C" and let (X ', 1) be the normalization of X . We endow (X ")
with an involution 6 X’ — X’ induced by the involution o X—>X that arises from the
restriction to X of the complex conjugation in C”. We may assume X' cC™and G is
the restriction to X’ of the complex conjugation in C™ (see Proposition 3.11 in [11]).
By Theorem 3.15 in [11] and as 8° is irreducible, 771 (8®) has a (unique) 1-dimensional
connected component 8, such that 7(8;) = 8°. As X has dimension 1, it is a coherent
analytic set, so 8 C Z := X’ NR™. As X’ is a normal curve, Z is a non- singular real
algebraic curve. We claim: the connected components of Z are Nash diffeomorphic either
to S' or to the real line R.

By Theorem VI.2.1 in [23], there exist a compact affine non-singular real algebraic
curve Z*, a finite set F, which is empty if Z is compact, and a union Z’ of some con-
nected components of Z* \ F such that Z is Nash diffeomorphic to Z’ and CI(Z’) is a
compact 1-dimensional Nash manifold with boundary F. As Z* is a compact affine non-
singular real algebraic curve, its connected components are diffeomorphic to S!, so by
Theorem VI.2.2 in [23], the connected components of Z* are in fact Nash diffeomorphic
to S!. Now, each connected component of Z is Nash diffeomorphic to an open connected
(semialgebraic) subset of S!, as claimed.

Consequently, 8;, is Nash diffeomorphic to a 1-dimensional connected (semialge-
braic) subset 8 of S!. Thus, there exists a generically 1-1 surjective Nash map ¢ from
a connected (semialgebraic) subset 8’ of S! to 8°. By Theorem 3.15 in [11] and as
each §; is irreducible (because it is a connected Nash manifold, see (3.1)(i) in [11]),
¢~ 1(8;) has a (unique) 1-dimensional connected component 8} such that ¢(8}) = §;,
which is an open connected (semialgebraic) subset of S!. As there exists a Nash bridge I';
between 8; and S;4+; with base point g;, there exists by Lemma B.2 in [10] a Nash
bridge I/ between 8 and 8/, with base point g/ € S' such that ¢(g}) = ¢; for i =
1,...,r — 1. Pick points p; € CI(8;) such that ¢(p;) = p; fori =1,...,r. Observe
that: If B:[0, 1] — S8° is a continuous semialgebraic path satisfying the conditions of the
statement of Main Theorem 1.8 with respect to 8°, there exists, by Lemmas B.1 and B.2
in [10], a continuous semialgebraic path y: [0, 1] — 8 satisfying the conditions of such
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statement with respect to 8' such that ¢ o y = B. In this case, we take p; := y(f;), which
fulfills ¢(p}) = pi,fori =1,...,r.

Consider the Nash retraction ¥: R \ {0} — S, (x,y) — (x,¥)/+/x2 + y2, which
satisfies ¥ |g1 = idg1, and define 8 := ¥ ~1(8!), which contains 8/, fori = 1,...,r. We
have:

+ 87 is an open connected semialgebraic subset of R2\ {0}, which is a Nash manifold.
* p; e CIES) CCIS)) fori =1,...,r.

* q; € CI(8)) NCI(8; ;) C CI(8)) NCI(8/, ;) fori =1,....r — 1.

T is a Nash bridge between §; C 8/ and 8; ; C 8/, ; with base point ¢g; for i =

1,...,r—1.

Thus, if we find a Nash path ao: [0, 1] = Ji_; 8/ U{p}.....pr.q}.....q._,} sat-
isfying the required conditions of the statement of Main Theorem 1.8 for the new setting,
thena:=¢oyoay:[0,1]>8 =Ui_,; 8 U{p1,....Pr.q1.-..,qr—1} is a Nash path
satisfying the required conditions in the statement.

Consequently, to prove Main Theorem 1.8 we assume in the following that d > 2. To
lighten notations, we reset all the notations used in STEP 0.

STEP 1. Construction of a suitable continuous semialgebraic path .
We show first: There exists a continuous semialgebraic path B: [0, 1] — R” such that

n(B) C O.D\{tr.....trs1.. s} BB C | Si

i=1

and B satisfies conditions (i), (ii) and (iii) in the statement of Main Theorem 1.8. Recall
that T := CI(8) \ Reg(8) and ¥ C X the Zariski closure of T U Sing(X).

Let us check: Foreachi = 1,...,r — 1, we may modify the Nash bridges I'; in order
to have in addition I'; NY C{q;}and (T; \{q:}) N (T; \{g;}) = if i # .

Pick any index i = 1,...,r — 1 and suppose we have constructed the Nash bridges I';
for 1 < j <i — 1 satisfying the required conditions. Denote the Zariski closure of U;-_:ll I';
with Y/. We distinguish two cases:

Case 1. Suppose first ¢; € CI(8; N §;41).

Observe that 8§; N S;4+1 # @ is pure dimensional and dim(8; N 8;4+1) = d. Asdim(Y')
<dim(8; N'8;41) and dim(Y/) <1 <2 <dim(8; N 8; 1), we have g; € CI((8; N S;41) \
(Y UY/)). By Lemma 3.1, there exists a Nash arc o: [—1, 1] — R” such that «(0) = ¢;,
a([=1, 1]\ {0}) C (&; N8;41) \ (Y UY/)) and a([—1,0)) Nx((0, 1]) = @. We substitute
the old I'; by the new I'; := a([—1,1]) and observe I'; N Y C {g;} and (I'; \ {g; }) N (I'; \
{g;ph) =2ifl =j <i—-1

Case 2. Suppose next ¢; ¢ CI(8; N Sj+1).

Then there exists an open semialgebraic neighborhood U C X of ¢; such that §; N
Si+1NU =3.Asq; € CI(§;) NCI(8;+1), we also have ¢; € CI(S; N U) N CI(S;+1 N U).
We shrink U to have in addition that §; N U and 8; +1 N U are connected Nash manifolds.
Shrinking T'; if necessary, we have that it is a Nash bridge between 8; N U and 8,41 N U
with base point g;. By Main Theorem 1.1 and Proposition 7.6 in [10], the union (8; N U) U
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0 §i—-1 Si-10;—1 -1 4§ & i 0; 1

Figure 2. Construction of the Nash paths A; and ;.

(8i+1 NU) U {g;} is a semialgebraic set connected by analytic paths. By Proposition 7.8
in [10], we may assume that I; N (Y U Y/) C {g;}. In particular, (I'; \ {g;}) N (T'; \
lgjp) =2ifl<j<i-1

Next, let 8; : [—1,1] = I'; C 8 U {q; } be a Nash parameterization of the Nash bridge T’;
such that 8; (0) = ¢;, B; ([—1,0)) C 8; and B; ((0, 1]) C 8;+1. Let Y’ be the Zariski closure
of U:;} I';. Using Lemma 3.1 recursively, we find Nash arcs ¢;: [—1, 1] = §; U {p;} such
that «; (0) = p;, a; ([—1, 1]\ {0}) C & \ (Y UY’), 2;([-1,0)) N ((0,1]) = @ and if
we denote A; := «; ([—1,1]), then (A; \ {pi}) N (A; \{pj}) =@ forl <j <i<r.In
addition, (I; \ {¢;}) N (A; \ {pj}) =@ fori=1,...,r—1landj =1,...,r.

Thus, the collection of semialgebraic sets

{Fl\{(ﬁ} z:l,,r—l}U{A]\{p]}jzl,,r}

is a pairwise disjoint family. We affinely reparameterize the domains of 8; and o; and
shrink them if necessary in such a way that there exist values

=so=0<ti<O <fi<si<bi<n<th<lp

< < T <hLg< ;r—l < ég-r_l <SS 1 <O 1 <1 <t <1l=3s, = ;r

such that:
o o;itim1, 8] = 8 Uipiy and i (1) = pi-
d ﬂil [Si, 91] — Fi and /3,'(5‘,') =4dq;.
The points o;(ti—1), @i ({;), Bi—1(0i—1), Bi (&) belong to §; \ Y, which is an open
semialgebraic subset of the connected Nash manifold §;, and they are pairwise different.
By Theorem 1.5 in [10], there exist:

e a Nash path A; : [0;—1, 1;—1] — 8; such that A;(0;—1) = Bi—1(f;i—1) and A;(7i—1) =
@i (ti—1),
* aNash path i; : [§;, &] — 8; such that w; (§;) = «; (§;) and i (§:) = Bi(&).
By Lemma 7.7 in [10], we have 27! (Y) and p;' () are finite sets (Figure 2).
Denote

Z = {7707-“777r—17§15---aérvsls-~-s§r—1791»---»9r—1}-
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Thus, concatenating all the previous Nash paths and arcs, we construct a piecewise Nash
path 8:[0, 1] — R” such that
(1) B0, 1]) € Ui=; 8 ULpis-- o Praqrs - gra1}.
2) B(t;) = pifori =1,...,r.
(3) B((ti,si)) C 8i, B((sisti+1)) C Si+1 and B(si) = ;.
@ nB)czZcOD\{tr,....tr.51,...,5-—1} (because B|jo,1]\z is a Nash map).
(5) B~ (Y)is afinite setand n(B) N B~ (Y) = @ (as n(B) C Z and B(Z) NY = @).
Thus, we have provided a procedure to construct a continuous semialgebraic path

B:[0,1] — R” such that n(B) C (0, 1) \ {t1,....tr,81,...,8—1}, B~1(Y) is a finite set,
n(B) N B~1(Y) = @, and B satisfies conditions (i), (i) and (iii) in the statement.

STEP 2. Modification of a given continuous semialgebraic path B.

Fix in this step any continuous semialgebraic path §: [0, 1] — R” satisfying the re-
quired conditions (i), (ii) and (iii) in the statement. By Lemma A.l (below), we may
assume in addition (perturbing B slightly if necessary) that A~1(Y) is a finite set and
n(B) N B~1(Y) = @. For the sake of clearness and to make the proof more discursive, we
have postponed this technical part of the proof until Appendix A.

STEP 3. Reduction to the open semialgebraic setting.

By Theorem 2.1, there exist a non-singular algebraic set X’ C R™ and a proper regular
map f: X’ — X such that the restriction f'[x -1 (sing(x)): X \ f1(Sing(X)) — X \
Sing(X) is a Nash diffeomorphism whose inverse map is also regular. If A C X, the
strict transform of A under f is A’ := CI(f (A4 \ Sing(X)) N f~1(A). As f is proper,
f(A") = CI(A \ Sing(X)) N A. Thus, if A \ Sing(X) is dense in A, one has f(4) = A.
This happens for instance if A4 is a pure dimensional semialgebraic set of dimension d.

Let 8’ be the strict transform of Reg(8) under f and 8] the strict transform of 8;, which
is a connected Nash submanifold of R, because Reg(8) C X \ Sing(X). By Lemmas B.1
and B.2 in [10], the strict transform under f of B is a continuous semialgebraic path
y:10, 1] — CI(8’), which satisfies f oy = B.Denote p; := y(t;) and g, := y(s;). Observe
that f(p;) = pifori =1,...,rand f(q]) =¢g; fori =1,...,r — 1. We have:

(1) V([Os 1]) C U:=1 8; U{p/hvp;‘?qa”q;—l}
() y(t)=p;fori=1,...,r.

(i) y((ti,s:)) C 8}, y((si ti+1)) C 8} and y(s;) = g;.

By Corollary 8.9.5 in [2], there exists a Nash tubular neighborhood (U, p) of X’ in R™,
where p: U — X’ is a Nash retraction. Define 8" := p~!(8') and 8} := p~!(8}) for
k =1,...,r, which are open semialgebraic subsets of R™. As each Nash manifold S;c is
connected, shrinking U if necessary, we may assume in addition that each 8}/ is connected.
Observe that y([0, 1]) € U;—, 8y U{p}..... p}. 4. ... q._;}. There exists k > 0 small
enough such that y|[s; ¢ s;+«] supplies, by Lemmas B.1 and B.2 in [10], a Nash bridge
between 8/ and 87, fori =1,...,r — 1.

STEP 4. Computing the order of differentiability.

We need to compute certain positive integer £ in order to apply Lemma 2.12(2). Recall
that each 8/ is an open semialgebraic set and y is a Nash path in a neighborhood of the
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finite set {f1,...,#,S1....,5—1} such that y is a non-trivial Nash arc inside 8} U {p;]}
around #; and y provides a Nash bridge between 8} and 8} ; with base point g; around s;.
As each 87 is an open semialgebraic set, it is by Theorem 2.7.2 in [2] a finite union of
basic open semialgebraic sets, see Section 1.1. As y is a non-trivial Nash arc (around #;)
inside 87 U {p}}, both (open) branches around #; are contained in one of these basic open
semialgebraic sets. Thus, there exist polynomials f;;, g;; € R[x] such that:
o {fi1>0,..., fis > 0} C 8/ is adherent to p; and (f;; o y)(t; —t) = a;;t% + .-,
where a;; > 0 and e;; is a positive integer.
* {gi1>0,...,gis >0} C8isadherent to p; and (g;; o y)(t; + t) = b t"V 4 ---,
where b;; > 0 and u;; is a positive integer.

Analogously, as y provides (around s;) a Nash bridge between 8} and 8 ; with base
point g;, one of its two (open) branches around #; is contained in a basic open semial-
gebraic subset of 8! and its other (open) branch around #; is contained in a basic open
semialgebraic subset of 8 ;. Thus, there exist polynomials /;;,m;; € R[x] such that:

e {hi1 >0,...,hjs > 0} C 8} is adherent to g; and (h;j o y)(s; —t) = ¢;jt% +---,
where ¢;; > 0 and v;; is a positive integer.

o {mj1 >0,...,m;y >0} C8}  isadherentto g; and (m;; o y)(s; +t) = djj t¥ +---,
where d;; > 0 and w;; is a positive integer.
Define £ := max{e;j, u;j,vij, w;j : 1 <i <r, 1 <j <s}.
CONCLUSION.
By Lemma 2.12(2), there exists a polynomial path ¢g: R — R™ that satisfies:

(i) ([0, 1) C Uiz 8/ ULPL - Prdhs - dyy )

(i) ao(ty) = p)fori =1,...,r.

(i) oo ((t;,8:)) C 87, ao((si,ti+1)) C 87y and ag(s;) = g; fori =1,...,r — 1.

(iv) @ol[o,1] is close to y in the €9 topology.

Define o) := p o ag: R — R™ (where p is the Nash retraction provided in STEP 3),
which is a Nash path that satisfies:

@ a1 ([0, 1) C Uiy 8 APy o Pradls oGy )-
() oy(t;) =pjfori=1,...,r.
(i) o1 ((t;,8:)) C 8}, ar1((si.ti+1)) C 8 and oy (s;) =g; fori =1,...,r — L.
(iv) oql,17is closeto poy = y inthe €9 topology (Lemma 2.3).
Next define @ := f o a1 : R — R”, which is a Nash path that satisfies:
i) «(0.1) € Uiz 8 ULp1ee-v s prodi oo gra1}
(i) o) =pifori =1,...,r.
(i) a((t;,$)) C Si, a((si,ti+1)) C Si+1 anda(s;) =g¢; fori =1,...,r — 1.
(iv) a|[o,1]isclose to f oy = B in the €° topology (Lemma 2.3),

as required. ]

We revisit next a well-known characterization of the connexion by analytic paths for
semialgebraic sets. This result was proved indirectly in Main Theorem 1.4 in [10], show-
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ing that the corresponding two properties are both equivalent to the fact that the involved
semialgebraic set is the image of some R? under a Nash map.

Corollary 3.2. Let 8 C R" be a semialgebraic set of dimension d. The following condi-
tions are equivalent:

(1) 8 is connected by analytic paths.

(ii) 8 is pure dimensional and there exists an analytic path «: [0, 1] — 8 whose image
meets all the connected components of Reg(S).

Proof. Let 81, ...,8; be the connected components of Reg(8), which are pairwise dis-
joint. Let A be the graph proposed in Subsection 1.3.3, whose vertices are the Nash
manifolds 81, ..., 8¢ and such that there exists an edge between the vertices §; and §; if
and only if there exists a Nash bridge inside 8 between &; and 8;. When A is a connected
graph, there exists a sequence of semialgebraic sets T1, ..., T, such that {S;,...,8¢} =
{T1,...,7;} and for each index i = 1,...,r — 1 there exists a Nash bridge inside &
between J; and Tj 1.

(i) = (ii) We prove first that § is pure dimensional. Otherwise, there exist a point x € §
and an open semialgebraic neighborhood U C R” of x such that dim(8 N U) < dim(S).
Let Y be the Zariski closure of 8 N U and pick a point y € 8 \ Y, which is non-empty
because dim(Y) < dim(8). As 8 is connected by analytic paths, there exists an analytic
path : [0, 1] — 8 such that «(0) = x and a(1) = y. The inverse image V := a~}(§ N U)
is an open semialgebraic subset of [0, 1] that contains 0. Let f € R[x] be a polynomial
equation of Y. As (f o )|y = 0 and [0, 1] is connected, the identity principle for analytic
functions implies that f oo =0,s0 f(y) =0and y € Y, which is a contradiction. Thus, 8
is pure dimensional.

By Lemma 1.10, we know that A is a connected graph. Now pick points x; € T; for
i =1,...,r. By Main Theorem 1.8, there exists a Nash path «: [0, 1] — 8 such that
alk/(r+1)) =xi fork =1,...,r. Thus a: [0, 1] — 8§ is an analytic path that meets all
the connected components of Reg(S).

(il))= (1) We prove next recursively that: A is a connected graph. It is enough: fo
reorder recursively the indices i = 1,...,L in such a way that, for eachi = 2,... 4,
there exists a Nash bridge inside 8 between &; and some &; with1 < j <i — 1.

Define #; := inf(a~!(8;)) fori = 1,...,£. As each o~ 1(8;) is an open semialgebraic
subset of [0, 1] and 8; N 8; = @ if i # j, we deduce #; # t; if i # j. We reorder the
indices i = 1,..., ¢ in such a way that i < j if #; < #;. There exists € > 0 such that
a((ti —e,t;)) C 8 forsome 1 < j <i and a((t;,1; +¢€)) C 8; foreachi =2,...,4.
Consequently, there exists a Nash bridge inside § between §; and some 8; with 1 < j <
i—1fori =2,...,4.

Choose a sequence of semialgebraic sets J1,. . ., T, such that the equality {S1,...,8;}
= {T1,...,7;} holds and for each index i = 1,...,r — 1, there exists a Nash bridge
between T; and T; 1. As 8 is pure dimensional, § = Cl(Reg(8)) N8 = |Ji_, CI(T;) N S.
If x, y € 8, there exist indices 7, j such that x € CI(7;) and y € CI(T;). We may assume
i < j and we pick points x; € Ty fork =i +1,..., j — 1 and write x; 1= x and x; := y.
By Main Theorem 1.8, there exists a Nash path «: [0, 1] — 8 such that «(0) = x and
(1) = y. Thus, § is connected by Nash paths and consequently by analytic paths, as
required. ]
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4. Polynomial paths inside piecewise linear semialgebraic sets

In this section, we prove Main Theorem 1.9, that is, we revisit Main Theorem 1.8 for
the piecewise linear (PL) case: the involved semialgebraic sets are the interiors of con-
vex polyhedra of dimension n. Due to the maximality of the dimension of the convex
polyhedra, we are under the hypothesis of Theorem 1.6 and the obtained ‘smart’ path
can be chosen polynomial. In order to get better bounds for the degrees of these polyno-
mial paths: (1) we state a (polynomial) curve selection lemma for convex polyhedra that
involves degree 3 cuspidal curves (Lemma 4.1), and (2) we prove that the simplex poly-
nomial paths that connect two convex polyhedra (whose union is connected by analytic
paths) are moment curves (Theorem 4.2).

4.1. Double Nash curve selection lemma for PL semialgebraic sets

In order to lighten the presentation, we first find a simplified version of Lemma 3.1 for
convex polyhedra (Figure 3). Denote R[x] := R[x1,. . ., x,]. Given a polynomial & € R[x]
of degree 1, denote i := h — h(0), which is a linear form.

Lemma 4.1 (Cuspidal curve). Let X C R” be an n-dimensional convex polyhedron and
let p e K. Assume that p is the origin and the point e; := (1,0,...,0) € Int(X). Consider
the polynomial map a: R — R”™, t — (t2,¢3,0,...,0). Then there exists ¢ > 0 such that
a([—e, g]) C Int(K) U {p}.

p

Figure 3. Cuspidal curve of Lemma 4.1.

Proof. Lethy, ..., hy, € R[x] be polynomials of degree 1 such that
K:={h1>0,...,hy > 0}.

As ey € Int(X), we have hg(e;) > 0fork = 1,...,m. Write fzk := hy(x) — hy(0), which
is a linear form. Observe that

hic(er) = hie(0) + i (er) > 0,
hie(2,63,0,...,0) = hi (0) + 12 he(1,1,0, ..., 0).
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We distinguish two cases:
CASE 1. lig(er) > 0 (and /1 (0) > 0).
As fr:R >R, t — Ek(l,t,O,...,O) = l_{k(el) + ti_{k(O, 1,0,...,0) is continuous

and fr(0) = hg(ey) > 0, there exists g > 0 such that if || < g, then fr(z) > 0. As
hi(0) = 0,

he(t2,62,0,...,0) = he(0) + 12 he(1,2,0,...,0) > 0 if 0 < |¢| < ex.

CASE 2. hg(e1) < 0.

Then hr (0) > 0. As gx: R — R, t > h(0) + tzgk(l,t, 0,...,0) is continuous and
hi(0) > 0, there exists g > 0 such that if |z| < &, then he(t2,13,0,...,0) > 0.

To finish, it is enough to take & := min{eq,..., &5} > 0. n

4.2. Moment bridges between convex polyhedra

We analyze next the structure of the simplest possible Nash bridges between two convex
polyhedra such that their union is a semialgebraic set connected by analytic paths and,
surprisingly, moment curves appear (Figure 4).

Theorem 4.2 (Moment curves). Let X1, K, C R” be n-dimensional convex polyhedra
such that 0 € X1 N XKy and Int(K1) N Int(Ky) = &. Assume that there exists a Nash arc
a:[—1,1] = Ky UK, such that «(0) = 0, a([—1,0)) C Int(Ky) and a((0, 1]) C Int(XK,).
Then there exist e = 1,2, an integer e < d < n and ¢ > 0 such that, after an affine change
of coordinates in R", the polynomial arc B := (B1, ..., Bn) : [—¢, €] = K1 U K; satisfies
B0) =0,

tetk=l ifk =1,....d,

0 ifk=d+1,...,n,

B([—&,0)) C Int(Ky) and B((0, g]) C Int(K>).

To prove Theorem 4.2, we need a preliminary result. Given a non-zero power series
¢ = Zkzo arpt® e R[[t]], we denote its order with respect to t with w(¢) := min{k > 0
ay # 0}. For completeness, w(0) := +o0.

Bi(t) = {

Lemma 4.3. Let X C R” be an n-dimensional convex polyhedron that contains the ori-
gin and let o := (a1, ...,0,): [—1,1] = R” be a Nash arc such that «(0) = 0 and
a((0, 1) € Int(KX). Assume k; ‘= w(o;) < w(®jy1) =: ki+1 fori = 1,...,n and write
o; = thi(a; + ty;), where a; € R\ {0} and y; is a Nash series. Then the monomial
map B:= (B1.....Bn):R = R", t > (a11%, ... a,t*) satisfies B((0, €]) C Int(X) for
some & > 0.

Proof. Write K :={h; >0, ..., hy > 0}, where h; € R[x] are polynomials of degree
one. As the origin belongs to X, we have /;(0) > 0. Write h; := h; — h;(0), where h; is
a linear form. Thus,

hi(ay.....an) =hij(0) + (e, ... o).
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X1

X2

X NN\ K

Figure 4. Moment curves of Theorem 4.2.

If j(0) > 0, there exists &; > O such that &; (81(¢),....Bx(¢)) > 0if 0 <t < g;, because

Bi(B1,...,Bn) = tF1n;(t)

for some Nash series 1; € R[[t]]ag. If 2;(0) = 0, then h; = /;j. Write h; := bjp, %p; +
«+++ bjnxu, where bj,. # 0. Then

ky.
hj(or,...on) = hj(ap;,....an) = bjp, ap, t77 (1 + t7;),
ky.
hj(Bis....Bn) =hj(Bp;s....Bn) = bjp, ap; £77 (1 + t0;),
where 7}, 0; € R[[t]]ag are Nash series. As /i (a1, ..., 05)(¢) > 0for 0 < ¢ < 1, we deduce
bjp;ap; > 0, so there exists &; > 0 such that 7;(B1, ..., Bx) (1) > 0if 0 <1 <.
To finish, it is enough to take & := min{eq, ..., &y} > 0. [

We are ready to prove Theorem 4.2.
Proof of Theorem 4.2. The proof is conducted in several steps.

STEP 0. Initial preparation.

As o := (v, ..., 0p) is a Nash arc such that «(0) = 0, we may assume (after a
linear change of coordinates) w(og) < w(ag+1) for £ = 1,...,n — 1 and the previous
inequality is strict if g # 0 for £ = 1,...,n — 1. Assume oy = 0 exactly for £ =
s+ 1,...,n. The tangent to « at t = O is the line {x, =0, .. ., %, = 0}. Consider the inter-
sections fK; =K; N{xs4+1 =0,...,%, =0}, which are non-empty s-dimensional convex
polyhedra for i = 1,2 such that «([—e¢, 0)) C Int(XK’) and «((0, €]) C Int(XY}). The pre-
vious assertion holds because «([—¢,0)) C Int(XK;), @ ((0, ¢]) C Int(K,) and a([—¢, €]) C
{xs41 =0,...,%, = 0}. By Lemma 4.3 and after a new linear change of coordinates
we may assume oy 1= tke for £ = ,...,8, kg <kggyford=1,...,s —landay =0
for{ =s+1,...,n.
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Write X; := {h;1 > 0,...,h; > 0}, where h;; € R[x] are polynomials of degree 1
and recall that Int(X;) = {h;; > O0,...,hjy > 0}.

STEP 1. First modification of the Nash arc «.

We claim: we may assume w(ay) is either 1 (if k1 is odd) or 2 (if ky is even).

As a(t) C Int(X;) for (—1)"t > 0 small enough, each h;; («(¢)) > 0 if (—=1)'t > 0 is
small enough for i = 1, 2. Write

R if k1 is odd,
)2 ifk; iseven.

We claim: a*: R — R”, 1t > (¢, tk2—kite  thks—kite o 0) is the monomial map
we are looking for in this step. Let us check: a* satisfies the inequalities defining Int(X;)
for (=1)'t > 0 small enough andi = 1,2. In addition, h;;(t¢,0,...,0) >0 for (=1)'t >0
ifi=12andj=1,...,r.

Fix any pair (i, j). If #;;(0) > 0, there is nothing to prove, so we assume #;;(0) = 0.
We have

hijek, . tks0,..0,0) = thimen g8, thekite  gkTRite o 0).

As ky — e is even, h; (1€, theFkite  yks—kite o 0) > 0 for (—=1)'t > 0 small
enough. We deduce considering its Taylor expansion at O that 4;;(¢¢,0,...,0) > 0 for
(=1)"t > 0, because kj —k; > 0for A =2,...,s. Thus, after substituting o by a*, we can
suppose « 1= (te,tk/Z, .. .,tké,O,...,O), Wherek;L i=kj—ki+eande <kl <--- <kj.
In the following, we denote k; with k; to lighten notation.

STEP 2. Second modification of the Nash arc «.

Let us check next: After a linear change of coordinates, we may assume either s = 1
ande = lors >2andky, = e + 1.

Pick any pair (i, j). If h;; (¢¢,0,...,0) > 0 for (—1)'¢ > 0, there exists 7 € (0, 1) (valid
for each pair (i, j) in this situation) such that if (ca, ..., ¢,) € R*7! and each |cx| < 1,
then h;j (1€, cat®, ..., cnt®) > 0. Otherwise, h;;(t€,0,...,0) = 0 for (=1)'t > 0, so h;;
is a linear form that does not depend on x;.

Next, we distinguish two cases:

CASE 1. ky — e is even.
We check first: If a: R —>_R", t > (t°, tkz ik 0, 0) is a monomial map such
that a(t) € Int(X;) for (—1)'t > 0 small enough, then

a* :R—R", t~ (t°nte, ntk3_k2+e, e ntks_k2+e,0, ...,0)

is a monomial map such that a*(t) € Int(X;) for (=1)'t > 0 small enough.
Pick any pair (i, j). If h;; (¢¢,0,...,0) > 0 for (=1)"z > 0, then

hij (18, nee, prka—kate  prksmhkate o 0) >0
for 0 < (—1)'t < 5. If h;; is a linear form that does not depend on x1, then
0 < hij(e*2, ... pe%s,0,...,0) = prke=e py;(ee tkakete | fhsmhate o o)
= k2= ;i (e¢, e prkaThete  prksThate o 0)
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for 0 < (—=1)'t < n small enough. After substituting o by a*, we suppose

a = (t% nt°, ntk/Z,...,ntké—l,O,...,O),

where k) =k —ky+eforA=2,....s —lande <kj <--- <k;_,. We denote k,
with k, to lighten notation. After a linear change of coordinates, we may assume « :=
(te, ek, .tk 0,...,0).

Now, if k, — e is again even, we repeat the procedure developed in this CASE 1 and
proceed recursively. After finitely many steps, either the corresponding k, — e is odd or
a(t) = (t%,0,...,0), where e = 1,2. If e = 2, then «(¢) = a(—t) = (12,0,...,0) €
Int(X1) N Int(X,) = @ for ¢ > 0 small enough, which is a contradiction. Consequently,
in this latter case e = 1.

CASE 2. kp — e is odd.

We prove first the following: If a: R — R”, ¢ — (¢¢, the o tks 0, 0) is a
monomial map such that a(t) € Int(X;) for (—=1)'t > 0 small enough, then «*: R — R”",
1> (1€, 18T ha—katetl  pks—katetl . 0) is a monomial map such that o(t) €
Int(K;) for (=1)'t > 0 small enough.

We have k, — e — 1 is even. Pick any pair (i, j). If h;; (¢¢,0,...,0) > 0 for (—=1)'¢ > 0,
then

hij([e te+1 tks—k2+e+1 tks—k2+e+1 0.. .. O) >0
for 0 < (—1)'t < 5. If h;; is a linear form that does not depend on x1, then
0 < hij (e, 1%, ... 1%5,0,...,0) = hyy (%2, ... t%,0,...,0)

— tszefl hlj (t€+l’ tk37k2+6+1’ e tk57k2+6+1, 0’ o O)

= tkememlp, (0, oL hahatetl | pkemkatetl g o)

for 0 < (—=1)'t < n small enough. As k, — e — 1 is even,

hij(te te+1 tk3_k2+€+l tks_k2+€+l O 0) > O
for 0 < (—=1)'t < n small enough. Thus, we can suppose
a:= (8t ek Ltk 0,...,0),

where k) :=ky —ky+e+1forA=3,....,sande + 1 < kj <--- < k;. Again, we
denote k) with k; to lighten notation.

STEP £ + 1. Recursive modification of the Nash arc a.

Suppose £ > 2 and

a:R >R, e (et et e iR 0,000, 0)

is a monomial map such thate 4+ £ — 1 <kgqq <--- < kg and a(t) € Int(X;) for (=1)i¢ >0
small enough. Let us check: After a linear change of coordinates, we may assume that
either

a:R—>R", e (@€t tt0,...,0)
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satisfies a(t) € Int(X;) for (—1)'t > 0 small enough or there exist s' < s and positive
integerse + € <kj, , <-< %5 such that

! ’
o R RY e (@80t t pet ke ke 0,0, 0)

satisfies a(t) € Int(XK;) for (—=1)'t > 0 small enough.
Fix a pair of indices (i, j). We have

hij (€ ee Ty et ke fks 0,..0,0)> 0
for (—1)’¢ > 0 small enough. We deduce considering its Taylor expansion at 0 that
hij (¢ e, et 0,...,0) >0
for (—1)'¢ > 0 small enough, because k) — (e + £ —1) > 0forA =L+ 1,...,s.If
hij(e eet, et 0,00 >0

for (—l)it > 0 small enough, there exists an integer 1 < m;; < £ such that /;; does not
depend on x1, ..., Xpm,;—1 and h;; (€5 71,0,...,0) > 0 for (=1)’t > 0 small enough.
Thus, there exists n € (0, 1) (valid for each pair (i, j) in this situation) such that if
(Cmij+15--->cn) € R and each |cx| < 7, then

hij(e€,ee*t, et etmi=l et 0,...,0)

El Cmij-i-lt
= hyp (T oyt T et TT10,...,0) > 0

for (—1)’¢ > 0 small enough.

Otherwise, h;; (¢¢,t¢%1, ... 16741 0,...,0) = 0 for (—1)'t > 0 small enough, so /;;
is a linear form that does not depend on x4, . .., xy.

Next, we distinguish two cases.

CASE 1. kyy1 — (e + £ —1) is even.

We check first:

a* TR > R, 1> (16,0070, o et ke ken el
L ptfTRentert= g )
is a monomial map such that a(t) € Int(X;) for (1)t > 0 small enough.

Pick any pair (i, j). If h;;(¢€, T, ..., t¢F¢1,0,...,0) > 0 for (—1)'t > 0 small
enough, then

Rij(e€ 06FY, et et ke Tkentet b=l ks —kentett=l o 0) >0
for 0 < (—1)it < n. If h;j is a linear form that does not depend on xy, . .., x¢, then
0 < nhyj(ken, . 1%s0,...,0)
=7 tkg+1—(e+[—l) hl] (te-i-[—l , tk{+2—k[+1+e+e—l’ o, st—kg+1+8+e—l, 0’ o, 0)
— lkl+1—(e+£—l) hij (te, te+1’ o te+€—l i nte+£—l’ ntk£+2—kg+1+e+l—l ,

L pthTRenrert=1 g )
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for 0 < (—=1)’t < n small enough. As ky; — (e + £ — 1) is even,

hij ([e! le+1 e, te-i—E—l , nte+£—l , ntk@+2—kg+1+e+l—1, e ntks—k@+1+€+e—l’07 . ,O) >O
Thus, after substituting « by o™, we can suppose
! ’
o= (g0, et et peet il pike o ek 0,..0,0),

where k), :=k;k+1—kg+1+e+€—1fork=€+1,...,s—1ande+2—1<ké+1<

-+ <k;_,. We denote k) with k to lighten notation. After a linear change of coordinates,
we may assume o 1= (t¢, !, .. gt gk otk 0,0, 0).

Now, if kgyq — (e + £ — 1) is again even, we repeat the procedure developed in
this CASE 1 and proceed recursively. After finitely many steps, either the correspond-
ingkypq — (e +£—1)isodd or a(t) = (t¢,t¢F1, ... t¢t¢71,0,...,0), wheree = 1,2
and £ > 2.

CASE 2. kyy1 — (e + £ — 1) is odd.

We prove first:

o R >R, t> (8,001, pe T e tt keamkeptert  gks—kiptett o o )

is a monomial map such that a(t) € Int(X;) for (1)t > 0 small enough.
Observe that kg1 — (e + £) is even and pick any pair (i, j). If

hij (et 0,...,0) > 0
for (—1)’¢ > 0 small enough, then
hij (€, 67, et et pReamkentetl | ykimkentett o 0) >0
for 0 < (—l)it < n. If hyj is a linear form that does not depend on x1, . .., x¢, then

0 < hyj (€, 06Tt et ke ks 0, 0) = hyp (ke ek 0,.0.,0)
Ztk4+1—(e+i)hij (te+5’ thera—kepitett o iks—keatetl o 0)

Ztk“.l—(e-i-l)hij (te’ te+1 N [e+l—1’ te+l’ [kg+2—k5+1+e+£7 o th—k(+1+e+£’ 0..... ())

for 0 < (=1)'t < n small enough. As kg, — (e + £) is even,

hij (te, t€+1’ e t€+e—l’ t€+€’ tké+2—kl+1+3+€7 o tks—ke+1+2+i7 0’ o O) >0
for 0 < (1)t < n small enough. Thus, we can suppose
’
a = (g0, et get ke K 0,. .., 0),

where k) :=kjy — kg1 +(e+ ) ande + € < k2+2 < -+ < kj. Again, we denote k/
with k), to lighten notation.

CONCLUSION.
The process ends after finitely many steps providing the required statement. ]
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K1

N\

Figure 5. Polyhedra K; and X3¢ of Example 4.4.

The following example supplies a pair of n-dimensional convex polyhedra in R” with
disjoint interiors and adherent to the origin for which the simplest monomial paths con-
necting their interiors analytically through the origin are moment paths.

Examples 4.4. Denote x,,+1 := 0 and let xq, ..., x, be variables. Consider for e = 0, 1,
the convex polyhedra (Figure 5)

Ky =k <xp—1, k=2,....,n+ 1} N{x; <1},
Koe 1= {(—l)k“xk < (—l)k_“”xk_l, k=2,....n+1}n{(=Dex; < 1}.
We have
Int(Ky) :={xx <xp—1, k=2,....,n+ 1} N{x; <1},
Int(Kae) = {(=DFxp < (=D Hexp_y bk =2,....n+ 1} 0 {(=D)"**x; < 1}.
One can check that

{0} ife =0,

K1 N Kpe =
P {{05x1§1,xk=o:k=2,...,n} ife =1,

and Int(K;) N Int(X,¢) = &. Consider a monomial map

ac :R—->R" (altk‘,...,a,,tk”)

for some integers k; > 1 (so a¢(0) = 0) and some aq,...,a, € R (see Lemma 4.3).
Assume there exists § > 0 such that a¢((0, §]) C Int(X;) and ae([—8, 0)) C Int(Kye).
Consequently,
“.1) 1>a1tk1>--->agtk@>--->antk”>0,
(4.2) 1> (D) thg -k > s (—DEetke g (—)ke

R G i A C

where 0 <t < § in (4.1) and 0 < —t < § in (4.2). Thus, each a; > 0, k; < kg4 for
£=1,...,n—1and{ + € + kg iseven foreach £ = 1,...,n, so the parity of k; coincides
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with the one of £ + € (so kgkyyq is odd for £ = 1,...,n — 1). The minimal possible
choice for the exponents is ky = £ + € for £ = 1,...,n and € = 0, 1, so we obtain the
moment curve @e: R — R”? ¢ > (a2, axt?T€, ..., a,t"t€), for some ay,...,a, >0
ande =0, 1.

4.3. Proof of Main Theorem 1.9

As we are working with convex polyhedra, the polynomial paths joining polynomial arcs
and polynomial bridges can be chosen to be segments. For each a € R” and ¢ > 0, denote
the open ball of center a and radius ¢ > 0 with B, (a, ). In order to compute the distance
of a segment inside an n-dimensional convex polyhedron K C R” to its exterior R” \ K
(or equivalently to its boundary dXK), we present the following result.

Lemma 4.5. Let C C R” be a convex set (that spans R™) and let x,y € C. Let S be the
segment that connects x and y. Then

dist(8, R"™ \ Int(€)) = min{dist(x, R" \ Int(C)), dist(y, R” \ Int(C))}.

Proof. 1If either x or y belong to dC, then dist(S, R” \ Int(C)) = 0 and the equality in the
statement holds. Assume 0 < ¢ := dist(x, R” \ Int(C)) < dist(y, R" \ Int(C)) and observe
that B, (x,¢€), B,(y. &) C Int(C). We claim: (), Bx(z,€) C Int(C). Once this is proved,
the equality in the statement follows straightforwardly.

Letz € Sand p € B, (z,¢). Lett €[0, 1] be such that z = tx 4+ (1 —¢)y. Consider the
points p; :=x+ (p—z)and pr :=y + (p —z). As peB,(z,¢), we have |p — z|| <&,
so p1 € B, (x,¢) C Int(C) and p, € B,(y,¢) C Int(C). Thus,

p=tx+(@-2)+ A=)+ (p—-2)=tpi+ (1 -1)p2 € Int(C),
as required. ]

We are ready to prove Main Theorem 1.9 by simplifying the proof of Main Theo-
rem 1.8. The degree of a polynomial map a: R — R” is the maximum of the degrees of
its components.

Proof of Main Theorem 1.9. By Lemma 4.1, for each #; there exist a polynomial path
Bi:R — R” of degree ¢; <3 and §; > O such that B;(¢;) = p; and A; := B; ([t; — &;,t; +
8i]) € 8; U {p;} is contained in a small enough ball centered at p;.

Fix i = 1,...,r — 1 and recall that both §; and 8;4; are the interiors of convex
polyhedra of dimension . Suppose first §; N 8;4+1 7# . The intersection §; N ;41 is the
interior of a convex polyhedron of dimension n. By Lemma 4.1, there exists a polynomial
arc Aj:[si—pi,si +pi] = 8 N 841 of degree 3 < n + 1 such that A; ([s; —p;, si +pi] \
{pi}) C (8; N'8;+1) U {q;} and we substitute I'; by the image of A;. Suppose next 8; N
S8i+1 = @.Letn;:[—1,1] = 8 U8;41 U{q;} be a Nash parameterization of I'; such that
7i([—1,0)) C 8; and 1;((0,1]) C 8;+1. By Theorem 4.2, we can modify I'; and after that,
it admits a polynomial parameterization A;: [s; — p;,s; + pi] = S; U S;j4+1 U {q; } of degree
di <n+1,where p; >0, A;(s;) = qi, Ai ([si — pi,s:)) C8; and A; ((si, 8 + pi]) C Sit1.
We choose each p; > 0 small enough to guarantee that I'; is contained in a small enough
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Figure 6. Construction of the polygonal path 8 (blue), the continuous piecewise polynomial path y
(red and dashed black) and the polynomial path o (green).

ball centered at ¢;. Denote t; :=t; — 8;, 0; :=1t; + 8;, & = s; — p; and &; := s; + p;.
We may assume
O0<t1 <t <91 <§1 <8 <§1 <1’2<l‘2<92<'-'<€§r_1 < Sr—1 <§r—l

<1 <t <06, <l.

Lety:[0,1] > 8U{p1,..., Pr.q1,---.4r—1} C R" be a continuous piecewise poly-
nomial path (Figure 6) such that:

hd )/|(Ti’.9i) = IBi|(Ti7‘9i) fori = 1, - and y|(§i’§i) = A’il(i"i,;i) fori = 1, e, — 1.
* ¥l[9;,&1 is an affine parameterization of the segment inside §; that connects 8; (6;) with
)Li(ég'i) fori =1,...,r.
* ¥l 5411 1S an affine parameterization of the segment inside 8; 4 that connects A; (¢;)
with B;+1(ti41) fori =1,...,r — L.
* Y|[0,7;] and y|[g, 1] are an affine parameterization of segments inside 81 and §,.
Using that §;, p; > 0 has been chosen small enough to guarantee that A; and I; are
contained in small balls centered in p; and g;, one can check that y|f;, ;] is close to the
polygonal path § (see (iv) in the statement). In addition, each polynomial piece of y has
degree < n + 1. Define

¢ := min{dist(B; (r;), R" \ 8;), dist(8; (6;), R" \ §;),
dist(A; (§), R™ \ 8;), dist(4; (&), R" \ 8;41)} > 0.

Denote K := [0,1]\ (U/—, (%, 6;) UU/Z1 (&, &)) and recall that if I is a connected
component of K, the restriction y|; is an affine parameterization of a segment inside
some ;. By Lemma 4.5,
(0) if y*:]0, 1] — R”" is a continuous semialgebraic map such that ||y — y*||x < &, then
y*(K) C 8 and each connect component of y*(K) is contained in the required §;.

In addition, y*|gn(z, ] is close to Bk, 11
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Write 8; := {hj1 > 0, ..., h;s > 0}, where h;; € R[x] is a polynomial of degree 1.
As Bi([t; = 8i, t; + 8]\ {t;}) C 8 = {hi1 > 0,..., h;s > 0}, the polynomial h;; o fB; is
strictly positive on the interval (#;,# + 6;]. As each h;; has degree 1 and f; has degree
e; < 3, then h;; o B; is a non-zero polynomial of degree m;; < e¢; < 3. Analogously, as
Ai([si = pir$i)) €8 =1{hit >0,...,his >0} and A; ((si,8i + pi]) C Sit1 = {hit1,1 >
0,...,hit1,s > 0}, the polynomial %;; o A; is strictly positive on [s; — p;, s;) and the
polynomial /; 1 ; o A; is strictly positive on (s;,s; + p;]. Thus, h;j o A; and h;4;,j o A;

are non-zero polynomials of degrees ml It m;/] < d; < n + 1. Consider the constants

dmii mij
Mij 1= m(hi‘ ° Y|y, ei])‘ = )m(hij >0,
m/
/’L:] = d (hl/ o V|[El 51])’ - ‘ (hl] > 0
b | "
l’Lij = // (hl+1 o V'[S; ¢i] ‘ = ’ m (hl+1 i > 0.
dt™i
Define
4.3) Z:=max{m,-,,mu,mlj: 1<i<rl<j<s}<n+l1.

By the Remark 2.13 (i) to the proof of Lemma 2.12 (1), we deduce that if y*:[0, 1] — R”"
is a €4 semialgebraic map such that

(D |dtm,, (hij © ¥liz.01) — dtm,, (hij o v*|(z.6) <M
) |"’

ij © 7 lEs1) — ’ (hij o V¥l < 1)

3) | // (h,+1,,- ° Ylisi&i) — ~ i+1j © ¥V lisa D] < iy

4@ th’yz ,l,y f0rl=1,...,randeiy=Tsiy fori=1,...,r—1,
then y*([0,1]\ K) C SU{p1,..., pr.q1,...,qr—1}. Infact,

Y ([w. 6D €8, y*([&,s:D) €8 and  y*([si.&]) C Siyr.

Conditions (0) to (4) concerning &, [;;, ,u;-j, ,u;; and the Taylor expansions at the val-
ues #; and s; determine when a polynomial path «: R — R”, whose restriction to [0, 1] is
close to y, satisfies the conditions (i) to (iv) in the statement (Figure 6). Finally, such a
polynomial path o exists by Lemma 2.10, as required. ]

4.4. Degree of the polynomial approximation in the PL case

‘We maintain all the notations introduced in the proof of Main Theorem 1.9. Recall that the
polynomials /;; have degree 1. To simplify the presentation, we assume m;; = e;, m; ;=
m{; = d; for each couple (i, j ) and we take a smaller 0 < ¢’ < & such thatif [la — y ||k <&,
o) — p@D | 07 < & and @) — y@ ||, 1 < &, then conditions (0) to (3) are
satisfied. As the polynomials /;; € R[x] have degree 1, the computation of & from ¢
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seems feasible without too much effort. To have in addition condition (4), we review the
proof of Lemma 2.10 and need to add a linear combination of suitable polynomials (see
equations (2.4) and (4.3)) of degrees < £ + (r — )l + 1D? <n+ 1+ (r — 1)(n +2)2,
which possibly forces us to take a smaller & > 0 (see the proof of Lemma 2.10). Due to
the high degree of the latter polynomials, the effective computation of the new &’ seems
cumbersome, because it involves bounds of several derivatives of such polynomials on
the interval [0, 1], see (2.5) and (2.6). However, such polynomials are quite standard, and
the bounds for its derivatives on the interval [0, 1] can be computed once and then used
repeatedly when needed.

To estimate the degree v of the polynomial path «: R — R”, we use Theorem 2.9. In
view of such result, there exist constants C, C;, L; > 0 such thatif y := (y1,...,ys) and
o= (By(y1),..., By(yn)) for an integer v > 1, then

C
la =yl < N

. . ei(e; —1) : C
o) =y lig.01 < =5 — 181 + 35
V
di(di = 1) @
o) =y Wl gy < == 1] >||+

The effective computation of the constants C, C;, L; > 0 requires to follow the proof of
Theorem 2.9 applied to y. The proof of Theorem 2.9 is constructive enough to make the
effective computation of the constants possible, but patience is mandatory.

We have used y |[; .6, = Bi and y|[g;,¢;] = A; and the fact that B; and A; are polynomial
tuples of respective degrees ¢; and d;. In particular, || ﬂl-(ei)|| and ||)L§di) | are constants.
Thus, to compute the degree v of «, we need

2c,~ di(di— 1)

(ei)
10+ =

4.4 mm { € e (e, D)

@)y, 2Li /
1A ||+2v2}<€.
For instance, we may take

JC \/_ V2L e,(e,— ”ﬂ(e,)” di(d; — )M(d,)”}—l
NN g

Then, v := max{n + 1 + (r — 1)(n + 2)2, v} is the degree of the searched polynomial
path «: R — R”. ]

“4.5) v := {max{

Remark 4.6. In [15], we study the problem of representing (compact) semialgebraic
sets 8§ C R” (that are connected by analytic paths) as polynomial images of a closed
unit ball B,,(0,1). A relevant case is the representation of a finite union § C R” of
n-dimensional convex polyhedra K, (such that § is connected by analytic paths) as a
polynomial image of either the (1 + 1)-dimensional closed unit ball B, (0, 1) or the
n-dimensional closed unit ball B,,(0, 1).

If the reader follows the proofs of Theorems 1.2 and 1.3 in [15], he realizes that the
complexity of the construction concentrates on finitely many polynomial paths that can
be constructed using Main Theorem 1.9 (the PL version of Main Theorem 1.8). The poly-
nomial maps constructed to prove Theorems 1.2 and 1.3 in [15] are the composition of a
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polynomial map of degree 6 (see Lemmas 2.5 and 2.7 in [15]) that transforms the closed
unit ball B,, (0, 1) onto the symplicial prism A, := {0 <xy,...,0 <Xp, X1 + -+ %X <
1} x [0, 1] (for either m = n or n — 1) with polynomial maps

m m
A X [0,1] = 8, (htserrs Amst) — (1 - Zkg)ao(t) + 3" Ao,
k=1 k=1

where each o : [0, 1] — § is a polynomial path inside S that passes through the vertices
of the simplices of a suitable triangulation of the n-dimensional compact convex polyhe-
dra X, whose union constitutes the semialgebraic set 8. As ¢, has degree 1 with respect
to A1,..., Am, the complexity of the involved polynomials concentrates on the construc-
tion of the mentioned polynomial paths oy, and one would like to estimate the degree of
such polynomial paths. This can be done using Main Theorem 1.9 (the PL version of Main
Theorem 1.8).

In Main Theorem 1.9, we have provided a simplified proof and consequently an esti-
mation of the degree of such polynomial paths (see equations (4.4) and (4.5)) in terms
of the formulas provided in Theorem 2.9. Using formulas (4.4) or (4.5), the reader can
bound the degree of the polynomial paths mentioned above. Thus, one can estimate for
each n-dimensional PL semialgebraic set 8 C R” (connected by analytic paths) the degree
of the polynomials maps from either the (n + 1)-dimensional closed unit ball B,, (0, 1)
or the n-dimensional closed unit ball B, (0, 1) to R” that represent S.

5. Convergence of derivatives of Bernstein’s polynomials on compact
subsets

The purpose of this section is to prove Theorem 2.9. We recall for the sake of completeness
some notation, terminology and preliminary statements from [16]. Let f:[0,1] — R be a
continuous function.

5.1. Derivatives of divided differences of a continuous function
For each pair of integers s, t > 0, define

Buar ) = 30 ([ 2] ) Bt

v

t times

where [xo, ..., xx] f denotes the kth order divided difference of f at the points xq, . . ., Xk
€ [0, 1]. Write £ := s + ¢. If f is a €*-function, there exists by [8, Cor.3.4.2] a value &

in the smallest interval that contains the points k /v, ..., (k + s)/v, x such that

k k+s fO6E)

[—,..., ,x,...,x]f—
v v —— el
t times
Thus, if x € [0, 1], we have by Subsection 2.4.1,
V al £) “) (s+1)
¢ (Sk) L/ I/ o,

SUNNL GG \ 2| B Bl 0.

T s +1)!
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We have By, ,0(f) = By,(f) and by [16], p. 133.

(5.2) Bu(F)0) = £() = 1 x(1 =) B ()(2)

Differentiating (5.2) at a point x € [0, 1] where f is differentiable, we obtain

By(f)'(x) = f(x) = % ((1 = 2x) By 1,1 (/)(x) + x(1 = x) (By,1,1(f)) (x)).

Using Leibniz rules and differentiating £ times equation (5.2) (at a point x € [0, 1] where f
is £ times differentiable), we obtain (see equation (3.2) in [16])

(53) Bu(NOx) = fOx) = %(—m — DBy (NP ()

+2(1=22) By 1 (NP @) + x(1=x) (Bu1,1 (/) (x).

Let x € [0, 1] be a point such that f is a €¢*2-function on a neighborhood of x. By
Lemma 1 in [16], one deduces

(41

G4 Buia(MNOE =00y k—

k=1

Thus, if f is a €¢+2-function on [0, 1], we have by (5.1) and the equality Ziill k =
L+2)€+1))/2,

1 v—k+1
. B,,,k,e_k+2(f)(x)-

{+1

v—1 v—k +1
55 Bua(MNOW =Y Tk ———— By rkt2 ()]
k=1
L
<oy e M Phon 1S Doy,
- (L +2) 2

k=1

5.2. Comparison of derivatives of Bernstein’s polynomials

In the following result, we compare on a compact subset K of an open subset 2 C (0, 1)
the higher order derivatives of the corresponding Bernstein polynomials of degree v of
two continuous functions on [0, 1] that coincide on €.

Lemma 5.1 (Comparison). Let f1, f»:]0, 1] = R be continuous functions that coincide
on an open set Q2 C (0, 1) and let £ > 0. Then for each compact set K C Q, there exists a
constant Mg ¢ > 0 (depending only on K and £) such that

Mg
> /1 = falljo.1)
v

1B, (/)P (x) = Bu(f2) P ()] <

for each x € K.
Proof. Let i, j,£ > 0 be such that 2i + j < {. By Proposition 4.4 in Chapter 4 of [9],
there exist polynomials ¢;;¢ € R[x] that do not depend on v, k such that

d* - - v—k— i j
W(Xk(l—x)” ) =xtA -0 Y Vit —vx) gije(®).
2i+j<t
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Write f := f1 — f2, which is identically 0 on K. Observe that
Lk d*
BO(f) = Z f(E)(Z) W(xk(l —x)Uk)
- Z ) ()2 = X e gt

(5.6) 2i+j<t
=X4(1 X)ZZf( )Bea() D vk = vx) gie(x)
2i+j<t
> q,,z(xw’*fo( )(E %) B,

21+1 <¢

Let 6 :=dist(K,[0,1]\ £2) > 0. Observe thatif x € K and |k /v — x| <4, then f(k/v) = 0.
By (1.6) in Section 1 of Chapter 10, p. 304 of [9], there exists a constant C(8,i + j + 2)
such that

1
(5.7) Z Biy(x) <C@6,i+j+2) e
lk/v—x|>8 '
Thus, by (5.6), (5.7) and as B, (/1)© (x) = B, (f2)© (x)= B (f)(x) and [k/v—x| <1,
1B, (/1) ©(x) = Bu(f2) P (x)]

< i 2 e (5B

2i+j<l lk/v—x|>68
1

1
= (o D I )IC@d +7+2) 5 1 o

2i+j<t

for each x € K. Now, the statement follows readily. [

5.3. Some bounds for derivatives of Taylor polynomials

Let £:[0,1] — R be a continuous function that is €* on an open subset  C [0, 1]. Define

f "’(y)

(x — y)k.

T f:Qx[0,1] >R, (y,x)—~ Z

We have
£

k)(

Tt Y) k—m
T f = Z e -y
If K C €2 is a compact set,

I llgxtoy = max{T f(y.x) : (y.x) € K x[0.1]},

TP nton = [Ty o= M (o P00 o) €K x(0,11).
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As the points x, y € [0, 1], we deduce

¢ (k)
(5.8) (T )™ [ kxo,n) < Z ALY

m)'
In particular, [[(T¢ £)© | kxjo.1) < 1./ ©llk.

5.4. Proof of Theorem 2.9
The proof is conducted in several steps.

STEP 1. Initial preparation.
Define

£4+3 L (k)
P:=T3f.Qx[0,1] > R, (yx)|—>Zf (y) — k.

We claim: There exists a function g : 2 x [0, 1] — R such that h(y,x) := f(x) — P(y, x)

=g(y,x)(x —y)*T* on Q x [0, 1] and for each compact set K C S, there exists a constant

Ny > 0such that |g(y, x)| < Ny g for each (y,x) € K x [0, 1] (see also Remark 5.2).
Define

V4
g QX015 R, (y,x) 1o | 1O/ =T i x £y
0 otherwise.

Observe that g is continuous on (2 x [0, 1]) \ A, where A := {(x,x) € 2 x [0, 1], x € Q}.

Fix a compact set K C 2. For each x € K choose £, > 0 such that [x —2¢&,,x + 2&,] C
Q. As K is a compact set, there exist x1,...,xx € K such that K C K’ := Ule[xj -
Ex;»Xj + sxj]. As f(€+4) is continuous in €2, there exists a constant Ny, 7, x» > 0 such that
| fEHD(2)] < Ny_sgxr(€ +4)! foreach z € K" := U?Zl[x_/ —2&x;,Xj + 2é&y;]. Define
Lj :=[0,1]\ (xj —2&x,, x; + 2¢y;) and observe that

k
"x[0,1] = U([xj —&x;, X+ &x;] X [Xj — 285, Xj + 264,])
j=1

k
U U([xj _ng"xj +8xj] X LJ)

J=1

AsAN (U;-Czl[xj —éx;,Xj + &x;] X L;) = &, the function g is continuous on the com-

pact set Ule[xj — &x;,Xj + &x;] X Lj, so there exists Ny 7 g > 0 such that [g(y, x)| <
k

Ny, sk foreach (y,x) € Uj=1[xj —&x;, Xj + &x;] X Lj.

As f is €4 on Q, for each (v, x) € [xj — &x; Xj + &x;] X [xj — 26x;, xj + 264;]
there exists, by the Lagrange form of the remainder of Taylor’s theorem, {(, x) € [x; —
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2ex;, Xj + 2&x;] C K” such that

f(£+4)(§(y,x)) {+4
W (x—=y) )

so we have g(y,x) = f“9 (¢ .x)/( + 4! and |g(y, x)| < Ny, s x» for each (y,x) €
Uj-‘:l[xj — &x;, Xj + &x;] X [Xj — 26x;, X; + 2ex,]. Therefore, if we define Ny :=
max{Ny, sk, Nz,f’K/}, the claim is proved.

Define P, := P(y,-) and h), := h(y, ) and fix a compact set K C €. Observe that
ijk)(y) = f®(y) for each y € K and each k = 0,...,£ + 3. We have B,(f) =
B, (Py) + By (hy). Consequently, for each y € K,

(5.9) B (f) = BP(Py) + B (hy)

(we are considering derivatives and Bernstein’s polynomials with respect to the vari-
able x).

h(y.x) =

STEP 2. Uniform control of the error for the Taylor polynomials.

We claim: there exists a constant Cy g ¢ > 0 such that |B,Se) (hy)(V)| < Crk0/v? for
eachy e K.

Let i, j,£ > 0 be such that 2i + j < £. By Proposition 4.4 in Chapter 4 of [9], there
exist polynomials g;;; € R[x] that do not depend on v, k such that

4
D=0 ) = T v e,

2i+j<t

As hy(k/v) = g(y,k/v) - (k/v — y)***, we have

v k L
800 = 2 () ;) et -0
—Zh (5)( )= v gt

2i4j<t
- e(l_x)ezh( v Y v (5 ) g
2z+/<6
e Y QIJe(X)V'+’Z CHE-NTE ) B,
21+] <t

We have proved above that there exists a constant N x > 0 such that |[g(y, x)| < Nrg
for each (y,x) € K x [0, 1]. Recall that 2(i + j) < £ + j and that |k /v — y| < 1. If we
set x = y, we have

e )

+j+2 ]
(5.10) < N¢k NETESE Aipjiov' T2 < Ny Aiyjyo itz

bj+a 1 - 2i+j)+4
) BraO)| = Nik s 2o k= vy) Ben(v)
k=0
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for a constant A; ;> > 0 (see (1.5) in Section 1 of Chapter 10, p. 304 of [9]). Conse-
quently,

1
> laije()| Nyk Ai+j+2) ek
2i+j=<t

1
|B£e) (hy)W)| = (m

and the claim follows if we take

gijellx N Ai+j+a-
itr<t

e = | gyl 2
4 ya-ytlk,
STEP 3. Proof of the first part of the statement.
If x € K, we have using STEP 2 (because P,gk) (x) = f%®(x) for each x € K and each
k=0,....0+3),
G1)  BPHE) = SO < 1BO (PO = £ O] + B (h) ()]

< B (P ()~ PO + LEL

By (5.3) and (5.5) applied to Py, we obtain

1
B (Po)(x) = PO@)] < o= (€= DI PP o,
+ 21 = 2x] [ PEDlj0.1 + x(1 = x) [ P2 | 0.19).

By (5.8), we deduce

1 S r®
© _p® - _ K
|BO (P () = PO ()] < 5-(ece 1)2::(k_g)!

£+3 k) {+3 k)
raioa B I gy B

| |
k=L{+1 - ! k={+2 k—t=2!

for each x € K, and the first part of the statement holds.

STEP 4. Bound of the error.

For each € > 0 and each pair of integers s,t > 0 such that A == s +t < £ + 2, there
exists a constant Cr,g 5 ¢ > 0 such that

L)
P & C K,
(5.12) Busa(Py)(x) = =(0)| < 37 + LKA

foreach (y,x) € K x[0,1] and each v > s. In particular, B, s ;(Py) converges to PJS)L)/)L!
uniformly on K x [0, 1] when v — oo.

We will follow the proof of Lemma 2 in [16] making the suitable needed changes. Fix
integers s,¢ > 0 and denote A :=s + ¢. Next fix v > sand 0 <k <v —s. Fix ¢ > 0 and let
8 > 0 be such that if (y, x), (y’,x") € K x [0, 1] satisfy |x — x’| < § and |y — y’| < §, then
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|ij’1) (x) — P}f,’l) (x)| < & (recall that P, is €¢** on [0, 1] for each z € K). Fix x €0, 1]
and let

ko k
1= {ke (0, v=s}: x—8<;<$<x+5}.

Fix y € K and pick & in the smallest interval that contains the points x,k /v, ..., (k +s)/v
such that

k kts PP (&)
[—,..., ,x,...,x]Pyz—.
Y Vo—— Al
t times
Consequently,
vV—Ss
k k+s
Bv,s,t(Py)(X) = Z ([;, e, ; X ’X]Py)Bk,v_s(x)
k=0 t times
1 -
= 23 2 PP 6 Bro—s ().
T k=0
Define

Sy := M By (Py)(x) — PP (x) = i(P;”(sk) — P (x)) Bieoy—s (x).
k=0

Write S, = C, + D, where

Coi= 3 (PP(E) = PP () By ().
kel,

Dy =Y (PP () — PV (x)) Brys (%).
ké¢l,

Ifk € I,, we have |& — x| < §, so

|Cv| = Z 8Bk,v7s(x) <e

kel,
Regarding D, define
P
(5.13) Mig s = max{‘w(y,x)‘ : (y,x) € K x|0, 1]}
X
forA =0,...,4+2.
If0 <k <v-—s, we have
k k k k s k
s o o e o
v v—s v o v—s v—s VY —s
k s
= —-x|+—>
v—s v
k+s k k+s k k s k
bt o o - a2 )
% v—s v v—s v—s v v—s
k s
= —x|+ -
v—s v
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Consequently,

oo {(5 ) (5 = (G w28

For each k ¢ I,,, we have
k 2k 2 k 2
82§max{(——x),( +S—x)}§( —x) +2£+S—2.
v v V—s Voo

We deduce
1<1((k )2+25+s>
— —x J— JE— R
— 582 \\y—g v o 2

and as |Py('l) &x) — P;A) (x)| <2Mjy k. 1, we conclude using Subsection 2.4.1 (concretely,
the property of the variance of a binomial distribution) that

2

|Dv|§8£2Mf,K,/\Z<(vlis_x) +2 + )Bkvs(x)

ké¢l,
2 s 52 X/ k 2
= 52 MfK)L(2;+V_2+Z(V—S —X) Bk,v—s(x))
k_
2 52 x(1=x)
Mika(25+ 55+ 5 20)
2 TSKA + 2 T V—s

Ass <v,weobtain0 < s/v,1/(v—15) <1,s0

2 x(1—x) 1 s 14+7s 1472
2 — +—+—_—+—<1+ >< = :

vV—s % 2v vV—s 2v 2v
Thus, if v > s, then

14+7A n Crr i eh!

Mf’K’x 2v ¢ v

2
|Sv| < |Cv| + |Dv| <&+ 8_2

for the constant

1471
Crkae =~ Mrxa > 0.

STEP 5. Proof of the second part of the statement.
Fix v > £. By Remark 2.7 and (5.3) we have

19t
V((By(Py) Q)= PO (x) = 5 = (x(1 = ) P/ (x)

(5.14) =L —1) ((Bui1(P) D (x) - %P;e)(x))
+ £(1 = 2x) ((By,1,1(Py) ™V (x) — PV ()
+x(1=x) ((Bo1,1(Py)) P (x) — P2 ().
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Write m := £ — 2, — 1,£. Using thatm'Z”’Hk = (m + 2)!/2, we get by (5.4),

(5.15)  (By.1,1(Py)"™ (x) — Ep;m+2>(x)

m+1 _1 e 1 (m+2)
=m)! Z k v - v - + (Bv,k,m+2—k(Py)(x) - (I’HTZ()):))
s k—1 P (x)
m'zk« ) (1_ v )_1) (ym+2)!'
Asm <l <v,wehavefork =1,...,m+ 1,

O R e R R (e SR

Consequently, as m /v < 1, we deduce

<= (1) (A <= -2 = B e (2

Thus, Ly, :=m Y o (';') > 0 satisfies

g=1
1 k—1 L
‘(1__)...<1_ )—1‘<—m fork=1,....m+ 1.
v ) v
Recall that
s (m—l—Z)' v—1 wv—k+1
m'Zk— and ) <L
2 Vv

Asm < {,wehave m + 2 < { + 2. Consequently, by (5.12) (in STEP 4), (5.13) and (5.15),
we have

|(By,1,1(Py)) ™ (x) — “"*”( )|
—k 41 (m+2)
<m! Z k} ‘ By ke my2—i(Py)(x) — (mTz())j)
m+1 (m+2)
| Py ()]
lek‘(l—— 1— ) T2
(m + 2)! &€ Crkm+2.e Lm

(5.16) <2 ((m - - ) + S50 My K2

L Crrxmt2.e(m+2)!+ Ly My g mio
2v
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for each (y, x) € K x [0, 1]. We conclude from (5.14) and (5.16),

al
W(Bu(P) O (1)~ PO ) ~ 5 3 37 (1 =) P ()|

C L+ Ly oM
<00t — )< (f,Ké -;vzz f,K())
C C+ D)+ Li M
401 —2x |( L CrrrreC )2+ -1 ngH))
v
C C+2)! + LM
+x(1—x)( L Crrira 4D+ Ly f,K€+2)>
2v
If we write
I\ &
(24 2)E,
© (6 +4>2

. 1
Chrew = 5 (U= D(Crreal! + LeaMpxe) + UCrierre(€ + D!

1
+ Le-tMyger) + 7 (Crierns(l+2)! + LiMyxer2)).
we conclude, using that |1 — 2x| < 1 and x(l —x) < 1/4,

Cc? ,
‘v((B,,(Py))(i)(x) P(i)(x)) a K(x(] —x)P”(x))‘ <é+ £ K e

for each (y,x) € K x [0, 1]. If x € K and we set y = x, we deduce (using (5.9), that is,
(By(f NG = (By(P)© + (By(hy))®, and STEP 2)

ot
BN O0) = O = 5 2 (=0 10|

ai
= [p((Bu(P) O (x) = PO (x)) - % (1 =) PL)| + By () ()]

Crxee L Gk,
v %

<&+
To finish, it is enough to define CfK e = ;’K,K,LE, + Cyk ¢ (and to adjust & > 0). =

Remark 5.2. In the previous proof, we have only used that the function g introduced
in STEP 1 is bounded over the sets of the form K x [0, 1], where K C € is a compact
set. However, it is natural to wonder about a sufficient condition to guarantee that g is in
addition continuous: The function g:Q x [0, 1] — R is continuous if f:Q — R is a €5
function.

We have proved in this STEP 1 (adapted to the case when f is €¢*>) that there exists
a function g¢: 2 x [0, 1] — R such that

L+4 (k)
f=> ! (y) (x = )* = go(y. ) (x — »)*°

k=0

on £ x [0, 1] and for each compact set K C 2 there exists a constant Ny s g > 0 such
that [go(y, x)| < Ny, s,k foreach (y,x) € K x [0, 1].
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Define
L+4)

(€ + 4)!

for each (y, x) € Q x [0, 1]. Observe that g¢ is continuous outside A := {(x,x) € Q x
[0,1] : x € Q} and it is bounded on any compact neighborhood of each point of A inside
Q x [0,1]. Thus, A(y, x) := (x — y)go(y, x) is continuous on 2 x [0, 1]. Consequently, g
is continuous on 2 x [0, 1], as required.

g(y.x) = )+ (x = »)go(y.x)

A. Modification of continuous semialgebraic paths

In the proof of Main Theorem 1.8, we needed to slightly modify continuous semialge-
braic paths to avoid certain algebraic sets (except for finitely many points), but keeping
essentially their behavior. In order to make the proof of such result more intuitive, we have
postponed such modification until now. The reader can find by himself many other ways
to modify continuous semialgebraic paths in the needed way. However, we include the
precise technicalities for the sake of completeness here.

Lemma A.1 (Modification of continuous semialgebraic paths). Let 8§ C R” be a pure
dimensional semialgebraic set and let 81, . . ., 8, be open connected semialgebraic subsets
of Reg(8) (not necessarily pairwise different). Pick control points p; € CI(S;) for i =
1,...,r and q; € CI(8;) N CU(S;41) fori = 1,...,r — 1. Fix control times so 1= 0 <
Hh<--<tr<l=:ispands; €(ti,tit1)fori =1,...,r —1. Let Y C R" be a (proper)
algebraic set that does not contain any of the 8; and let B:[0, 1] — R" be a continuous
semialgebraic path such that:

@ B0 1]) C Uiy 8 Utpis-es proqis- oo gr—ahy
() B(t) = p;i fori =1,....rand B(s;) =gq; fori =1,...,r —1,
(i) B((ti,8)) C 8 fori =1,...,r and B((si,ti+1)) C Si41 fori =1,...,r—1,
iv) n(B) C (0, )\ {t1,.- . tr,81,...,8r—1} and B(n(B)) C Ui_; Si-
Then, for each & > 0 there exists a continuous semialgebraic path $*:[0, 1] — R”
satisfying conditions (i), (ii), (iii) and (iv) above and such that (8*)~1(Y) is a finite set,

n(B*NBEHY) =2, B*0(B*) C Uiz, 8i and |B — B*I| < &.
Proof. We fix ¢ > 0 and conduct the proof of this result in several steps.

STEP 1. (Local) modification of B around the points p;.

Fix anindexi = 1,...,r. We modify B in a neighborhood of t; so that the new B is a
Nash map around t; and B([t; — 8,t; + 8] NY C{pi}if§ > 0is small enough.

Consider the open ball B; of center the point p; and radius &/3. Let §o > 0 be such
that B|[;,—s,,,+6,] is @ Nash path whose image is contained in (8; N B;) U {p;}. Let €;
and D; be the connected components of §; N B; (maybe the same) such that A} := B([t; —
8,t; +68]) € € UD; U{p;} (for some 0 < § < §y small enough). By Main Theorem 1.4
in [10], the semialgebraic set C; U D; U {p;} is a Nash image of R¢ (where d := dim(S))
and it is connected by analytic paths. By either Proposition 7.8 and Corollary 7.9 in [10]
or Lemma 3.1 (the first reference if C; # D;, and the second reference if C; = D;), we
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0 ti—§ li—% t [i—l-% ti+6 s;i—0 Si—% Si .Yi+% si+6 1

Figure 7. Construction of the Nash path y; and the corresponding part of §*.

may find a Nash bridge (or Nash arc) A; C C; UD; U {p;}suchthat 4; N Y C {p;}. As
8; N B; is a Nash manifold, both C; and D; are connected Nash manifolds.

STEP 2. (Local) modification of B around the points q;.

Fixanindexi = 1,...,r — 1. We modify B in a neighborhood of s; so that the new
is a Nash map around s; and B([s; — 8,s; +8]) NY C {q;} if 6 > 0 is small enough.

Let B} be the ball of center ¢; and radius £/3. Let o > 0 be such that B[, —s,.s +80]
is a Nash path whose image is contained in ((8; N 8;+1) N B}) U {g;}. Let €; and D} |
be the respective connected components of 8; N B’ and 8; 11 N B (maybe the same if
8i = 8it1) such that B := B([s; —&,s; +8]) C C; UD; | U{g;} (forsome 0 < § < 8y
small enough). By Main Theorem 1.4 in [10], the semialgebraic set C; U D;_; U {g;}
is a Nash image of R? (where d := dim(8)) and it is connected by analytic paths. By
Proposition 7.8 and Corollary 7.9 in [10] or Lemma 3.1 (the first reference if C; # D; |,
and the second reference if G; = D;. 4+1)» we may find a Nash bridge (or a Nash arc)
B; C €, UD;,, U{gi}suchthat B; NY C{g;}. As §; N B; is a Nash manifold, both C;
and Dj_ ; are connected Nash manifolds.

STEP 3. Modification of B outside a neighborhood of {p1,...,Pr.q1,--->qr—1}

Taking a smaller § > 0 if necessary, we may assume b;o := B(t; — §) € C;, ajo :=
B(ti +8) € Di fori = 1,...,r and bj, := B(s; — ) € €}, a; ;o= B(si + ) € D},
fori =1,...,r =1L If B([t; + 8,5 —8]) NY is a finite set, we do nothing with this
semialgebraic set. If B([s; + 8, t+1 — 8]) NY is a finite set, we also do nothing. Let
us modify B([t; + &, s; — &]) if the intersection B([t; + 8,s; — 8]) N Y has dimension 1
(Figure 7).

Pick points @;; € D; \ Y and b, € C; \ Y and let

Bitlti +8/2.5i —8/2] — D UB([ti + 8.5 —8) UC, C 8

be a continuous semialgebraic path such that B; [, +-5,5,—5] = Bl +8.5—s1> Bi (ti +8/2) =
a1, Bi([ti +8/2,t; +68]) C Dy, Bi(si —8/2) = b, and B;([s; —8,s: —8/2]) C C..
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qi Pi+1

0 856 s,-—% S sH—% 5i+6 tis1—8 tip1—3 tiv i+ 648

Figure 8. Construction of the Nash path o; and the corresponding part of 8*.

Define
¢ := min {e,dist(aio,Si \ D,-),dist(ail,Si \ (@i \ Y)),
dist(blo. Si \ €)). dist(bly. 8: \ (€} \ ¥))} > 0.

By Corollary 8.9.6 in [2], there exists a Nash path y;: [t; + /2, s; — §/2] — 8; such that
1Bi —vill <&'/3. Wehave y;(t; +8/2) € D; \ Y, a; :=yi(t; + 8) € D;, b} := y;(si — 6)
€ € and y;(s; — 8/2) € €; \ Y. By Lemma 7.7 in [10], we deduce y; ' (Y) is a finite set.
As y; is Nash, n(y;) = .

Analogously, if 8([s; + &,¢+1 — &]) N Y has dimension 1, one constructs (as before)
aNash path 0;: [s; +68/2,1;+1 — 8/2] — 8;+1 such that || B|[s; +5/2,1,,-8/2) — 0ill < &/3,
0i(si +68/2) € D; \Y, aj = 0i(si +8) € D}y, bit1:= 0i(ti+1 — ) € Ciyy,
0i(ti+1 —8/2) € Ciy1 \ Y and 07 1(Y) is a finite set (Figure 8). Again, as o; is Nash,
n(oi) = 2.

STEP 4. Full modification of .

Recall thatif x, y € B; (orx, y € B}), then ||x — y|| < 2¢/3. In addition, C; C §; N B;,
D; €8 NB;, € C 8 NBjand D; | C 841 N B are connected Nash manifolds. By
Theorem 1.5 in [10], each connected Nash manifold is connected by Nash paths. Thus,
we can construct a continuous semialgebraic path 8*: [0, 1] — 8 that connects, using
additional Nash paths that avoid Y except for perhaps finitely many points, the already
constructed Nash arcs (in STEP 1), Nash bridges (in STEP 2) and Nash paths (in STEP 3)
and satisfies the following conditions:

* B*lo.i-81 = Blio,n—s1 and B*|1, 45,11 = Bl +5.11-

3 ﬁ*l[ti—S/Z,ti+5/2]: [ti —8/2,t; +68/2] > A; C C; UD; U{p;} C8; N B;isaNash
parameterization of A; around p; = B*(#;).

o B*lisi—s/2.5i48/21:[5i —8/2,8i +8/2] = B; CC,U D], U{gi} C (8 US;i41) NB;
is a Nash parameterization of B; around ¢; = B*(s;).

* Blui+s.si—1 = Vilt+s,si—s1 and B[, +8,01-81 = Oillsi+5.611-81,

B*([t; +6/2,t; +68)) € D; € 8 NB; and B*([s; — 8,5, —6/2]) C e; c&nN 'B;,
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o B*([si +8/2,5i +8]) CDj,y C8iv1 NBjand B*([ti+1 —8,ti41—8/2]) CCit1 C

Si+1 N Biti,

o 7’](,3*) C Uzr:l{ti -4, ti — 8/2,[1' + 5/2, ;i + 5} U U:;}{S, — S,S,‘ — 8/2,5‘,‘ + 8/2,
si + 6} and B*(n(B*)) C Ui Si.
o (B*)1(Y)isafinite set, n(B*) N (B*) N (Y)=@ and n(B*)N{t1.....lr.S10. . Sr—1}

= .

Following the construction of §* we have done, one deduces that ||* — B| < e.
Thus, §*: [0, 1] — R” is a semialgebraic path close to 8 that satisfies the required condi-
tions (i), (ii) and (iii) in the statement. In addition, 8*([0, 1]) N Y is a finite set, n(*) N
BHTX) =@, 0B Nt trs1, s = Dand () C Uiz, S w
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