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On a Nash curve selection lemma
through finitely many points

José F. Fernando

Abstract. A celebrated theorem in real algebraic and analytic geometry (originally
due to Bruhat–Cartan and Wallace, and stated later in its current form by Milnor) is
the (Nash) curve selection lemma, which has wide applications. It states that each
point in the closure of a semialgebraic set S � Rn can be reached by a Nash arc
of Rn such that at least one of its branches is contained in S.

The purpose of this work is to generalize the previous result to finitely many points.
More precisely, let S � Rn be a semialgebraic set, let x1; : : : ; xr 2 S be r points
(that we call ‘control points’) and let 0 DW t1 < � � � < tr WD 1 be r values (that we
call ‘control times’). A natural ‘logistic’ question concerns the existence of a smooth
and semialgebraic (Nash) path ˛W Œ0; 1�! S that passes through the control points at
the control times, that is, ˛.tk/ D xk for k D 1; : : : ; r . The necessary and sufficient
condition to guarantee the existence of ˛ when the number of control points is large
enough and they are in general position is that S is connected by analytic paths. The
existence of generic real algebraic sets that do not contain rational curves confirms
that the analogous result involving polynomial paths (instead of Nash paths) is only
possible under additional restrictions. A sufficient condition is that S � Rn has, in
addition, dimension n.

A related problem concerns the approximation by a Nash path of an existing con-
tinuous semialgebraic path ˇW Œ0; 1� ! S with control points x1; : : : ; xr 2 S and
control times 0 DW t1 < � � � < tr WD 1. As one can expect, apart from the restrictions
on S, some restrictions on ˇ are needed. A sufficient condition is that the (finite) set
of values �.ˇ/ at which ˇ is not smooth is contained in the set of regular points of S
and �.ˇ/ does not meet the set of control times.

If S � Rn is a finite union (connected by analytic paths) of n-dimensional convex
polyhedra, we can even ‘estimate’ (using Bernstein’s polynomials) the degree of the
involved polynomial path. This requires: (1) a polynomial double curve selection
lemma for convex polyhedra involving only degree 3 cuspidal curves; (2) to find
the simplest polynomial paths that connect two convex polyhedra (whose union is
connected by analytic paths), and (3) some improvements concerning well-known
bounds for Bernstein’s polynomials (and their high order derivatives) to approximate
continuous functions that are not differentiable on their whole domain.
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52B99 (secondary).
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1. Introduction

A natural ‘logistic’ problem in real geometry, whose affirmative solution would generalize
the curve selection lemma (see p. 989 of [4], Section 3 of [22], and Lemma 18.3 in [27]),
is the following (see also Section 4.C in [12]). Let X be a connected topological space of
certain type, let x1; : : : ; xr 2 X be finitely many points (control points) and let 0 DW t1 <
� � � < tr WD 1 be finitely many values (control times).

Problem 1.1 (Curve selection lemma through finitely many points). Is there a (continu-
ous) path ˛W Œ0; 1�! X of ‘certain prefixed type’ such that ˛.ti / D xi for i D 1; : : : ; r?

Suppose we already have a continuous path ˇW Œ0; 1�! X such that ˇ.ti / D xi for
i D 1; : : : ; r , that X is a metric space, and fix " > 0.

Problem 1.2 (Approximation of curves through finitely many points). Is there a (contin-
uous) path ˛W Œ0; 1�! X of ‘certain prefixed type’ such that ˛.ti / D xi for i D 1; : : : ; r
and dist.˛.t/; ˇ.t// < " for each t 2 Œ0; 1�?

1.1. Semialgebraic setting

A subset S � Rn is semialgebraic when it admits a description by a finite boolean com-
bination of polynomial equalities and inequalities. The category of semialgebraic sets is
closed under basic boolean operations, but also under usual topological operations: taking
closures (denoted by Cl.�/), interiors (denoted by Int.�/), connected components, etc. If
S � Rm and T � Rn are semialgebraic sets, a map f WS! T is semialgebraic if its graph
is a semialgebraic set.

In the following, smooth means C1. A map f WU ! Rm on an open semialgebraic
set U � Rn is Nash if it is smooth and semialgebraic. Recall that Nash maps are analytic
maps (Proposition 8.1.8 in [2]). If S � Rn is a semialgebraic set, a map f W S! Rm is
Nash if there exist an open semialgebraic neighborhood U � Rn of S and a Nash exten-
sion F WU ! Rm of f to U . Analogously, a Nash manifold is a semialgebraic subset
S � Rn that is a smooth submanifold of Rn. As an application of Proposition 8.1.8 in [2],
one deduces that Nash manifolds are analytic manifolds. Recall that open semialgebraic
subsets of Rn admit, by the finiteness theorem (Theorem 2.7.2 in [2]), a description as
a finite union of basic open semialgebraic sets, that is, semialgebraic sets of the type
¹fi > 0; : : : ; fr > 0º, where fi 2RŒx� WD RŒx1; : : : ; xn�. Along the article, we will use
typewriter symbols x;y;z;t to denote variables or tuples of variables, whereas we use the
symbols x; y; z; t to denote values or points that we substitute in variables or tuples of
variables x; y; z; t.

1.2. State of the art for semialgebraic sets and Nash paths

In this work, we study Problems 1.1 and 1.2 when X D S � Rn is a semialgebraic set and
˛W Œ0; 1�! S is a Nash path. We prove results that involve a tight control of the behavior
of the obtained Nash/polynomial path (Theorem 1.6 (polynomial case) and Main Theo-
rems 1.8 (Nash case) and 1.9 (PL case)). Using these results, we deduce that a sufficient
condition to solve Problems 1.1 and 1.2 is that S is connected by analytic paths. In fact,
if the number of points xi is large enough and they are in general position, the connexion
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by analytic paths is a necessary condition. A ‘theoretical’ (but not constructive) solution
to Problem 1.1 follows straightforwardly from Main Theorem 1.4 in [10], where we char-
acterize the semialgebraic subsets of Rn of dimension d that are images of Rd under a
Nash map. Namely,

Theorem 1.3 (Nash images of affine spaces, Main Theorem 1.4 in [10]). Let S � Rn be
a semialgebraic set of dimension d . The following conditions are equivalent:

(i) There exists a Nash map f WRd ! Rn such that f .Rd / D S.

(ii) S is connected by analytic paths.

1.2.1. Nash curve selection lemma through finitely many points. The announced ‘the-
oretical’ (but not constructive) consequence of Theorem 1.3 is the following.

Corollary 1.4 (Nash curve selection lemma through finitely many points). Let S � Rn

be a semialgebraic set connected by analytic paths. Fix control points x1; : : : ; xr 2 S and
control values 0 DW t1 < � � � < tr WD 1. Then there exists a Nash path ˛W Œ0; 1�! S such
that ˛.ti / D xi for i D 1; : : : ; r .

Proof. Let f WRd ! Rn be a Nash map such that f .Rd /D S, and let z1; : : : ; zr 2 Rd be
such that f .zi /D xi for i D 1; : : : ; r . Using for instance Lagrange’s interpolation, we find
a polynomial path ˇW Œ0; 1�!Rd (of degree� r � 1) such that ˇ.ti /D zi for i D 1; : : : ; r .
Thus, ˛ WD f ı ˇW Œ0; 1�! S is a Nash path that satisfies the required conditions.

Remark 1.5 (Classical curve selection lemma). In Section 9 of [10], it is proved that
each semialgebraic set S � Rn is the union of its connected components by analytic
paths, which are finitely many semialgebraic sets S1; : : : ;Sr . If x2 Cl.S/, we may assume
x 2 Cl.S1/. Thus, S1 [ ¹xº is again connected by analytic paths (Main Theorem 1.4 and
Lemma 7.4 in [10]), and by Corollary 1.4, there exists a Nash path ˛W Œ0; 1�! S1 [ ¹xº �

S [ ¹xº such that ˛.0/ D x and ˛..0; 1�/ � S1 � S. Thus, Corollary 1.4 provides the
classical curve selection lemma as a straightforward consequence.

The main results of this article provide a different proof of Corollary 1.4 (Problem 1.1)
with a more constructive flavor, which is not based on the existential use of Main Theo-
rem 1.4 in [10]. We will simultaneously face the problem of approximating some existing
continuous semialgebraic path passing through the control points at the control times
(Problem 1.2). As the reader can expect, the previous continuous semialgebraic path shall
satisfy some additional restrictions.

1.2.2. Polynomial curve selection lemma through finitely many points. Let

˛ WD .˛1; : : : ; ˛n/ W Œa; b�! Rn

be a continuous semialgebraic path. We claim: There exists a minimal finite set �.˛/ �
Œa; b� such that ˛jŒa;b�n�.˛/ is a Nash map.

Proof. Consider the continuous semialgebraic map ˇk W Œa; b�! R2; t 7! .t; ˛k.t// for
k D 1; : : : ; n. By Proposition 2.9.10 in [2], there exist finitely many points t1; : : : ; tr 2
Œa; b� such that Mki WD ˇk..ti ; tiC1// is a Nash submanifold of R2 for i D 1; : : : ; r � 1
and k D 1; : : : ; n. For each p 2Mki , denote the tangent line to Mki at p with TpMki .



J. F. Fernando 4

Consider the projection �1WR2 ! R onto the first coordinate and let Rki WD ¹p 2Mki W

dim.�1.TpMki // D 0º.
We claim: The semialgebraic set Rki is finite for each i D 1; : : : ; r � 1 and each

k D 1; : : : ; n.
If p2Rki (for some i D 1; : : : ; r � 1 and k D 1; : : : ; n), then ˛k is not differentiable at

�1.p/. By Theorem (3.2)(IIm) on Chapter 7, p. 115 of [24], the non-differentiability locus
of ˛k is a semialgebraic set of dimension � 0, that is, it is a finite set. Consequently, Rki
is a finite set, as claimed.

We conclude that �.˛/� ¹t1; : : : ; trº [
Sn
kD1

Sr
iD1Rik is a finite set, as required.

By Proposition 8.1.12 in [2], and after reparameterizing (locally at a and b if nec-
essary), we may assume that ˛ is analytic at the points a and b, and consequently, that
�.˛/ � .a; b/. Let S1; S2 � Rn be two Nash manifolds. A (Nash) bridge between S1
and S2 is the image � of a Nash arc ˛W Œ�1; 1� ! Rn such that ˛.Œ�1; 0// � S1 and
˛..0; 1�/ � S2. The point ˛.0/ is called the base point of � . In case S1;S2 � Rn are open
semialgebraic sets and there exists a Nash bridge ˛W Œ�1; 1�! Rn between S1 and S2, we
can modify ˛ to have a polynomial arc ˛W Œ�1; 1�! Rn such that ˛.Œ�1; 0// � S1 and
˛..0; 1�/ � S2 (see Lemma 4.1 in [15]).

In [15], we study the images of the closed unit ball under polynomial maps. As a
main tool, we prove there the following result (Lemma 3.1 in [15]), which is stronger than
only a solution to Problems 1.1 and 1.2. The main difficulty focuses on guaranteeing that
the approximating polynomial paths have their images inside the chosen semialgebraic
set. These types of problems of keeping the same target space after approximation are
analyzed carefully in [13, 14].

Theorem 1.6 (Smart polynomial curve, Lemma 3.1 in [15]). Let S1; : : : ; Sr � Rn be
connected open semialgebraic sets (not necessarily pairwise different) and denote S WDSr
iD1 Si . Pick control points pi 2 Cl.Si / and assume there exists a polynomial bridge �i

between Si and SiC1. Denote the base point of �i with qi 2 Cl.Si /\Cl.SiC1/. Fix control
times s0 WD 0 < t1 < � � � < tr < 1DW sr and si 2 .ti ; tiC1/ for i D 1; : : : ; r � 1. Then there
exists a polynomial path ˛WR! Rn that satisfies

(i) ˛.Œ0; 1�/ � S [ ¹p1; : : : ; pr ; q1; : : : ; qr�1º,

(ii) ˛.ti / D pi for i D 1; : : : ; r ,

(iii) ˛..ti ; si // � Si , ˛..si ; tiC1// � SiC1 and ˛.si / D qi for i D 1; : : : ; r � 1.

In addition, if " > 0 and ˇW Œ0; 1�! Rn is a continuous semialgebraic path such that
�.ˇ/ � .0; 1/ n ¹t1; : : : ; tr ; s1; : : : ; sr�1º, ˇ.�.ˇ// � S and ˇ satisfies conditions (i), (ii)
and (iii) above, we may assume that k˛ � ˇk < ".

Remark 1.7. Contrary to what we have stated in Problems 1.1 and 1.2 above, here the
control times are inside the interval .0; 1/. This is done to simplify the proof (and it will
happen again in Main Theorem 1.8), but it is not limiting. As we have commented, if
ˇW Œ0; 1�! Rn is a continuous semialgebraic path, we can reparameterize ˇ locally at 0
and 1 in order to have �.ˇ/� .0;1/. This means that we can analytically extend ˇ around 0
and 1 to an interval Œ�ı; 1C ı� for some ı > 0, and after rescaling (to work in the inter-
val Œ0; 1�), we may assume that the control times ti 2 .0; 1/.
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1.3. Main results

The first part of Theorem 1.6 concerns Problem 1.1, whereas its second part concerns
Problem 1.2. We cannot expect a general result (that is, without the assumption that the Si
are open semialgebraic subsets of Rn) of similar nature involving polynomial paths instead
of Nash paths. In general, semialgebraic sets do not contain rational paths. By [7, 25], a
generic complex hypersurface Z of CPn of degree d � 2n � 2 for n � 4 and of degree
d � 2n� 1 for nD 2; 3 does not contain rational curves. If S � Rn is a semialgebraic set
whose Zariski closureX in RPn is a generic hypersurface of RPn of high enough degree,
then its Zariski closure Z in CPn does not contain rational curves, so S cannot contain
rational paths. This means in particular (as general real algebraic sets are birational to real
hypersurfaces) that general semialgebraic sets do not contain polynomial paths.

1.3.1. General case. In this article, we prove Main Theorem 1.8 (Figure 1) and we pro-
vide a somehow constructive proof. This requires to improve some results [9, 16, 26]
concerning the convergence at compact sets of the derivatives of Bernstein’s polynomi-
als to the derivatives of the function f W Œ0; 1�! R we want to approximate, even if f
only admits derivatives on an open strict subset of the interval Œ0; 1� (Theorem 2.9). More
precisely, we need to estimate the derivatives of the Bernstein’s polynomials of a contin-
uous semialgebraic function on the closed interval Œ0; 1�. Such function f is analytic on
Œ0; 1� nF, where F is a finite subset of Œ0; 1�. A possibility would be to smoothen f until
certain order ` around the points of F, but this requires to modify f and supposes an
increase on the complexity of the construction. To avoid this smoothening of f , we prove
Theorem 2.9 to provide bounds about the convergence of the derivatives of Bernstein’s
polynomials of f on the compact subsets of Œ0; 1� nF.

Main Theorem 1.8 (Smart Nash curve). Let S � Rn be a pure dimensional semialge-
braic set and S1; : : : ;Sr open connected semialgebraic subsets of Reg.S/ (not necessarily
pairwise different). Pick control points pi 2 Cl.Si / for i D 1; : : : ; r and assume there
exists a Nash bridge �i between Si and SiC1 for i D 1; : : : ; r � 1. Denote the base point
of �i with qi 2 Cl.Si / \ Cl.SiC1/. Fix control times s0 WD 0 < t1 < � � � < tr < 1 DW sr
and si 2 .ti ; tiC1/ for i D 1; : : : ; r � 1. Then there exists a Nash path ˛W Œ0; 1�! Rn that
satisfies:
(i) ˛.Œ0; 1�/ �

Sr
iD1 Si [ ¹p1; : : : ; pr ; q1; : : : ; qr�1º,

(ii) ˛.ti / D pi for i D 1; : : : ; r ,

(iii) ˛..ti ; si // � Si , ˛..si ; tiC1// � SiC1 and ˛.si / D qi for i D 1; : : : ; r � 1.

In addition, if " > 0 and ˇW Œ0; 1� ! Rn is a continuous semialgebraic path such
that �.ˇ/ � .0; 1/ n ¹t1; : : : ; tr ; s1; : : : ; sr�1º, ˇ.�.ˇ// �

Sr
iD1 Si , and ˇ satisfies condi-

tions (i), (ii) and (iii) above, we may assume that k˛ � ˇk < ".

As a consequence of Main Theorem 1.8, we provide in Section 1.3.4 an alternative
proof of Corollary 1.4. Following the proof of Main Theorem 1.8, the reader realizes
that, up to resolution of singularities and the use of a Nash tubular neighborhood, the
proof of Main Theorem 1.8 is reduced to showing Theorem 1.6, which is constructive
up to polynomial approximation (controlling the behavior of a large enough number of
derivatives) of continuous semialgebraic paths (which are analytic outside a finite set)
combined with Hermite’s interpolation. In the proof of Theorem 1.6 provided in [15], we
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Figure 1. Statement of Main Theorem 1.8.

smoothen corners of continuous semialgebraic paths, whereas in this article we use the
announced Theorem 2.9. In [5, 6], we make an extended use of Main Theorem 1.8 to
represent compact semialgebraic sets connected by analytic paths as images of closed unit
balls under Nash maps.

1.3.2. Piecewise linear semialgebraic sets. In Section 4, we simplify the proof of Main
Theorem 1.8 for piecewise linear semialgebraic sets (PL case), that is, when the involved
semialgebraic sets are the interiors of convex polyhedra of dimension n. In this case, we
approximate the polygonal path that connects the control points (and base points of the
polynomial bridges) at the prescribed control times. In order to get better bounds for the
degrees of the polynomial paths provided by Main Theorem 1.8 (see Section 4.4): (1) we
state a (polynomial) curve selection lemma for convex polyhedra that involves degree 3
cuspidal curves (Lemma 4.1), and (2) we prove that the simplest polynomial paths that
connect two convex polyhedra (whose union is connected by analytic paths) are moment
curves (Theorem 4.2).

Main Theorem 1.9 (PL case). Let S1; : : : ; Sr � Rn be the interiors of n-dimensional
convex polyhedra (not necessarily pairwise different), and denote S WD

Sr
iD1 Si . Pick

control points pi 2 Cl.Si / for i D 1; : : : ; r and suppose that there exists a Nash bridge �i
between Si and SiC1 for i D 1; : : : ; r � 1. Denote the base point of �i with qi 2 Cl.Si /\
Cl.SiC1/. Fix control times s0 WD 0 < t1 < � � � < tr < 1 DW sr and si 2 .ti ; tiC1/ for i D
1; : : : ; r � 1. Then there exists a polynomial map ˛WR! Rn that satisfies:
(i) ˛.Œ0; 1�/ � S [ ¹p1; : : : ; pr ; q1; : : : ; qr�1º.

(ii) ˛.ti / D pi for i D 1; : : : ; r .

(iii) ˛..ti ; si // � Si , ˛..si ; tiC1// � SiC1 and ˛.si / D qi for i D 1; : : : ; r � 1.
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(iv) The restriction ˛jŒt1;tr � is as close as wanted to the piecewise linear parameteriza-
tion

ˇ W Œt1; tr �! Cl.S/

of the polygonal path that connects the points p1; q1;p2; : : : ;pr�1; qr�1;pr , passes
through these points at the control times t1 < s1 < t2 < � � � < tr�1 < sr�1 < tr , and
satisfies �.ˇ/ � ¹t2; : : : ; tr�1; s1; : : : ; sr�1º.

1.3.3. Graph. Let S�Rn be a d -dimensional semialgebraic set and let S1; : : : ;Sr �Rn

be connected open semialgebraic subsets of Reg.S/ of dimension d . Observe that Si is a
Nash manifold for i D 1; : : : ; r . Assume

Sr
iD1 Si � S � Cl.

Sr
iD1 Si / and S is connected

by analytic paths. We construct a graphƒ to approach (Nash) logistic problems in S in the
following way. The vertices of the graph are S1; : : : ;Sr , and we have an edge between the
vertices Si and Sj if there exists a Nash bridge inside S between the Nash manifolds Si
and Sj . By the following lemma (see also Main Theorem 1.4 and Corollary 7.6 in [10], and
Lemma 4.2 in [15]), the previous graph is connected (because S is connected by analytic
paths) and one can approach with the help of Main Theorem 1.8 (Nash) logistic problems
between the ‘regions’ Sk using the existing Nash bridges between them (see below the
alternative proof of Corollary 1.4 as an example of application of this strategy).

Lemma 1.10. The graph ƒ is connected.

Proof. It is enough: to reorder recursively the indices i D 1; : : : ; r in such a way that
for each i D 2; : : : ; r , there exists a Nash bridge inside S between Si and some Sj with
1 � j � i � 1.

Suppose we have chosen S1; : : : ; Sk satisfying the previous conditions and let us
choose a suitable SkC1. Denote

T1 WD

k[
jD1

Sj and T2 WD

r[
`DkC1

S`:

If T1 \ T2 ¤ ¿, there exists an index ` 2 ¹k C 1; : : : ; rº such that S` \ Sj ¤ ¿ for some
j 2 ¹1; : : : ; kº. We interchange k C 1 and ` in order to have SkC1 D S`. Pick a point
x 2 Sj \ SkC1 and any Nash arc ˛W Œ�1; 1�! Sj \ SkC1 such that ˛.0/ D x. Observe
that ˛ provides a Nash bridge inside S between some Sj with 1 � j � k and SkC1.

Assume next T1 and T2 are disjoint (open semialgebraic subsets of Reg.S/). Let Y be
the Zariski closure of .Cl.T1/ n T1/ [ .Cl.T2/ n T2/, which by Proposition 2.8.13 in [2],
has dimension � d � 1. We have

S � Cl.S/ D Cl
� r[
iD1

Si

�
D Cl.T1/ [ Cl.T2/(1.1)

D T1 [ T2 [ .Cl.T1/ n T1/ [ .Cl.T2/ n T2/ � T1 [ T2 [ Y:

As dim.T1/ D dim.T2/ D d , the differences T1 n Y and T2 n Y are non-empty semialge-
braic sets. Pick points x2T1 n Y D T1 n .Cl.T2/[ Y / and y2T2nY D T2n.Cl.T1/ [ Y /
(recall that T1 and T2 are disjoint and that Y is the Zariski closure of .Cl.T1/ n T1/ [
.Cl.T2/ n T2/). As S is connected by analytic paths, there exists a Nash path ˛W Œ0; 1�! S

such that ˛.0/D x and ˛.1/D y. As ˛�1.Y / is both a closed subset of Œ0; 1� and the zero



J. F. Fernando 8

set in .0; 1/ of a Nash function defined on Œ0; 1� (because x;y…Y ), we deduce by the iden-
tity principle that ˛�1.Y / has dimension 0, so it is a finite subset of Œ0; 1�. By (1.1), we
deduce Œ0; 1� n .˛�1.T1 n Y /[ ˛�1.T2 n Y //� ˛�1.Y / is a finite set. As 0 2 ˛�1.T1 n Y /
D ˛�1.T1/ n ˛

�1.Cl.T2/[ Y / and 12 ˛�1.T2 n Y /, we have 0 < t0 WD inf.˛�1.T2//<1.
Observe that Œ0; t0/ n ˛�1.Y / � ˛�1.T1 n Y / and t0 2 Cl.˛�1.T2//. As ˛�1.Y / is a
finite set and ˛�1.T2/ is a non-empty open semialgebraic subset of Œ0; 1�, there exists
a small enough " > 0 such that ˛.Œt0 � "; t0// � T1 D

Sk
jD1 Sj and ˛..t0; t0 C "�/ �

T2 D
Sr
`DkC1 S`. Shrinking " > 0 if necessary, we may assume ˛.Œt0 � "; t0// � Sj for

some 1� j � k and ˛..t0; t0C "�/� S` for some kC 1� `� r . As ˛ is a (non-constant)
Nash path, we may assume (shrinking " > 0 again if necessary) by semialgebraic trivial-
ity (Theorem 9.3.2 in [2]) that the restrictions ˛jŒt0�";t0/ and ˛j.t0;t0C"� are injective. As
Sj \ S` D ¿, we deduce ˛jŒt0�";t0C"� is a Nash arc. We interchange k C 1 and ` in order
to have SkC1 D S`. Thus, there exists a Nash bridge inside S between SkC1 and some Sj
with 1 � j � k, as required.

In case S1; : : : ; Sr � Rn are open semialgebraic subsets of Rn, we can study the
previous problems from the polynomial point of view. Using Bernstein’s polynomials
(Theorem 2.9), we can estimate the degree of the constructed polynomial paths, espe-
cially if each Sk is in addition the interior of an n-dimensional convex polyhedron (proof
of Main Theorem 1.9 in Section 4, and Subsection 4.4). This also allows to estimate in
Remark 4.6 the degree of the polynomial maps that appear in Theorems 1.2 and 1.3 of [15]
to represent compact semialgebraic sets that are connected by analytic paths as the image
of closed unit balls under polynomials maps.

1.3.4. Alternative proof of Corollary 1.4. Let T1; : : : ; Ts be the connected compo-
nents of Reg.S/, which are connected Nash manifolds. Let Uk 2 ¹T1; : : : ; Tsº be such
that xi 2 Cl.Ui / for i D 1; : : : ; r . Consider the graph ƒ whose vertices are the con-
nected Nash manifolds Ti and such that there exists an edge between a pair of vertices Ti
and Tj if and only if there exists a Nash bridge � inside S between the Nash mani-
folds Ti and Tj . As S is connected by analytic paths, the graph ƒ is by Lemma 1.10
connected. Thus, given the sequence of vertices U1; : : : ;Ur , there exists a path P in the
graph ƒ that passes through U1; : : : ;Ur in this order. We collected all the ordered ver-
tices of P (including repetitions if needed) and denote them by S1; : : : ; S` in such a way
that there exists a Nash path �i between Si and SiC1 for i D 1; : : : ; ` � 1. In addition,
there exist indices 1 DW j1 < � � � < jr WD ` such that Sjk D Uk for k D 1; : : : ; r . For each
i 2 ¹1; : : : ; `º n ¹j1; : : : ; jrº, we pick a point pi 2Si and denote pjk WD xk for kD 1; : : : ; r .
Denote the base point of �i with qi 2 Cl.Si / \ Cl.SiC1/ � S for i D 1; : : : ; ` � 1. Take
times 0 DW w1 < � � � < w` WD 1 such that wjk D tk for k D 1; : : : ; r , si 2 .wi ; wiC1/ for
i D 1; : : : ; ` � 1, s0 < 0 and s` > 1. By Main Theorem 1.8, there exists a Nash path
˛W Œs0; s`�! Rn that satisfies
(i) ˛.Œs0; s`�/ �

Sr
iD1 Si [ ¹p1; : : : ; pr ; q1; : : : ; qr�1º � S,

(ii) ˛.wi / D pi for i D 1; : : : ; r ,
(iii) ˛..wi ; si // � Si , ˛..si ; wiC1// � SiC1 and ˛.si / D qi for i D 1; : : : ; r � 1.

Consequently, ˛jŒ0;1� W Œ0; 1�! S is a Nash path such that ˛.tk/D xk for k D 1; : : : ; r , as
required.
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1.4. Structure of the article

The article is organized as follows. In Section 2, we present some preliminary concepts
and tools. We would like to mention some results concerning Stone–Weierstrass’ polyno-
mial approximation using Bernstein’s polynomials (Theorem 2.9, that follows the ideas
developed in [16] and whose proof is postponed until Section 5), and some of its main
consequences (Lemmas 2.10 and 2.12). In Section 3, we prove the main result (Main The-
orem 1.8), whereas in Section 4 we estimate the degree of the polynomial paths provided
by Theorem 1.6 when the involved semialgebraic sets are piecewise linear (Main Theo-
rem 1.9). Consequently, one can provide bounds for the degrees of the polynomial maps
that appear in Theorems 1.3 and 1.4 in [15] (see Remark 4.6). We postpone some of the
technicalities of the proof of Main Theorem 1.8 until Appendix A, in order to make its
proof more discurse and intuitive.

2. Basic concepts and preliminary results

In this section, we recall and present some preliminary concepts and results that will be
the key to prove Main Theorem 1.8.

2.1. Regular and singular points of a semialgebraic set

Recall that the set of regular points of a semialgebraic set S � Rn is defined as follows.
Let X be the Zariski closure of S in Rn and let zX be the complexification of X , that is,
the smallest complex algebraic subset of Cn that contains X . The set Sing. zX/ of singular
points of zX corresponds to the collection of those points of zX that do not admit a neigh-
borhood diffeomorphic to a complex manifold. Define Reg.X/ WD X n Sing. zX/ and let
Reg.S/ be the interior of S n Sing. zX/ in Reg.X/. Observe that Reg.S/ is a finite union of
disjoint Nash manifolds maybe of different dimensions. We refer the reader to Section 2.A
of [10] for further details concerning the set of regular points of a semialgebraic set.

2.2. Hironaka’s desingularization

A rational map f WD .f1; : : : ; fn/WZ ! Rn on an algebraic set Z � Rm is regular if its
components are quotients of polynomials fk WD gk=hk such that Z \ ¹hk D 0º D ¿.
Hironaka’s desingularization results [17, 18] are powerful tools, and we recall here the
one we need.

Theorem 2.1 (Desingularization). Let X � Rn be an algebraic set. Then there exist a
non-singular algebraic set X 0 � Rm and a proper regular map f WX 0 ! X such that

f jX 0nf �1.Sing.X// W X
0
n f �1.Sing.X//! X n Sing.X/

is a diffeomorphism whose inverse map is also regular.

Remark 2.2. If X is pure dimensional, X n SingX is dense in X . As f is proper, it is
surjective.
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2.3. Topology of spaces of continuous functions

Let Œa; b� � R be a compact interval and � � Œa; b� an open set. For each ` � 1, con-
sider the space C`�.Œa; b�;R/ of continuous functions on Œa; b� that are C` on �. We
endow C`�.Œa; b�;R/ with the C`� topology that has as basis of open neighborhoods of
g 2 C`�.Œa; b�;R/ the family of sets of the type

U`
g;K;" WD

®
f 2C`�.Œa; b�;R/ W kf � gkŒa;b� < "; kf

.k/
� g.k/kK < "; k D 1; : : : ; `

¯
;

where K � � is a compact set, " > 0 and khkT WD max¹h.x/ W x 2T º for each compact
subset T � Œa; b�. Sometimes we will omit the subindex T when it is clear from the con-
text. If � D Œa; b�, the previous topology is the usual C` topology of C`.Œa; b�/. Observe
that C`�.Œa; b�;R

n/ D C`�.Œa; b�;R/ � � � � � C`�.Œa; b�;R/ and we consider the product
topology in this space. In particular, if f WD .f1; : : : ; fn/ 2 C`�.Œa; b�;R

n/ and T � Œa; b�
is a compact set, we denote to lighten notation

kf kT WD
qf 21 C � � � C f 2n T D max

®q
f 21 .x/C � � � C f

2
n .x/ W x 2T

¯
:

If X � Œa; b�, one defines analogously the C`�\X -topology of the space C`�\X .X;R/.
The following result follows from Exercise 10 in Section 2.5, pp. 64–65 of [19], using

standard arguments.

Lemma 2.3. Let U � Rn be an open set and 'WU ! Rm a Ck map for some 0 � k � `.
Consider the map '�WC`�.Œa; b�; U /! Ck�.Œa; b�;R

m/; f 7! ' ı f , where both spaces
are endowed with their Ck�-topologies. Then '� is continuous.

In addition, one has the following.

Lemma 2.4. Let X � Œa; b� and consider the restriction map

� W C`�.Œa; b�;R
n/! C`�\X .X;R

n/; f 7! f jX ;

where the spaces are endowed with their respective C`� and C`�\X topologies. Then � is
continuous, and if in addition X � Œa; b� is closed, then � is surjective.

2.4. Stone–Weierstrass’ approximation and Bernstein’s polynomials

The proof of Theorem 1.6 provided in [15] involves Stone–Weierstrass’ approximation
(controlling the behavior of a large enough number of derivatives). We want to analyze
the crucial role that Stone–Weierstrass’ approximation plays. There are many constructive
results in this direction and we refer the reader to Section 2 in Chapter 7 of [9], where
estimations of the approximation errors are available. In this article, we will use Bern-
stein’s polynomials, which provided a pioneer constructive proof of Stone–Weierstrass’
approximation theorem [1]. We suggest the reader Chapter 10 of [9] and Section 1 of [21]
for further references. Although Bernstein’s polynomials converge slowly to the approx-
imated function, they have shape preserving properties (see Theorem 3.3 in Chapter 10
of [9]) and a ‘good local behavior’ (see (3.3) in Chapter 10 of [9]): If two continuous func-
tions coincide on a subinterval of their common domain, their Bernstein polynomials of
high degree are very similar in (the compact subsets of ) such subinterval, even when we
compare their high order derivatives (Lemma 5.1).
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We recall some properties of the celebrated Bernstein polynomials and we present
some improvements in this work to fit our requirements (Theorem 2.9). The Bernstein
approximation polynomial (of degree �) of a real function f W Œ0; 1�! R is

B�.f / WD

�X
kD0

f
�k
�

�
Bk;�.x/; where Bk;�.x/ WD

�
�

k

�
xk.1�x/��k ; for kD0; : : : ; �:

2.4.1. Basic properties of Bernstein’s polynomials. Each Bernstein’s basis polynomial
Bk;�.x/ of degree � is strictly positive on the interval .0; 1/. In fact, for each x 2 .0; 1/,
the values ¹Bk;�.x/º�kD0 constitute the probability mass function of the binomial distribu-
tion B.�; x/. This means (see [21], p. 6):
�
P�
kD0 Bk;�.x/ D 1,

�
P�
kD0 kBk;�.x/ D �x, as it is the mean of B.�; x/,

�
P�
kD0.�x � k/

2Bk;�.x/ D �x.1 � x/, as it is the variance of B.�; x/.
In addition,

(i) If m � f �M , then m � B�.f / �M (see equation (2) on p. 5 of [21]).
(ii) Bk;�.x/ D .1 � x/Bk;��1.x/ C xBk�1;��1.x/ (which follows from the properties

of binomial numbers).
(iii) For each h 2 R, denote �hf .x/ WD f .x C h/ � f .x/ and

�khf .x/ WD �h.�
k�1
h f .x// D

kX
jD0

.�1/k�j
�
k

j

�
f .x C jh/:

If B.k/� .f / denotes the kth derivative of B�.f /, we have by equation (2) on p. 12
of [21],

B.k/� .f /.x/ D
�Š

.� � k/Š

��kX
iD0

�k1=�f
� i
�

�
Bi;��k.x/; for k D 0; : : : ; �.

Remark 2.5. If f 2C.Œa; b�/, write f �W Œ0; 1�! R, t 7! f .aC t .b � a//. Observe that
f Df �.x�a

b�a
/ and define B�� .f / WD B�.f

�/.x�a
b�a

/, the Bernstein’s polynomial of f of
degree � for the interval Œa; b�. The changes one makes in subsequent formulas for the
interval Œ0; 1� to obtain the corresponding ones for the interval Œa; b� are of the following
type: the polynomial x is changed by .x� a/=.b � a/, so the polynomial 1� x is changed
by .b � x/=.b � a/. For instance,

x.1 � x/Ý
.x � a/.b � x/
.b � a/2

and .1 � 2x/Ý
..b � a/ � 2.x � a//

b � a
�

2.4.2. Derivatives of Bernstein’s polynomials. One of the most remarkable properties
of Bernstein’s approximation, which is very useful for our constructions, is that the deriva-
tives B.`/� .f / of B�.f / of each order ` converge to the corresponding derivatives of f ,
see [20]: If f 2C`.Œ0; 1�/ for some ` � 0, then lim�!1B

.`/
� .f / D f .`/ uniformly on the
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interval Œ0; 1�. This property can be viewed as a compensation for the ‘slow’ convergence
of B�.f / to f . If k � kŒ0;1� denotes the maximum norm on Œ0; 1�, the error bound

(2.1) jB�.f /.x/ � f .x/j �
1

2�
x.1 � x/kf 00kŒ0;1�

provided in equation (3.4) in Chapter 10, p. 308, of [9], shows that the rate of conver-
gence is at least 1=� for f 2 C2.Œ0; 1�/. On the other hand, Voronovskaya’s asymptotic
formula [26] (or Section 1.6.1 of [21]),

(2.2) lim
�!1

�.B�.f /.x/ � f .x// D
1

2
x.1 � x/f 00.x/;

shows that for x 2 .0; 1/ with f 00.x/ ¤ 0, the asymptotic rate of convergence is pre-
cisely 1=�. In [16] it is shown that all derivatives of the operatorB� converge at essentially
the same rate by extending both the error bound (2.1) and Voronovskaya’s formula (2.2).
The error bound is generalized in [16] to the following.

Theorem 2.6 (Error bound, Theorem 1 in [16]). If f 2C`C2.Œ0; 1�/ for some ` � 0, then

jB.`/� .f /.x/ � f .`/.x/j(2.3)

�
1

2�
.`.` � 1/kf .`/kŒ0;1� C `j1 � 2xjkf

.`C1/
kŒ0;1� C x.1 � x/kf

.`C2/
kŒ0;1�/

for each x 2 Œ0; 1�.

Remark 2.7. The reader can prove inductively that

d `

dx`
.x.1 � x/f 00.x// D �`.` � 1/f .`/ C `.1 � 2x/f .`C1/ C x.1 � x/f .`C2/

is the `th derivative of x.1 � x/f 00.x/.

In addition, Voronovskaya’s formula (2.2) can be ‘differentiated’ to determine the
asymptotic behavior of the error for the high order derivatives of the Bernstein polyno-
mials:

Theorem 2.8 (Asymptotic behavior, Theorem 2 in [16]). If f 2 C`C2.Œ0; 1�/ for some
` � 0, then

lim
�!1

�.B.`/� .f /.x/ � f .`/.x// D
1

2

d `

dx`
.x.1 � x/f 00.x//

uniformly in the interval Œ0; 1�.

Thus, the `th derivative of B�.f / converges to f .`/.x/ at the rate of 1=� when the `th
derivative of x.1 � x/f 00.x/ is non-zero.

2.4.3. Control of the derivatives of Bernstein’s polynomials on compact subsets. In
this paper, we deal with continuous functions f W Œ0; 1�! R that are C` only on an open
subset�� Œ0; 1�, and we need to control the behavior of a large enough number of deriva-
tives of the Bernstein’s polynomials of f on a compact subset K � �. A first attempt is
to smooth our function f on Œ0; 1� n� and to make use of Lemma 5.1 together with Theo-
rems 1 and 2 in [16]. To avoid an increase of complexity when smoothing the initial data,
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we amalgamate in Theorem 2.9 the quoted results (Theorems 1 and 2 in [16] and Sec-
tions 2 and 3 in Chapter 10 of [9]) to approach the situation we need. Summarizing, we
provide a bound for the error of each derivative on the chosen compact set and show how
the error behaves asymptotically. To make the presentation of the article more discursive,
we postpone the proof of the following result until Section 5.

Theorem 2.9 (Convergence of derivatives on compact subsets). Let f W Œ0; 1�! R be a
continuous function that is C`C4 on an open subset�� .0; 1/ for some `� 0. LetK ��
be a compact set. Then there exists a constant Cf;K;` > 0 such that

jB�.f /
.`/.x/ � f .`/.x/j �

1

2�

�
`.` � 1/

`C3X
kD`

kf .k/kK

.k � `/Š

C `j1 � 2xj

`C3X
kD`C1

kf .k/kK

.k � ` � 1/Š
C x.1 � x/

`C3X
kD`C2

kf .k/kK

.k � ` � 2/Š

�
C
Cf;K;`

�2

for each x 2K (error bound).
In addition, for each " > 0, there exists a constant C �

f;K;`;"
> 0 such thatˇ̌̌

�.B�.f /
.`/.x/ � f .`/.x// �

1

2

d `

dx`
.x.1 � x/f 00.x//

ˇ̌̌
< "C

C �
f;K;`;"

�

for each x 2K and � > ` (control of the asymptotic behavior).

2.5. Polynomial approximation combined with interpolation

We adapt [3] to prove the following result, that combines Bernstein’s polynomial approx-
imation (controlling the behavior of a large enough number of derivatives on a compact
subset) with interpolation on a finite set. We include full details for the sake of complete-
ness.

Lemma 2.10. Let Œa; b� � R and let� � Œa; b� be an open set. Let a < t1 < � � � < tr < b
be real numbers such that each ti 2�, and let f W Œa; b� ! R be a C`C4� -function for
some ` � 0. Fix " > 0 and let K � � be a compact set. Then there exists a polynomial
g 2 RŒt� such that

(i) kf � gkŒa;b� < ",

(ii) kf .k/ � g.k/kK < " for k D 1; : : : ; `,

(iii) g.k/.ti / D f .k/.ti / for i D 1; : : : ; r and k D 0; : : : ; `.

Proof. Take polynomials Pik such that

P
.m/

ik
.tj / D

´
0 if i ¤ j or k ¤ m;
1 if i D j and k D m,

for i D 1; : : : ; r and 0 � k;m � `. For instance, we may choose

(2.4) Pik WD cik.t � ti /k
Y
j¤i

..t � ti /`C1 � .tj � ti /`C1/`C1;
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where

cik WD
1

kŠ

.�1/.`C1/.r�1/Q
j¤i .tj � ti /

.`C1/2
�

The Taylor expansion of Pik at ti has the form

Pik D
1

kŠ
.t � ti /k C dik.t � ti /`C1 C � � �

for some dik 2R, whereas the Taylor expansion of Pik at tj (for j ¤ i ) has the form

Pik D eijk.t � tj /`C1 C � � � ;

where

eijk WD cik.tj � ti /
k..`C 1/.tj � ti /

`/`C1
Y
�¤i;j

..tj � ti /
`C1
� .t� � ti /

`C1/`C1:

In both cases above, the symbolC� � � means ‘plus terms of higher degree’ with respect to
either t� ti or t� tj , depending on each case. To compute eijk , it is enough to figure out
the first non-zero monomial of the Taylor expansion at tj of each factor of the product Pik
and then to multiply them.

Define K 0 WD K [ ¹t1; : : : ; trº and

M WD max
®
kPikkŒa;b�; kP

.m/

ik
kK0 W 1 � i � r; 0 � k � `; 1 � m � `

¯
;(2.5)

ı WD
"

1C r.`C 1/M
�(2.6)

By Theorem 2.9, there exists a Bernstein polynomial h 2 RŒt� of f (in the interval Œa; b�)
such that kh � f kŒa;b� < ı and kh.k/ � f .k/kK0 < ı for k D 1; : : : ; `. Define

g WD hC

rX
iD1

X̀
kD0

bikPik

where bik WD f .k/.ti / � h.k/.ti / for i D 1; : : : ; r and k D 0; : : : ; `. Thus,

g.m/.tj / D h
.m/.tj /C

rX
iD1

X̀
kD0

bikP
.m/

ik
.tj / D h

.m/.tj /C bjm D f
.m/.tj /

for j D 1; : : : ; r and m D 0; : : : ; `.
As jbikj D jf .k/.ti / � h.k/.ti /j < ı for i D 1; : : : ; r and k D 0; : : : ; `, we have

kg � f kŒa;b� � kh � f kŒa;b� C

rX
iD1

X̀
kD0

jbikj kPikkŒa;b� < ı C r.`C 1/Mı D ";

kg.m/ � f .m/kK � kh
.m/
� f .m/kK C

rX
iD1

X̀
kD0

jbikj kP
.m/

ik
kK < ı C r.`C 1/Mı D "

for each m D 1; : : : ; `, as required.
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Remark 2.11. In the previous result, we have chosen the same number ` of known deriva-
tives for all the values ti in order to simplify the presentation, but it is possible to choose
different numbers of known derivatives for each value ti . The proof is quite similar, but
the notation is more intricate and the concrete details more cumbersome.

The proof of Main Theorem 1.8 still requires some preliminary work that we approach
next.

2.6. Polynomial paths with prescribed behavior at points and intervals

We prove next (as a consequence of Lemma 2.10) a key result to prove Main Theorem 1.8.
When we write a series in the form h WD aktk C � � � , we mean that the lowest order term
is aktk (with ak ¤ 0) and the remaining terms have higher order and are not relevant for
our computation. Recall that RŒx� WD RŒx1; : : : ; xn�.

Lemma 2.12. Let S0; : : : ;Sr �Rn be connected open semialgebraic sets (not necessarily
pairwise different) and pick points xi 2 Cl.Si�1/ \ Cl.Si / for i D 1; : : : ; r . Assume that
there exist a continuous path ˇW Œa; b�!

Sr
kD0 Sk [ ¹x1; : : : ; xrº and values a WD t0 <

t1 < � � � < tr < trC1 WD b satisfying the following properties:
(i) ˇ.Œt0; t1// � S0, ˇ..tk ; tkC1// � Sk for k D 1; : : : ; r � 1 and ˇ..tr ; trC1�/ � Sr ,

(ii) ˇ.ti / D xi and ˇ is an analytic path on a neighborhood of ti for i D 1; : : : ; r ,

(iii) there exist polynomials fij 2RŒx� such that ¹fi1 > 0; : : : ; fis > 0º � Si�1 is adher-
ent to xi and the analytic series .fij ı ˇ/.ti � t/ D aijtnij C � � � satisfies aij > 0,

(iv) there exist polynomials gij 2RŒx� such that ¹gi1 > 0; : : : ; gis > 0º � Si is adherent
to xi and the analytic series .gij ı ˇ/.ti C t/ D bijtpij C � � � satisfies bij > 0,

Let ` WD max¹nij ; pij W 1 � i � r; 1 � j � sº and let � � Œa; b� be an open neigh-
borhood of ¹t1; : : : ; trº such that ˇj� is analytic.

(1) There exists an open neighborhood U of ˇ 2 C`C4� .Œa; b�/ in the C`�-topology such
that if ˛ 2U and ˛.m/.ti /D ˇ.m/.ti / for each i D 1; : : : ; r and eachmD 0; : : : ; `,
then ˛..tk ; tkC1// � Sk for k D 0; : : : ; r .

(2) There exists a polynomial path ˛W Œa; b�!
Sr
kD0 Sk [ ¹x1; : : : ; xrº close to ˇ in

the C`�-topology such that ˛.ti / D xi for i D 1; : : : ; r and ˛..tk ; tkC1// � Sk for
k D 0; : : : ; r .

Proof. We prove this result as an application of Lemma 2.10. Observe that

.�1/nij .fij ı ˇ/
.nij /.ti / > 0 and .gij ı ˇ/

.pij /.ti / > 0

for each pair i; j . Thus, there exists ı > 0 such that for the compact interval Ii WD Œti �
ı; ti C ı� � �, .�1/nij .fij ı ˇjIi /

.nij / > 0 and .gij ı ˇjIi /
.pij / > 0 for i D 1; : : : ; r and

j D 1; : : : ; s. Denote J0 WD Œa; t1 � ı�, Jk WD Œtk C ı; tkC1 � ı� for k D 1; : : : ; r � 1 and
Jr WD Œtr C ı; b�. By Lemmas 2.3 and 2.4, the maps

'ij W C
`C4
� .Œa; b�;Rn/! C`C4.Ii ;R/;  7! fij ı  jIi ;

�ij W C
`C4
� .Œa; b�;Rn/! C`C4.Ii ;R/;  7! gij ı  jIi ;

 k W C
`C4
� .Œa; b�;Rn/! C0.Jk ;R/;  7! dist. jJk .t/;R

n
n Sk/
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are continuous. In addition, as ˇ.Jk/ � Sk , each function  k.ˇ/ is strictly positive for
k D 0; : : : ; r . Define

" WD min
i;j;k

®
min

®
.�1/nij .fij ı ˇjIi /

.nij /
¯
;min

®
.gij ı ˇjIi /

.pij /
¯
;min¹ k.ˇ/º

¯
> 0

and consider

U0 WD

r\
iD1

s\
jD1

¹ 2 C`C4� .Œa; b�;Rn/ W k'ij ./
.nij / � 'ij .ˇ/

.nij /kIi < "º

\ r\
iD1

s\
jD1

¹ 2 C`C4� .Œa; b�;Rn/ W k�ij ./
.pij / � �ij .ˇ/

.pij /kIi < "º

\ r\
kD0

¹ 2 C`C4� .Œa; b�;Rn/ W k k./ �  k.ˇ/kJk < "º;

which is an open subset of C`C4� .Œa; b�;Rn/ in the C`�-topology. Consider the compact set
K WD

Sr
iD1 Ii � �. There exists � > 0 such that

U WD ¹ 2C`C4� .Œa;b�;Rn/ W k �ˇkŒa;b�<�; k
.m/
�ˇ.m/kK <�; mD 1; : : : ; `º�U0:

We are ready to prove the assertions in the statement.
(1) We claim: If ˛ 2 U and ˛.m/.ti / D ˇ.m/.ti / for i D 1; : : : ; r and m D 0; : : : ; `,

then ˛..tk ; tkC1// � Sk for k D 0; : : : ; r .
It holds ˛.Jk/ � Sk for k D 0; : : : ; r , because

˛ 2 ¹ 2 C`C4� .Œa; b�/ W j k. jJk / �  k.ˇjJk /j < "º for k D 0; : : : ; r .

Thus, to prove the claim it is enough to check

˛.Œti � ı; ti // � ¹fi1 > 0; : : : ; fis > 0º � Si�1;(2.7)
˛..ti ; ti C ı�/ � ¹gi1 > 0; : : : ; gis > 0º � Si(2.8)

for i D 1; : : : ; r . We show only (2.7), because the proof of (2.8) is analogous.
Using Taylor’s expansion, we know that ˛ around ti has the form

˛.t/ D
X̀
mD0

1

mŠ
˛.m/.ti /.t � ti /m C .t � ti /`C1�.t � ti /

D

X̀
mD0

1

mŠ
ˇ.m/.ti /.t � ti /m C .t � ti /`C1�.t � ti /;

where � is a continuous map defined on an interval around 0 (we recall here that ˛ belongs
to C`C4� .Œa;b�;Rn). As ˇ is analytic in a neighborhood of ti , there exists a tuple of analytic
series � 2R¹tºn such that

ˇ.t/ D
X̀
mD0

1

mŠ
ˇ.m/.ti /.t � ti /m C .t � ti /`C1 �.t � ti /:
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Thus, if � WD � � � , which is a continuous function around 0, we deduce

˛.t/ � ˇ.t/ D .t � ti /`C1 �.t � ti / Ý ˛.ti � t/ � ˇ.ti � t/ D .�t/`C1 �.�t/:

Recall that x WD .x1; : : : ;xn/, write y WD .y1; : : : ;yn/ and let z be a single variable. As the
polynomial fij .xC zy/� fij .x/ vanishes on the real algebraic set ¹z D 0º, there exists a
polynomial Fij 2 RŒx; y; z� such that

fij .xC zy/ D fij .x/C zFij .x; y; z/:

As ` � nij , we deduce

fij .˛.ti � t//

D fij .ˇ.ti � t/C ˛.ti � t/ � ˇ.ti � t// D fij .ˇ.ti � t/C .�t/`C1�.�t//

D fij .ˇ.ti � t//C .�1/`C1t`C1Fij .ˇ.ti � t/; �.�t/; .�1/`C1t`C1/ D aijtnij C � � � :

Consequently, .fij ı ˛/.m/.ti /D 0 formD 0; : : : ;nij � 1 and .�1/.nij /.fij ı ˛/.nij /.ti /D
nij Š aij > 0. In addition, ˛.ti � t / 2 ¹fi1 > 0; : : : ; fis > 0º for t 2 .0; ı/ close to 0.

As .�1/.nij /.fij ı ˇjIi /
.nij /.ti � t/ > " > 0 on Œ�ı; ı� and j.fij ı ˇjIi /

.nij / � .fij ı

˛jIi /
.nij /j < ", we conclude that .�1/.nij /.fij ı ˛jIi /

.nij /.ti � t/ > 0 on Œ�ı; ı� for each
j D 1; : : : ; s. Suppose there exists a point t� 2 Œti � ı; ti / such that ˛.t�/ … ¹fi1 >
0; : : : ; fis > 0º and assume .fi1 ı ˛/.t�/ � 0. As ˛.ti � t / 2 ¹fi1 > 0; : : : ; fis > 0º

for t 2 .0; ı/ close to 0, there exists �0 2 .0; ı/ such that .fi1 ı ˛/.ti � �0/D 0. Assume by
induction onm� ni1 � 1 that there exist values 0 < �m < � � �< �1 < �0 < ı such that .fi1 ı
˛/.j /.ti � �j /D 0 for j D 0; : : : ;m. As .fi1 ı ˛/.m/.ti /D 0 and .fi1 ı ˛/.m/.ti � �m/D 0,
there exists by Rolle’s theorem �mC1 2 .0; �m/ such that .fi1 ı ˛/.mC1/.ti � �mC1/ D 0.
In particular, .fi1 ı ˛/.ni1/.ti � �ni1/ D 0 and �ni1 2 .0; ı/, which contradicts the fact that
.�1/.ni1/.fi1 ı ˛jIi /

.ni1/.ti �t/ > 0 on Œ�ı; ı�. Consequently, ˛.t/2¹fi1>0; : : : ; fis>0º
for each t 2 Œti � ı; ti /. Observe that to prove the latter assertion we have only used that
j.fij ı ˇjIi /

.nij / � .fij ı ˛jIi /
.nij /j < " and not that j.fij ı ˇjIi /

.m/ � .fij ı ˛jIi /
.m/j < "

for m D 1; : : : ; nij � 1. We will go deeper into this fact in Remark 2.13(i).
(2) Let K 0 � � be a compact set that contains K and let 0 < � < �. By Lemma 2.10,

there exists a polynomial tuple ˛ 2RŒt�n such that k˛ �ˇkŒa;b� < �, k˛.m/ �ˇ.m/kK0 < �
for m D 1; : : : ; ` (so ˛ 2U) and ˛.m/.ti / D ˇ.m/.ti / for i D 1; : : : ; r and m D 0; : : : ; `.
By (1), we deduce ˛..ti ; tiC1// � Si for i D 0; : : : ; r . In addition, ˛ is close to ˇ in
the C`�-topology of C`C4� Œa; b�, as required.

Remarks 2.13. (i) Suppose that in the statement of Lemma 2.12 each semialgebraic set Si
is the interior of an n-dimensional convex polyhedra. Then we may assume that each Si WD

¹hi1 > 0; : : : ; his > 0º, where hij 2RŒx�, is a polynomial of degree 1 for i D 0; : : : ; r .
Recall that Jk WD Œtk C ı; tkC1 � ı� for k D 0; : : : ; r and that Ii WD Œti � ı; ti C ı�

for i D 1; : : : ; r . We keep the notations introduced in the statement and the proof of
Lemma 2.12(1) and we analyze how we can simplify the conditions that appear in the
statement and the proof of Lemma 2.12(1) to guarantee that ˛..tk ; tkC1// � Sk for k D
0; : : : ; r � 1. We consider fij WD hi�1;j and gij WD hij for i D 1; : : : ; r and j D 1; : : : ; s.

First, to have ˛.Jk/ � Sk , it is enough that

k dist.˛jJk ;R
n
n Sk/ � dist.ˇjJk ;R

n
n Sk/kJk < min¹dist.ˇjJk ;R

n
n Sk/º
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for k D 0; : : : ; r � 1. By hypothesis, the Taylor polynomials of ˛ and ˇ at ti coincide until
degree `. To guarantee that

˛.Œti � ı; ti // � Si�1 D ¹hi�1;1 > 0; : : : ; hi�1;s > 0º;(2.9)
˛..ti ; ti C ı�/ � Si D ¹hi1 > 0; : : : ; his > 0º(2.10)

for i D 1; : : : ; r it is enough to have, in view of the proof of Lemma 2.12(1), the following
properties:

k.hi�1;j ı ˇjIi /
.nij / � .hi�1;j ı ˛jIi /

.nij /kIi < min¹.�1/.nij /.hi�1;j ı ˇjIi /
.nij /º;

k.hij ı ˇjIi /
.pij / � .hij ı ˛jIi /

.pij /kIi < min¹.hij ı ˇjIi /
.pij /º

for i D 1; : : : ; r . Thus, we do not have to care about the derivatives of order strictly smaller
than nij or pij (depending on the case). This reduction will be used in the proof of Main
Theorem 1.9 in order to simplify the estimations provided in §4.4.

(ii) In view of Remark 2.11, it is not necessary to use in Lemma 2.12(1) that the
derivatives of ˛ and ˇ at ti coincide formD 0; : : : ;`, but only formD 0; : : : ;max¹nij ;pij W
j D 1; : : : ; sº.

(iii) If Si�1 D Si for some i D 1; : : : ; r in the statement of Lemma 2.12, the condi-
tion xi 2 Cl.Si�1/ \ Cl.Si / means xi 2 Cl.Si / and condition (i) reads as ˇ..ti�1; tiC1/ n
¹tiº/ � Si . The reader has to take this into account when applying Lemma 2.12 to prove
Main Theorem 1.8.

3. Drawing Nash paths inside semialgebraic sets

In this section, we prove Main Theorem 1.8. Before that, we need a preliminary result.
Again, if we write a series in the form h WD aktk C � � � , we mean that the lowest order
term is aktk (with ak ¤ 0) and the remaining terms have higher order and are not relevant
for our computation.

3.1. Double Nash curve selection lemma

The following result is an amalgamated modification of the classical (Nash) curve selec-
tion lemma (see Proposition 8.1.13 in [2]) and double polynomial curve selection lemma
(see Lemma 3.8 in [15]).

Lemma 3.1 (Double Nash curve selection lemma). Let S � Rn be a semialgebraic set
of dimension d � 2 and let Sd be the set of points of S of dimension d . Pick a point
p2 Cl.Sd /. Then there exists a Nash arc ˛W Œ�1; 1�! Rn such that ˛.0/D p, ˛.Œ�1; 1� n
¹0º/ � Sd and ˛.Œ�1; 0// \ ˛..0; 1�/ D ¿. If S has dimension n, we may assume ˛ is a
polynomial arc.

Proof. Let X be the Zariski closure of S in Rn, which is an algebraic set of dimension d .
By Theorem 2.1, there exist a non-singular algebraic set X 0 � Rm and a proper regular
map f WX 0 ! X such that f jX 0nf �1.Sing.X//WX

0 n f �1.Sing.X// ! X n Sing.X/ is a
Nash diffeomorphism whose inverse map is also regular. As dim.Sing.X// � d � 1, we
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have Sd n Sing.X/ is dense in Sd . As p 2 Cl.Sd / D Cl.Sd n Sing.X// and f is proper,
there exists a point p0 2Cl.f �1.Sd n Sing.X/// such that f .p0/Dp. Assume that we find
a Nash arc ˇW Œ�1; 1�! Rm such that ˇ.0/ D p0, ˇ.Œ�1; 1� n ¹0º/ � f �1.Sd n Sing.X//
and ˇ.Œ�1; 0// \ ˇ..0; 1�/ D ¿. As f is a regular map and in particular a Nash map, if
we define ˛ WD f ı ˇ, we will be done.

So let us assume: the Zariski closure X of S in Rn is non-singular (and conse-
quently X is a disjoint union of finitely many Nash manifolds maybe of different dimen-
sions) and we have an algebraic set Y � X of dimension strictly smaller than d ‘to be
avoided’. Let U � Rn be an open semialgebraic neighborhood of p in X endowed with
a Nash diffeomorphism 'WU ! Rd such that '.p/ D 0. Let S00 WD '..Sd n Y /\ U/ and
assume that we find a Nash arc  W Œ�1; 1�! Rd such that .0/D 0, .Œ�1; 1� n ¹0º/ � S00

and .Œ�1; 0// \ ..0; 1�/ D ¿. If we define ˇ WD '�1 ı  , we will be done.
Thus, we can suppose the following: S is pure dimensional of dimension n � 2, the

Zariski closure of S in Rn is Rn, and p 2 Cl.S/ is the origin. As Int.S/ is dense in S

(because S is pure dimensional), there exists, by Proposition 8.1.13 in [2], a Nash arc � WD
.�1; : : : ; �n/W Œ�1; 1�! Rn such that �.0/D p and �..0; 1�/ � Int.S/. After shrinking the
domain of �, we may assume that each �i 2RŒŒt��alg is an algebraic analytic series. After a
linear change of coordinates and a reparameterization of �, we may assume that �2 WD t`2
for some `2 � 1 (recall that n � 2). As Int.S/ is an open semialgebraic subset of Rn and
p 2 Cl.S/ D Cl.Int.S//, there exist polynomials f1; : : : ; fr 2 RŒx� such that fi .p/ D 0
for i D 1; : : : ; r , and

�..0; "�/ � ¹f1 > 0; : : : ; fr > 0º � Int.S/

for some 0 < " < 1 (because Int.S/ can be written, by Theorem 2.7.2 in [2], as a finite
union of basic open semialgebraic sets, see Section 1.1). Consider the algebraic series
fj .�/ 2RŒŒt��alg, which satisfies fj .�/D ajtkj C � � � for some aj > 0 and kj � 1. Define
m WD max¹kj W j D 1; : : : ; rº C `2 C 1 and let q > 2m be an odd positive integer. Let
�j 2RŒŒt��alg be an algebraic series such that �j WD �j C tm�j 2 RŒt� is a univariate poly-
nomial for j D 1; : : : ; n and �2 D �2 D t`2 (that is, �2 D 0). Denote � WD .�1; : : : ; �n/ and
� WD .�1; : : : ; �n/. Define  WD �.t2/C tqe1 2 RŒt�n, where e1 WD .1; 0; : : : ; 0/. As the
exponent q is odd, all the exponents of the non-zero monomials (if any) of the polynomial
�1.t2/ are even and �2.t2/ D t2`2 , we deduce .Œ�"; 0//\ ..0; "�/ D ¿ for each " > 0.

Let x WD .x1; : : : ; xn/, y WD .y1; : : : ; yn/ and let z be a single variable. Write

fj .xC zy/ D fj .x/C zhj .x; y; z/

where hj 2RŒx; y; z�. Then

fj ..t// D fj .�.t2/C tqe1/ D fj .�.t2/C t2m.�.t2/C tq�2me1//

D fj .�.t2//C t2mhj .�.t2/; �.t2/C tq�2me1; t2m/ D ajt2kj C � � � ;

so for " > 0 small enough  W Œ�"; "�! Rn is a polynomial arc such that, in addition,

.Œ�"; "� n ¹0º/ � ¹f1 > 0; : : : ; fr > 0º � Int.S/

and .0/ D 0 D p. After an affine reparameterization in order to have the interval Œ�1; 1�
as the domain of  , we deduce  is the searched polynomial path.
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3.2. Smart Nash curve selection lemma

Recall that a d -dimensional Nash manifold M � Rn with boundary is a d -dimensional
smooth submanifold with boundary of Rn that is in addition a semialgebraic set. We
are ready to prove Main Theorem 1.8 (although we postpone some technicalities until
Appendix A for the sake of clearness).

Proof of Main Theorem 1.8. Let X � Rn be the Zariski closure of S in Rn, T WD Cl.S/ n
Reg.S/ and Y � X the Zariski closure of T [ Sing.X/. If d WD dim.S/, then dim.X/D d
and dim.Y / � d � 1, so S n Y ¤ ¿ is dense in S, because S is pure dimensional. The
proof is conducted in several steps:

STEP 0. Reduction of the 1-dimensional case to the 2-dimensional case.
To avoid a misleading use of some preliminary results that only work for dimen-

sion � 2, we study this case separately. Assume that dim.X/ D 1. Define S� WD S [

¹p1; : : : ; pr ; q1; : : : ; qr�1º, which is irreducible, by Lemma 7.3 and Corollary 7.6 in [10].
Observe that X is also the Zariski closure of S�, because S� � Cl.S/. Let zX � Cn be the
Zariski closure of X in Cn and let . zX 0; �/ be the normalization of X . We endow . zX 0; �/

with an involution Q� W zX 0 ! zX 0 induced by the involution � W zX ! zX that arises from the
restriction to zX of the complex conjugation in Cn. We may assume zX 0 � Cm and Q� is
the restriction to zX 0 of the complex conjugation in Cm (see Proposition 3.11 in [11]).
By Theorem 3.15 in [11] and as S� is irreducible, ��1.S�/ has a (unique) 1-dimensional
connected component S00 such that �.S00/ D S�. As X has dimension 1, it is a coherent
analytic set, so S00 � Z WD

zX 0 \ Rm. As zX 0 is a normal curve, Z is a non-singular real
algebraic curve. We claim: the connected components of Z are Nash diffeomorphic either
to S1 or to the real line R.

By Theorem VI.2.1 in [23], there exist a compact affine non-singular real algebraic
curve Z�, a finite set F , which is empty if Z is compact, and a union Z0 of some con-
nected components of Z� n F such that Z is Nash diffeomorphic to Z0 and Cl.Z0/ is a
compact 1-dimensional Nash manifold with boundary F . As Z� is a compact affine non-
singular real algebraic curve, its connected components are diffeomorphic to S1, so by
Theorem VI.2.2 in [23], the connected components of Z� are in fact Nash diffeomorphic
to S1. Now, each connected component of Z is Nash diffeomorphic to an open connected
(semialgebraic) subset of S1, as claimed.

Consequently, S00 is Nash diffeomorphic to a 1-dimensional connected (semialge-
braic) subset S0 of S1. Thus, there exists a generically 1-1 surjective Nash map ' from
a connected (semialgebraic) subset S0 of S1 to S�. By Theorem 3.15 in [11] and as
each Si is irreducible (because it is a connected Nash manifold, see (3.1)(i) in [11]),
'�1.Si / has a (unique) 1-dimensional connected component S0i such that '.S0i / D Si ,
which is an open connected (semialgebraic) subset of S1. As there exists a Nash bridge �i
between Si and SiC1 with base point qi , there exists by Lemma B.2 in [10] a Nash
bridge � 0i between S0i and S0iC1 with base point q0i 2 S1 such that '.q0i / D qi for i D
1; : : : ; r � 1. Pick points p0i 2 Cl.S0i / such that '.p0i / D pi for i D 1; : : : ; r . Observe
that: If ˇW Œ0; 1�! S� is a continuous semialgebraic path satisfying the conditions of the
statement of Main Theorem 1.8 with respect to S�, there exists, by Lemmas B:1 and B:2
in [10], a continuous semialgebraic path  W Œ0; 1�! S0 satisfying the conditions of such
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statement with respect to S0 such that ' ı  D ˇ. In this case, we take p0i WD .ti /, which
fulfills '.p0i / D pi , for i D 1; : : : ; r .

Consider the Nash retraction  WR2 n ¹0º ! S1, .x; y/ 7! .x; y/=
p
x2 C y2, which

satisfies  jS1 D idS1 , and define S00i WD  
�1.S0i /, which contains S0i , for i D 1; : : : ; r . We

have:
• S00i is an open connected semialgebraic subset of R2 n ¹0º, which is a Nash manifold.
• p0i 2 Cl.S0i / � Cl.S00i / for i D 1; : : : ; r .
• q0i 2 Cl.S0i / \ Cl.S0iC1/ � Cl.S00i / \ Cl.S00iC1/ for i D 1; : : : ; r � 1.
• � 0i is a Nash bridge between S0i � S00i and S0iC1 � S00iC1 with base point q0i for i D
1; : : : ; r � 1.
Thus, if we find a Nash path ˛0W Œ0; 1�!

Sr
iD1 S

00
i [ ¹p

0
1; : : : ; p

0
r ; q
0
1; : : : ; q

0
r�1º sat-

isfying the required conditions of the statement of Main Theorem 1.8 for the new setting,
then ˛ WD ' ı ı ˛0 W Œ0; 1�! S� D

Sr
iD1 Si [ ¹p1; : : : ; pr ; q1; : : : ; qr�1º is a Nash path

satisfying the required conditions in the statement.
Consequently, to prove Main Theorem 1.8 we assume in the following that d � 2. To

lighten notations, we reset all the notations used in STEP 0.

STEP 1. Construction of a suitable continuous semialgebraic path ˇ.
We show first: There exists a continuous semialgebraic path ˇW Œ0; 1�! Rn such that

�.ˇ/ � .0; 1/ n ¹t1; : : : ; tr ; s1; : : : ; sr�1º; ˇ.�.ˇ// �

r[
iD1

Si ;

and ˇ satisfies conditions (i), (ii) and (iii) in the statement of Main Theorem 1.8. Recall
that T WD Cl.S/ n Reg.S/ and Y � X the Zariski closure of T [ Sing.X/.

Let us check: For each i D 1; : : : ; r � 1, we may modify the Nash bridges �i in order
to have in addition �i \ Y � ¹qiº and .�i n ¹qiº/ \ .�j n ¹qj º/ D ¿ if i ¤ j .

Pick any index i D 1; : : : ; r � 1 and suppose we have constructed the Nash bridges �j
for 1� j � i � 1 satisfying the required conditions. Denote the Zariski closure of

Si�1
jD1�j

with Y 0i . We distinguish two cases:
Case 1. Suppose first qi 2 Cl.Si \ SiC1/.
Observe that Si \ SiC1 ¤¿ is pure dimensional and dim.Si \ SiC1/D d . As dim.Y /

< dim.Si \ SiC1/ and dim.Y 0i /� 1 < 2� dim.Si \ SiC1/, we have qi 2 Cl..Si \ SiC1/ n

.Y [ Y 0i //. By Lemma 3.1, there exists a Nash arc ˛W Œ�1; 1�! Rn such that ˛.0/ D qi ,
˛.Œ�1; 1� n ¹0º/� .Si \ SiC1/ n .Y [ Y

0
i // and ˛.Œ�1; 0//\ ˛..0; 1�/D¿. We substitute

the old �i by the new �i WD ˛.Œ�1; 1�/ and observe �i \ Y � ¹qiº and .�i n ¹qiº/\ .�j n
¹qj º/ D ¿ if 1 � j � i � 1.

Case 2. Suppose next qi … Cl.Si \ SiC1/.
Then there exists an open semialgebraic neighborhood U � X of qi such that Si \

SiC1 \U D¿. As qi2Cl.Si /\Cl.SiC1/, we also have qi2 Cl.Si \ U/ \ Cl.SiC1 \ U/.
We shrink U to have in addition that Si \U and SiC1 \U are connected Nash manifolds.
Shrinking �i if necessary, we have that it is a Nash bridge between Si \ U and SiC1 \ U

with base point qi . By Main Theorem 1.1 and Proposition 7.6 in [10], the union .Si \U/[
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Figure 2. Construction of the Nash paths �i and �i .

.SiC1 \ U/ [ ¹qiº is a semialgebraic set connected by analytic paths. By Proposition 7.8
in [10], we may assume that �i \ .Y [ Y 0i / � ¹qiº. In particular, .�i n ¹qiº/ \ .�j n
¹qj º/ D ¿ if 1 � j � i � 1.

Next, let ˇi W Œ�1;1�!�i � S[ ¹qiº be a Nash parameterization of the Nash bridge �i
such that ˇi .0/D qi , ˇi .Œ�1;0//� Si and ˇi ..0; 1�/� SiC1. Let Y 0 be the Zariski closure
of
Sr�1
iD1 �i . Using Lemma 3.1 recursively, we find Nash arcs ˛i W Œ�1; 1�! Si [ ¹piº such

that ˛i .0/ D pi , ˛i .Œ�1; 1� n ¹0º/ � Si n .Y [ Y
0/, ˛i .Œ�1; 0// \ j̨ ..0; 1�/ D ¿ and if

we denote ƒi WD ˛i .Œ�1; 1�/, then .ƒi n ¹piº/ \ .ƒj n ¹pj º/ D ¿ for 1 � j < i � r . In
addition, .�i n ¹qiº/ \ .ƒj n ¹pj º/ D ¿ for i D 1; : : : ; r � 1 and j D 1; : : : ; r .

Thus, the collection of semialgebraic sets

¹�i n ¹qiº W i D 1; : : : ; r � 1º [ ¹ƒj n ¹pj º W j D 1; : : : ; rº

is a pairwise disjoint family. We affinely reparameterize the domains of ˇi and j̨ and
shrink them if necessary in such a way that there exist values

�0 WDs0 D 0 < t1 < �1 < �1 < s1 < �1 < �1 < t2 < �2

< � � � < �r�2 < tr�1 < �r�1 < �r�1 < sr�1 < �r�1 < �r�1 < tr < 1 D sr DW �r

such that:
• ˛i W Œ�i�1; �i �! Si [ ¹piº and ˛i .ti / D pi .
• ˇi W Œ�i ; �i �! �i and ˇi .si / D qi .

The points ˛i .�i�1/; ˛i .�i /; ˇi�1.�i�1/; ˇi .�i / belong to Si n Y , which is an open
semialgebraic subset of the connected Nash manifold Si , and they are pairwise different.
By Theorem 1.5 in [10], there exist:

• a Nash path �i W Œ�i�1; �i�1�! Si such that �i .�i�1/ D ˇi�1.�i�1/ and �i .�i�1/ D
˛i .�i�1/,

• a Nash path �i W Œ�i ; �i �! Si such that �i .�i / D ˛i .�i / and �i .�i / D ˇi .�i /.
By Lemma 7.7 in [10], we have ��1i .Y / and ��1i .Y / are finite sets (Figure 2).

Denote

Z WD ¹�0; : : : ; �r�1; �1; : : : ; �r ; �1; : : : ; �r�1; �1; : : : ; �r�1º:
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Thus, concatenating all the previous Nash paths and arcs, we construct a piecewise Nash
path ˇW Œ0; 1�! Rn such that

(1) ˇ.Œ0; 1�/ �
Sr
iD1 Si [ ¹p1; : : : ; pr ; q1; : : : ; qr�1º.

(2) ˇ.ti / D pi for i D 1; : : : ; r .
(3) ˇ..ti ; si // � Si , ˇ..si ; tiC1// � SiC1 and ˇ.si / D qi .
(4) �.ˇ/ � Z � .0; 1/ n ¹t1; : : : ; tr ; s1; : : : ; sr�1º (because ˇjŒ0;1�nZ is a Nash map).
(5) ˇ�1.Y / is a finite set and �.ˇ/ \ ˇ�1.Y / D ¿ (as �.ˇ/ � Z and ˇ.Z/ \ Y D ¿).

Thus, we have provided a procedure to construct a continuous semialgebraic path
ˇW Œ0; 1�! Rn such that �.ˇ/ � .0; 1/ n ¹t1; : : : ; tr ; s1; : : : ; sr�1º, ˇ�1.Y / is a finite set,
�.ˇ/ \ ˇ�1.Y / D ¿, and ˇ satisfies conditions (i), (ii) and (iii) in the statement.

STEP 2. Modification of a given continuous semialgebraic path ˇ.
Fix in this step any continuous semialgebraic path ˇW Œ0; 1�! Rn satisfying the re-

quired conditions (i), (ii) and (iii) in the statement. By Lemma A.1 (below), we may
assume in addition (perturbing ˇ slightly if necessary) that ˇ�1.Y / is a finite set and
�.ˇ/\ ˇ�1.Y /D ¿. For the sake of clearness and to make the proof more discursive, we
have postponed this technical part of the proof until Appendix A.

STEP 3. Reduction to the open semialgebraic setting.
By Theorem 2.1, there exist a non-singular algebraic setX 0 �Rm and a proper regular

map f WX 0 ! X such that the restriction f jX 0nf �1.Sing.X//WX
0 n f �1.Sing.X//! X n

Sing.X/ is a Nash diffeomorphism whose inverse map is also regular. If A � X , the
strict transform of A under f is A0 WD Cl.f �1.A n Sing.X// \ f �1.A/. As f is proper,
f .A0/ D Cl.A n Sing.X// \ A. Thus, if A n Sing.X/ is dense in A, one has f .A0/ D A.
This happens for instance if A is a pure dimensional semialgebraic set of dimension d .

Let S0 be the strict transform of Reg.S/ under f and S0i the strict transform of Si , which
is a connected Nash submanifold of Rm, because Reg.S/�X n Sing.X/. By Lemmas B.1
and B.2 in [10], the strict transform under f of ˇ is a continuous semialgebraic path
 W Œ0; 1�! Cl.S0/, which satisfies f ı  D ˇ. Denote p0i WD .ti / and q0i WD .si /. Observe
that f .p0i / D pi for i D 1; : : : ; r and f .q0i / D qi for i D 1; : : : ; r � 1. We have:
(i) .Œ0; 1�/ �

Sr
iD1 S

0
i [ ¹p

0
1; : : : ; p

0
r ; q
0
1; : : : ; q

0
r�1º.

(ii) .ti / D p
0
i for i D 1; : : : ; r .

(iii) ..ti ; si // � S0i , ..si ; tiC1// � S0iC1 and .si / D q0i .
By Corollary 8.9.5 in [2], there exists a Nash tubular neighborhood .U;�/ ofX 0 in Rm,

where �W U ! X 0 is a Nash retraction. Define S00 WD ��1.S0/ and S00
k
WD ��1.S0

k
/ for

k D 1; : : : ; r , which are open semialgebraic subsets of Rm. As each Nash manifold S0
k

is
connected, shrinkingU if necessary, we may assume in addition that each S00

k
is connected.

Observe that .Œ0; 1�/ �
Sr
iD1 S

00
k
[ ¹p01; : : : ; p

0
r ; q
0
1; : : : ; q

0
r�1º. There exists � > 0 small

enough such that  jŒsi��;siC�� supplies, by Lemmas B.1 and B.2 in [10], a Nash bridge
between S00i and S00iC1 for i D 1; : : : ; r � 1.

STEP 4. Computing the order of differentiability.
We need to compute certain positive integer ` in order to apply Lemma 2.12(2). Recall

that each S00i is an open semialgebraic set and  is a Nash path in a neighborhood of the
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finite set ¹t1; : : : ; tr ; s1; : : : ; sr�1º such that  is a non-trivial Nash arc inside S00i [ ¹p
0
iº

around ti and  provides a Nash bridge between S00i and S00iC1 with base point q0i around si .
As each S00i is an open semialgebraic set, it is by Theorem 2.7.2 in [2] a finite union of
basic open semialgebraic sets, see Section 1.1. As  is a non-trivial Nash arc (around ti )
inside S00i [ ¹p

0
iº, both (open) branches around ti are contained in one of these basic open

semialgebraic sets. Thus, there exist polynomials fij ; gij 2 RŒx� such that:
• ¹fi1 > 0; : : : ; fis > 0º � S00i is adherent to p0i and .fij ı /.ti � t/ D aijteij C � � � ,

where aij > 0 and eij is a positive integer.
• ¹gi1 > 0; : : : ; gis > 0º � S00i is adherent to p0i and .gij ı /.ti C t/ D bijtuij C � � � ,

where bij > 0 and uij is a positive integer.
Analogously, as  provides (around si ) a Nash bridge between S00i and S00iC1 with base

point q0i , one of its two (open) branches around ti is contained in a basic open semial-
gebraic subset of S00i and its other (open) branch around ti is contained in a basic open
semialgebraic subset of S00iC1. Thus, there exist polynomials hij ; mij 2 RŒx� such that:

• ¹hi1 > 0; : : : ; his > 0º � S00i is adherent to q0i and .hij ı /.si � t/ D cijtvij C � � � ,
where cij > 0 and vij is a positive integer.

• ¹mi1 >0; : : : ;mis >0º � S00iC1 is adherent to q0i and .mij ı /.si C t/D dijtwij C � � � ,
where dij > 0 and wij is a positive integer.
Define ` WD max¹eij ; uij ; vij ; wij W 1 � i � r; 1 � j � sº.

CONCLUSION.
By Lemma 2.12(2), there exists a polynomial path ˛0WR! Rm that satisfies:

(i) ˛0.Œ0; 1�/ �
Sr
iD1 S

00
i [ ¹p

0
1; : : : ; p

0
r ; q
0
1; : : : ; q

0
r�1º.

(ii) ˛0.ti / D p
0
i for i D 1; : : : ; r .

(iii) ˛0..ti ; si // � S00i , ˛0..si ; tiC1// � S00iC1 and ˛0.si / D q0i for i D 1; : : : ; r � 1.

(iv) ˛0jŒ0;1� is close to  in the C0 topology.
Define ˛1 WD � ı ˛0WR! Rm (where � is the Nash retraction provided in STEP 3),

which is a Nash path that satisfies:
(i) ˛1.Œ0; 1�/ �

Sr
iD1 S

0
i [ ¹p

0
1; : : : ; p

0
r ; q
0
1; : : : ; q

0
r�1º.

(ii) ˛1.ti / D p
0
i for i D 1; : : : ; r .

(iii) ˛1..ti ; si // � S0i , ˛1..si ; tiC1// � S0iC1 and ˛1.si / D q0i for i D 1; : : : ; r � 1.

(iv) ˛1jŒ0;1� is close to � ı  D  in the C0 topology (Lemma 2.3).
Next define ˛ WD f ı ˛1 W R! Rn, which is a Nash path that satisfies:

(i) ˛.Œ0; 1�/ �
Sr
iD1 Si [ ¹p1; : : : ; pr ; q1; : : : ; qr�1º.

(ii) ˛.ti / D pi for i D 1; : : : ; r .
(iii) ˛..ti ; si // � Si , ˛..si ; tiC1// � SiC1 and ˛.si / D qi for i D 1; : : : ; r � 1.
(iv) ˛jŒ0;1� is close to f ı  D ˇ in the C0 topology (Lemma 2.3),

as required.

We revisit next a well-known characterization of the connexion by analytic paths for
semialgebraic sets. This result was proved indirectly in Main Theorem 1.4 in [10], show-
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ing that the corresponding two properties are both equivalent to the fact that the involved
semialgebraic set is the image of some Rd under a Nash map.

Corollary 3.2. Let S � Rn be a semialgebraic set of dimension d . The following condi-
tions are equivalent:
(i) S is connected by analytic paths.

(ii) S is pure dimensional and there exists an analytic path ˛W Œ0; 1�! S whose image
meets all the connected components of Reg.S/.

Proof. Let S1; : : : ; S` be the connected components of Reg.S/, which are pairwise dis-
joint. Let ƒ be the graph proposed in Subsection 1.3.3, whose vertices are the Nash
manifolds S1; : : : ; S` and such that there exists an edge between the vertices Si and Sj if
and only if there exists a Nash bridge inside S between Si and Sj . When ƒ is a connected
graph, there exists a sequence of semialgebraic sets T1; : : : ; Tr such that ¹S1; : : : ; S`º D
¹T1; : : : ; Trº and for each index i D 1; : : : ; r � 1 there exists a Nash bridge inside S

between Ti and TiC1.
(i)) (ii) We prove first that S is pure dimensional. Otherwise, there exist a point x 2S

and an open semialgebraic neighborhood U � Rn of x such that dim.S \ U/ < dim.S/.
Let Y be the Zariski closure of S \ U and pick a point y 2 S n Y , which is non-empty
because dim.Y / < dim.S/. As S is connected by analytic paths, there exists an analytic
path ˛W Œ0; 1�! S such that ˛.0/D x and ˛.1/D y. The inverse image V WD ˛�1.S\U/
is an open semialgebraic subset of Œ0; 1� that contains 0. Let f 2RŒx� be a polynomial
equation of Y . As .f ı ˛/jV D 0 and Œ0; 1� is connected, the identity principle for analytic
functions implies that f ı ˛D 0, so f .y/D 0 and y 2 Y , which is a contradiction. Thus, S
is pure dimensional.

By Lemma 1.10, we know that ƒ is a connected graph. Now pick points xi 2 Ti for
i D 1; : : : ; r . By Main Theorem 1.8, there exists a Nash path ˛W Œ0; 1� ! S such that
˛.k=.r C 1// D xk for k D 1; : : : ; r . Thus ˛W Œ0; 1�! S is an analytic path that meets all
the connected components of Reg.S/.

(ii)) (i) We prove next recursively that: ƒ is a connected graph. It is enough: to
reorder recursively the indices i D 1; : : : ; ` in such a way that, for each i D 2; : : : ; `,
there exists a Nash bridge inside S between Si and some Sj with 1 � j � i � 1.

Define ti WD inf.˛�1.Si // for i D 1; : : : ; `. As each ˛�1.Si / is an open semialgebraic
subset of Œ0; 1� and Si \ Sj D ¿ if i ¤ j , we deduce ti ¤ tj if i ¤ j . We reorder the
indices i D 1; : : : ; ` in such a way that i < j if ti < tj . There exists " > 0 such that
˛..ti � "; ti // � Sj for some 1 � j < i and ˛..ti ; ti C "// � Si for each i D 2; : : : ; `.
Consequently, there exists a Nash bridge inside S between Si and some Sj with 1 � j �
i � 1 for i D 2; : : : ; `.

Choose a sequence of semialgebraic sets T1; : : : ;Tr such that the equality ¹S1; : : : ;S`º
D ¹T1; : : : ; Trº holds and for each index i D 1; : : : ; r � 1, there exists a Nash bridge
between Ti and TiC1. As S is pure dimensional, SD Cl.Reg.S//\ SD

Sr
iD1Cl.Ti /\ S.

If x; y 2 S, there exist indices i; j such that x 2 Cl.Ti / and y 2 Cl.Tj /. We may assume
i < j and we pick points xk 2 Tk for k D i C 1; : : : ; j � 1 and write xi WD x and xj WD y.
By Main Theorem 1.8, there exists a Nash path ˛W Œ0; 1� ! S such that ˛.0/ D x and
˛.1/ D y. Thus, S is connected by Nash paths and consequently by analytic paths, as
required.
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4. Polynomial paths inside piecewise linear semialgebraic sets

In this section, we prove Main Theorem 1.9, that is, we revisit Main Theorem 1.8 for
the piecewise linear (PL) case: the involved semialgebraic sets are the interiors of con-
vex polyhedra of dimension n. Due to the maximality of the dimension of the convex
polyhedra, we are under the hypothesis of Theorem 1.6 and the obtained ‘smart’ path
can be chosen polynomial. In order to get better bounds for the degrees of these polyno-
mial paths: (1) we state a (polynomial) curve selection lemma for convex polyhedra that
involves degree 3 cuspidal curves (Lemma 4.1), and (2) we prove that the simplex poly-
nomial paths that connect two convex polyhedra (whose union is connected by analytic
paths) are moment curves (Theorem 4.2).

4.1. Double Nash curve selection lemma for PL semialgebraic sets

In order to lighten the presentation, we first find a simplified version of Lemma 3.1 for
convex polyhedra (Figure 3). Denote RŒx� WDRŒx1; : : : ;xn�. Given a polynomial h 2RŒx�
of degree 1, denote Eh WD h � h.0/, which is a linear form.

Lemma 4.1 (Cuspidal curve). Let K � Rn be an n-dimensional convex polyhedron and
let p2K. Assume that p is the origin and the point e1 WD .1; 0; : : : ; 0/ 2 Int.K/. Consider
the polynomial map ˛WR! Rn; t 7! .t2; t3; 0; : : : ; 0/. Then there exists " > 0 such that
˛.Œ�"; "�/ � Int.K/ [ ¹pº.

�

K

˛

p

Figure 3. Cuspidal curve of Lemma 4.1.

Proof. Let h1; : : : ; hm 2 RŒx� be polynomials of degree 1 such that

K WD ¹h1 � 0; : : : ; hm � 0º:

As e1 2 Int.K/, we have hk.e1/ > 0 for k D 1; : : : ;m. Write Ehk WD hk.x/� hk.0/, which
is a linear form. Observe that

hk.e1/ D hk.0/C Ehk.e1/ > 0;

hk.t
2; t3; 0; : : : ; 0/ D hk.0/C t

2 Ehk.1; t; 0; : : : ; 0/:
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We distinguish two cases:

CASE 1. Ehk.e1/ > 0 (and hk.0/ � 0).

As fk WR! R; t 7! Ehk.1; t; 0; : : : ; 0/ D Ehk.e1/C t Ehk.0; 1; 0; : : : ; 0/ is continuous
and fk.0/ D Ehk.e1/ > 0, there exists "k > 0 such that if jt j < "k , then fk.t/ > 0. As
hk.0/ � 0,

hk.t
2; t3; 0; : : : ; 0/ D hk.0/C t

2 Ehk.1; t; 0; : : : ; 0/ > 0 if 0 < jt j < "k .

CASE 2. Ehk.e1/ � 0.

Then hk.0/ > 0. As gk WR! R; t 7! hk.0/C t
2 Ehk.1; t; 0; : : : ; 0/ is continuous and

hk.0/ > 0, there exists "k > 0 such that if jt j < "k , then hk.t2; t3; 0; : : : ; 0/ > 0.
To finish, it is enough to take " WD min¹"1; : : : ; "mº > 0.

4.2. Moment bridges between convex polyhedra

We analyze next the structure of the simplest possible Nash bridges between two convex
polyhedra such that their union is a semialgebraic set connected by analytic paths and,
surprisingly, moment curves appear (Figure 4).

Theorem 4.2 (Moment curves). Let K1;K2 � Rn be n-dimensional convex polyhedra
such that 0 2 K1 \K2 and Int.K1/ \ Int.K2/ D ¿. Assume that there exists a Nash arc
˛W Œ�1; 1�!K1 [K2 such that ˛.0/D 0, ˛.Œ�1; 0//� Int.K1/ and ˛..0; 1�/� Int.K2/.
Then there exist e D 1; 2, an integer e � d � n and " > 0 such that, after an affine change
of coordinates in Rn, the polynomial arc ˇ WD .ˇ1; : : : ; ˇn/ W Œ�"; "�!K1 [K2 satisfies
ˇ.0/ D 0,

ˇk.t/ D

´
teCk�1 if k D 1; : : : ; d ,
0 if k D d C 1; : : : ; n,

ˇ.Œ�"; 0// � Int.K1/ and ˇ..0; "�/ � Int.K2/.

To prove Theorem 4.2, we need a preliminary result. Given a non-zero power series
� WD

P
k�0 aktk 2 RŒŒt��, we denote its order with respect to t with !.�/ WDmin¹k � 0 W

ak ¤ 0º. For completeness, !.0/ WD C1.

Lemma 4.3. Let K � Rn be an n-dimensional convex polyhedron that contains the ori-
gin and let ˛ WD .˛1; : : : ; ˛n/W Œ�1; 1� ! Rn be a Nash arc such that ˛.0/ D 0 and
˛..0; 1�/ � Int.K/. Assume ki WD !.˛i / < !.˛iC1/ DW kiC1 for i D 1; : : : ; n and write
˛i WD tki .ai C ti /, where ai 2 R n ¹0º and i is a Nash series. Then the monomial
map ˇ WD .ˇ1; : : : ; ˇn/WR! Rn; t 7! .a1t

k1 ; : : : ; ant
kn/ satisfies ˇ..0; "�/ � Int.K/ for

some " > 0.

Proof. Write K WD ¹h1 � 0; : : : ; hm � 0º, where hj 2 RŒx� are polynomials of degree
one. As the origin belongs to K, we have hj .0/ � 0. Write Ehj WD hj � hj .0/, where Ehj is
a linear form. Thus,

hj .˛1; : : : ; ˛n/ D hj .0/C Ehj .˛1; : : : ; ˛n/:
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�

� �

�

K1 K2
ˇ

�

K1

K2

ˇ

�

K21

K1
ˇ

Figure 4. Moment curves of Theorem 4.2.

If hj .0/ > 0, there exists "j > 0 such that hj .ˇ1.t/; : : : ; ˇn.t// > 0 if 0 < t < "j , because

Ehj .ˇ1; : : : ; ˇn/ D tk1�j .t/

for some Nash series �j 2 RŒŒt��alg. If hj .0/ D 0, then hj D Ehj . Write hj WD bjpj xpj C
� � � C bjnxn, where bjpj ¤ 0. Then

hj .˛1; : : : ; ˛n/ D hj . p̨j ; : : : ; ˛n/ D bjpj apj tkpj .1C t�j /;

hj .ˇ1; : : : ; ˇn/ D hj . p̌j ; : : : ; ˇn/ D bjpj apj tkpj .1C t�j /;

where �j ; �j 2RŒŒt��alg are Nash series. As hj .˛1; : : : ;˛n/.t/ > 0 for 0 < t < 1, we deduce
bjpj apj > 0, so there exists "j > 0 such that hj .ˇ1; : : : ; ˇn/.t/ > 0 if 0 < t < "j .

To finish, it is enough to take " WD min¹"1; : : : ; "mº > 0.

We are ready to prove Theorem 4.2.

Proof of Theorem 4.2. The proof is conducted in several steps.

STEP 0. Initial preparation.
As ˛ WD .˛1; : : : ; ˛n/ is a Nash arc such that ˛.0/ D 0, we may assume (after a

linear change of coordinates) !.˛`/ � !.˛`C1/ for ` D 1; : : : ; n � 1 and the previous
inequality is strict if ˛` ¤ 0 for ` D 1; : : : ; n � 1. Assume ˛` D 0 exactly for ` D
sC 1; : : : ; n. The tangent to ˛ at t D 0 is the line ¹x2 D 0; : : : ;xn D 0º. Consider the inter-
sections K0i WDKi \ ¹xsC1 D 0; : : : ;xn D 0º, which are non-empty s-dimensional convex
polyhedra for i D 1; 2 such that ˛.Œ�"; 0// � Int.K01/ and ˛..0; "�/ � Int.K02/. The pre-
vious assertion holds because ˛.Œ�"; 0// � Int.K1/, ˛..0; "�/ � Int.K2/ and ˛.Œ�"; "�/ �
¹xsC1 D 0; : : : ; xn D 0º. By Lemma 4.3 and after a new linear change of coordinates
we may assume ˛` WD tk` for ` D 1; : : : ; s, k` < k`C1 for ` D 1; : : : ; s � 1 and ˛` D 0
for ` D s C 1; : : : ; n.
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Write Ki WD ¹hi1 � 0; : : : ; hir � 0º, where hij 2 RŒx� are polynomials of degree 1
and recall that Int.Ki / D ¹hi1 > 0; : : : ; hir > 0º.

STEP 1. First modification of the Nash arc ˛.
We claim: we may assume !.˛1/ is either 1 (if k1 is odd) or 2 (if k1 is even).
As ˛.t/ � Int.Ki / for .�1/i t > 0 small enough, each hij .˛.t// > 0 if .�1/i t > 0 is

small enough for i D 1; 2. Write

e WD

´
1 if k1 is odd,
2 if k1 is even.

We claim: ˛�WR! Rn; t 7! .te; tk2�k1Ce; : : : ; tks�k1Ce; 0; : : : ; 0/ is the monomial map
we are looking for in this step. Let us check: ˛� satisfies the inequalities defining Int.Ki /
for .�1/i t > 0 small enough and i D 1;2. In addition, hij .te; 0; : : : ; 0/� 0 for .�1/i t > 0
if i D 1; 2 and j D 1; : : : ; r .

Fix any pair .i; j /. If hij .0/ > 0, there is nothing to prove, so we assume hij .0/ D 0.
We have

hij .tk1 ; : : : ; tks ; 0; : : : ; 0/ D tk1�ehij .te; tk2�k1Ce; : : : ; tks�k1Ce; 0; : : : ; 0/:

As k1 � e is even, hij .te; tk2�k1Ce; : : : ; tks�k1Ce; 0; : : : ; 0/ > 0 for .�1/i t > 0 small
enough. We deduce considering its Taylor expansion at 0 that hij .te; 0; : : : ; 0/ � 0 for
.�1/i t > 0, because k� � k1 > 0 for �D 2; : : : ; s. Thus, after substituting ˛ by ˛�, we can
suppose ˛ WD .te;tk

0
2 ; : : : ;tk

0
s ; 0; : : : ; 0/, where k0

�
WD k� � k1C e and e < k02 < � � �< k

0
s .

In the following, we denote k0
�

with k� to lighten notation.

STEP 2. Second modification of the Nash arc ˛.
Let us check next: After a linear change of coordinates, we may assume either s D 1

and e D 1 or s � 2 and k2 D e C 1.
Pick any pair .i; j /. If hij .te; 0; : : : ; 0/ > 0 for .�1/i t > 0, there exists � 2 .0; 1/ (valid

for each pair .i; j / in this situation) such that if .c2; : : : ; cn/ 2 Rn�1 and each jckj � �,
then hij .te; c2te; : : : ; cnte/ > 0. Otherwise, hij .te; 0; : : : ; 0/ D 0 for .�1/i t > 0, so hij
is a linear form that does not depend on x1.

Next, we distinguish two cases:
CASE 1. k2 � e is even.
We check first: If ˛WR! Rn; t 7! .te; tk2 ; : : : ; tks ; 0; : : : ; 0/ is a monomial map such

that ˛.t/ 2 Int.Ki / for .�1/i t > 0 small enough, then

˛� W R! Rn; t 7! .te; �te; �tk3�k2Ce; : : : ; �tks�k2Ce; 0; : : : ; 0/

is a monomial map such that ˛�.t/ 2 Int.Ki / for .�1/i t > 0 small enough.
Pick any pair .i; j /. If hij .te; 0; : : : ; 0/ > 0 for .�1/i t > 0, then

hij .t
e; �te; �tk3�k2Ce; : : : ; �tks�k2Ce; 0; : : : ; 0/ > 0

for 0 < .�1/i t < �. If hij is a linear form that does not depend on x1, then

0 < hij .�t
k2 ; : : : ; �tks ; 0; : : : ; 0/ D �tk2�e hij .t

e; tk3�k2Ce; : : : ; tks�k2Ce; 0; : : : ; 0/

D tk2�e hij .t
e; �te; �tk3�k2Ce; : : : ; �tks�k2Ce; 0; : : : ; 0/
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for 0 < .�1/i t < � small enough. After substituting ˛ by ˛�, we suppose

˛ WD .te; �te; �tk
0
2 ; : : : ; �tk

0
s�1 ; 0; : : : ; 0/;

where k0
�
WD k�C1 � k2 C e for �D 2; : : : ; s � 1 and e < k02 < � � � < k

0
s�1. We denote k0

�

with k� to lighten notation. After a linear change of coordinates, we may assume ˛ WD
.te; tk2 ; : : : ; tks�1 ; 0; : : : ; 0/.

Now, if k2 � e is again even, we repeat the procedure developed in this CASE 1 and
proceed recursively. After finitely many steps, either the corresponding k2 � e is odd or
˛.t/ D .te; 0; : : : ; 0/, where e D 1; 2. If e D 2, then ˛.t/ D ˛.�t / D .t2; 0; : : : ; 0/ 2

Int.K1/ \ Int.K2/ D ¿ for t > 0 small enough, which is a contradiction. Consequently,
in this latter case e D 1.

CASE 2. k2 � e is odd.
We prove first the following: If ˛WR ! Rn; t 7! .te; tk2 ; : : : ; tks ; 0; : : : ; 0/ is a

monomial map such that ˛.t/2 Int.Ki / for .�1/i t > 0 small enough, then ˛�WR! Rn,
t 7! .te; teC1; tk3�k2CeC1; : : : ; tks�k2CeC1; 0; : : : ; 0/ is a monomial map such that ˛.t/ 2
Int.Ki / for .�1/i t > 0 small enough.

We have k2 � e � 1 is even. Pick any pair .i; j /. If hij .te; 0; : : : ; 0/ > 0 for .�1/i t > 0,
then

hij .t
e; teC1; tk3�k2CeC1; : : : ; tks�k2CeC1; 0; : : : ; 0/ > 0

for 0 < .�1/i t < �. If hij is a linear form that does not depend on x1, then

0 < hij .t
e; tk2 ; : : : ; tks ; 0; : : : ; 0/ D hij .t

k2 ; : : : ; tks ; 0; : : : ; 0/

D tk2�e�1 hij .t
eC1; tk3�k2CeC1; : : : ; tks�k2CeC1; 0; : : : ; 0/

D tk2�e�1 hij .t
e; teC1; tk3�k2CeC1; : : : ; tks�k2CeC1; 0; : : : ; 0/

for 0 < .�1/i t < � small enough. As k2 � e � 1 is even,

hij .t
e; teC1; tk3�k2CeC1; : : : ; tks�k2CeC1; 0; : : : ; 0/ > 0

for 0 < .�1/i t < � small enough. Thus, we can suppose

˛ WD .te; teC1; tk
0
3 : : : ; tk

0
s ; 0; : : : ; 0/;

where k0
�
WD k� � k2 C e C 1 for � D 3; : : : ; s and e C 1 < k03 < � � � < k0s . Again, we

denote k0
�

with k� to lighten notation.

STEP `C 1. Recursive modification of the Nash arc ˛.
Suppose ` � 2 and

˛ W R! Rn; t 7! .te; teC1; : : : ; teC`�1; tk`C1 ; : : : ; tks ; 0; : : : ; 0/

is a monomial map such that eC `� 1<k`C1< � � �<ks and ˛.t/2 Int.Ki / for .�1/i t > 0
small enough. Let us check: After a linear change of coordinates, we may assume that
either

˛ W R! Rn; t 7! .te; teC1; : : : ; teC`�1; 0; : : : ; 0/
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satisfies ˛.t/ 2 Int.Ki / for .�1/i t > 0 small enough or there exist s0 � s and positive
integers e C ` < k0

`C2
< � � � < tk

0

s0 such that

˛ W R! Rn; t 7! .te; teC1; : : : ; teC`�1; teC`; tk
0
`C2 ; : : : ; tk

0

s0 ; 0; : : : ; 0/

satisfies ˛.t/ 2 Int.Ki / for .�1/i t > 0 small enough.
Fix a pair of indices .i; j /. We have

hij .t
e; teC1; : : : ; teC`�1; tk`C1 ; : : : ; tks ; 0; : : : ; 0/ > 0

for .�1/i t > 0 small enough. We deduce considering its Taylor expansion at 0 that

hij .t
e; teC1; : : : ; teC`�1; 0; : : : ; 0/ � 0

for .�1/i t > 0 small enough, because k� � .e C ` � 1/ > 0 for � D `C 1; : : : ; s. If

hij .t
e; teC1; : : : ; teC`�1; 0; : : : ; 0/ > 0

for .�1/i t > 0 small enough, there exists an integer 1 � mij � ` such that hij does not
depend on x1; : : : ; xmij�1 and hij .teCmij�1; 0; : : : ; 0/ > 0 for .�1/i t > 0 small enough.
Thus, there exists � 2 .0; 1/ (valid for each pair .i; j / in this situation) such that if
.cmijC1; : : : ; cn/ 2 Rn�mij and each jckj � �, then

hij .t
e; teC1; : : : ; teCmij�1; cmijC1t

eCmij�1; : : : ; cnt
eCmij�1; 0; : : : ; 0/

D hij .t
eCmij�1; cmijC1t

eCmij�1; : : : ; cnt
eCmij�1; 0; : : : ; 0/ > 0

for .�1/i t > 0 small enough.
Otherwise, hij .te; teC1; : : : ; teC`�1; 0; : : : ; 0/D 0 for .�1/i t > 0 small enough, so hij

is a linear form that does not depend on x1; : : : ; x`.
Next, we distinguish two cases.

CASE 1. k`C1 � .e C ` � 1/ is even.
We check first:

˛� W R! Rn; t 7! . te; teC1; : : : ; teC`�1; �teC`�1; �tk`C2�k`C1CeC`�1;

: : : ; �tks�k`C1CeC`�1; 0; : : : ; 0/

is a monomial map such that ˛.t/ 2 Int.Ki / for .�1/i t > 0 small enough.
Pick any pair .i; j /. If hij .te; teC1; : : : ; teC`�1; 0; : : : ; 0/ > 0 for .�1/i t > 0 small

enough, then

hij .t
e; teC1; : : : ; teC`�1;�teC`�1;�tk`C2�k`C1CeC`�1; : : : ;�tks�k`C1CeC`�1;0; : : : ;0/> 0

for 0 < .�1/i t < �. If hij is a linear form that does not depend on x1; : : : ; x`, then

0 < �hij .t
k`C1 ; : : : ; tks ; 0; : : : ; 0/

D � tk`C1�.eC`�1/ hij .t
eC`�1; tk`C2�k`C1CeC`�1; : : : ; tks�k`C1CeC`�1; 0; : : : ; 0/

D tk`C1�.eC`�1/ hij .t
e; teC1; : : : ; teC`�1; �teC`�1; �tk`C2�k`C1CeC`�1;

: : : ; �tks�k`C1CeC`�1; 0; : : : ; 0/
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for 0 < .�1/i t < � small enough. As k`C1 � .e C ` � 1/ is even,

hij .t
e; teC1; : : : ; teC`�1;�teC`�1;�tk`C2�k`C1CeC`�1; : : : ;�tks�k`C1CeC`�1;0; : : : ;0/>0:

Thus, after substituting ˛ by ˛�, we can suppose

˛ WD .te; teC1; : : : ; teC`�1; �teC`�1; �tk
0
`C1 ; : : : ; �tk

0
s�1 ; 0; : : : ; 0/;

where k0
�
WD k�C1 � k`C1 C eC `� 1 for �D `C 1; : : : ; s � 1 and eC `� 1 < k0

`C1
<

� � �< k0s�1. We denote k0
�

with k� to lighten notation. After a linear change of coordinates,
we may assume ˛ WD .te; teC1; : : : ; teC`�1; tk`C1 ; : : : ; tks�1 ; 0; : : : ; 0/.

Now, if k`C1 � .e C ` � 1/ is again even, we repeat the procedure developed in
this CASE 1 and proceed recursively. After finitely many steps, either the correspond-
ing k`C1 � .eC `� 1/ is odd or ˛.t/ D .te;teC1; : : : ;teC`�1; 0; : : : ; 0/, where e D 1; 2
and ` � 2.

CASE 2. k`C1 � .e C ` � 1/ is odd.
We prove first:

˛� WR!Rn; t 7! .te; teC1; : : : ; teC`�1; teC`; tk`C2�k`C1CeC`; : : : ; tks�k`C1CeC`;0; : : : ;0/

is a monomial map such that ˛.t/ 2 Int.Ki / for .�1/i t > 0 small enough.
Observe that k`C1 � .e C `/ is even and pick any pair .i; j /. If

hij .t
e; teC1; : : : ; teC`�1; 0; : : : ; 0/ > 0

for .�1/i t > 0 small enough, then

hij .t
e; teC1; : : : ; teC`�1; teC`; tk`C2�k`C1CeC`; : : : ; tks�k`C1CeC`; 0; : : : ; 0/ > 0

for 0 < .�1/i t < �. If hij is a linear form that does not depend on x1; : : : ; x`, then

0 < hij .t
e; teC1; : : : ; teC`�1; tk`C1 ; : : : ; tks ; 0; : : : ; 0/ D hij .t

k`C1 ; : : : ; tks ; 0; : : : ; 0/

D tk`C1�.eC`/hij .t
eC`; tk`C2�k`C1CeC`; : : : ; tks�k`C1CeC`; 0; : : : ; 0/

D tk`C1�.eC`/hij .t
e; teC1; : : : ; teC`�1; teC`; tk`C2�k`C1CeC`; : : : ; tks�k`C1CeC`; 0; : : : ; 0/

for 0 < .�1/i t < � small enough. As k`C1 � .e C `/ is even,

hij .t
e; teC1; : : : ; teC`�1; teC`; tk`C2�k`C1CeC`; : : : ; tks�k`C1CeC`; 0; : : : ; 0/ > 0

for 0 < .�1/i t < � small enough. Thus, we can suppose

˛ WD .te; teC1; : : : ; teC`�1; teC`; tk
0
`C2 ; : : : ; tk

0
s ; 0; : : : ; 0/;

where k0
�
WD k� � k`C1 C .e C `/ and e C ` < k0

`C2
< � � � < k0s . Again, we denote k0

�

with k� to lighten notation.

CONCLUSION.
The process ends after finitely many steps providing the required statement.
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Figure 5. Polyhedra K1 and K2� of Example 4.4.

The following example supplies a pair of n-dimensional convex polyhedra in Rn with
disjoint interiors and adherent to the origin for which the simplest monomial paths con-
necting their interiors analytically through the origin are moment paths.

Examples 4.4. Denote xnC1 WD 0 and let x1; : : : ; xn be variables. Consider for � D 0; 1,
the convex polyhedra (Figure 5)

K1 WD ¹xk � xk�1; k D 2; : : : ; nC 1º \ ¹x1 � 1º;

K2� WD ¹.�1/
kC�xk � .�1/k�1C�xk�1; k D 2; : : : ; nC 1º \ ¹.�1/1C"x1 � 1º:

We have

Int.K1/ WD ¹xk < xk�1; k D 2; : : : ; nC 1º \ ¹x1 < 1º;

Int.K2�/ WD ¹.�1/kC�xk < .�1/k�1C�xk�1; k D 2; : : : ; nC 1º \ ¹.�1/1C"x1 < 1º:

One can check that

K1 \K2� D

´
¹0º if � D 0,
¹0 � x1 � 1; xk D 0 W k D 2; : : : ; nº if � D 1,

and Int.K1/ \ Int.K2�/ D ¿. Consider a monomial map

˛� W R! Rn; t 7! .a1t
k1 ; : : : ; ant

kn/

for some integers ki � 1 (so ˛�.0/ D 0) and some a1; : : : ; an 2 R (see Lemma 4.3).
Assume there exists ı > 0 such that ˛�..0; ı�/ � Int.K1/ and ˛�.Œ�ı; 0// � Int.K2�/.
Consequently,

1 > a1 t
k1 > � � � > a` t

k` > � � � > an t
kn > 0;(4.1)

1 > .�1/1C�Ck1 a1.�t /
k1 > � � � > .�1/`C�Ck` a`.�t /

k`(4.2)

> � � � > .�1/nC�Ckn an.�t /
kn > 0;

where 0 < t � ı in (4.1) and 0 < �t � ı in (4.2). Thus, each a` > 0, k` � k`C1 for
`D 1; : : : ; n� 1 and `C �C k` is even for each `D 1; : : : ; n, so the parity of k` coincides
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with the one of ` C � (so k`k`C1 is odd for ` D 1; : : : ; n � 1). The minimal possible
choice for the exponents is k` D `C � for ` D 1; : : : ; n and � D 0; 1, so we obtain the
moment curve ˛�WR! Rn, t 7! .a1t

1C�; a2t
2C�; : : : ; ant

nC�/, for some a1; : : : ; an > 0
and � D 0; 1.

4.3. Proof of Main Theorem 1.9

As we are working with convex polyhedra, the polynomial paths joining polynomial arcs
and polynomial bridges can be chosen to be segments. For each a 2 Rn and " > 0, denote
the open ball of center a and radius " > 0 with Bn.a; "/. In order to compute the distance
of a segment inside an n-dimensional convex polyhedron K � Rn to its exterior Rn nK
(or equivalently to its boundary @K), we present the following result.

Lemma 4.5. Let C � Rn be a convex set (that spans Rn/ and let x; y 2 C. Let S be the
segment that connects x and y. Then

dist.S;Rn n Int.C// D min¹dist.x;Rn n Int.C//; dist.y;Rn n Int.C//º:

Proof. If either x or y belong to @C, then dist.S;Rn n Int.C// D 0 and the equality in the
statement holds. Assume 0 < " WD dist.x;Rn n Int.C// � dist.y;Rn n Int.C// and observe
that Bn.x; "/;Bn.y; "/ � Int.C/. We claim:

S
z2SBn.z; "/ � Int.C/. Once this is proved,

the equality in the statement follows straightforwardly.
Let z 2 S and p 2Bn.z; "/. Let t 2 Œ0; 1� be such that z D tx C .1� t /y. Consider the

points p1 WD x C .p � z/ and p2 WD y C .p � z/. As p2Bn.z; "/, we have kp � zk < ",
so p1 2 Bn.x; "/ � Int.C/ and p2 2 Bn.y; "/ � Int.C/. Thus,

p D t .x C .p � z//C .1 � t /.y C .p � z// D tp1 C .1 � t /p2 2 Int.C/;

as required.

We are ready to prove Main Theorem 1.9 by simplifying the proof of Main Theo-
rem 1.8. The degree of a polynomial map ˛WR! Rn is the maximum of the degrees of
its components.

Proof of Main Theorem 1.9. By Lemma 4.1, for each ti there exist a polynomial path
ˇi WR! Rn of degree ei � 3 and ıi > 0 such that ˇi .ti /D pi andƒi WD ˇi .Œti � ıi ; ti C
ıi �/ � Si [ ¹piº is contained in a small enough ball centered at pi .

Fix i D 1; : : : ; r � 1 and recall that both Si and SiC1 are the interiors of convex
polyhedra of dimension n. Suppose first Si \ SiC1 ¤ ¿. The intersection Si \ SiC1 is the
interior of a convex polyhedron of dimension n. By Lemma 4.1, there exists a polynomial
arc �i W Œsi ��i ; siC�i �! Si \ SiC1 of degree 3 � nC 1 such that �i .Œsi ��i ; siC�i � n
¹�iº/ � .Si \ SiC1/ [ ¹qiº and we substitute �i by the image of �i . Suppose next Si \
SiC1 D ¿. Let �i W Œ�1; 1�! Si [ SiC1 [ ¹qiº be a Nash parameterization of �i such that
�i .Œ�1; 0// � Si and �i ..0; 1�/ � SiC1. By Theorem 4.2, we can modify �i and after that,
it admits a polynomial parameterization �i W Œsi � �i ; si C �i �! Si [ SiC1 [ ¹qiº of degree
di � nC 1, where �i > 0, �i .si /D qi , �i .Œsi � �i ; si //� Si and �i ..si ; si C �i �/� SiC1.
We choose each �i > 0 small enough to guarantee that �i is contained in a small enough
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Figure 6. Construction of the polygonal path ˇ (blue), the continuous piecewise polynomial path 
(red and dashed black) and the polynomial path ˛ (green).

ball centered at qi . Denote �i WD ti � ıi , �i WD ti C ıi , �i WD si � �i and �i WD si C �i .
We may assume

0 < �1 < t1 < �1 < �1 < s1 < �1 < �2 < t2 < �2 < � � � < �r�1 < sr�1 < �r�1

< �r < tr < �r < 1:

Let  W Œ0; 1�! S [ ¹p1; : : : ; pr ; q1; : : : ; qr�1º � Rn be a continuous piecewise poly-
nomial path (Figure 6) such that:

•  j.�i ;�i / D ˇi j.�i ;�i / for i D 1; : : : ; r and  j.�i ;�i / D �i j.�i ;�i / for i D 1; : : : ; r � 1.
•  jŒ�i ;�i � is an affine parameterization of the segment inside Si that connects ˇi .�i /with
�i .�i / for i D 1; : : : ; r .

•  jŒ�i ;�iC1� is an affine parameterization of the segment inside SiC1 that connects �i .�i /
with ˇiC1.�iC1/ for i D 1; : : : ; r � 1.

•  jŒ0;�1� and  jŒ�r ;1� are an affine parameterization of segments inside S1 and Sr .
Using that ıi ; �i > 0 has been chosen small enough to guarantee that ƒi and �i are

contained in small balls centered in pi and qi , one can check that  jŒt1;tr � is close to the
polygonal path ˇ (see (iv) in the statement). In addition, each polynomial piece of  has
degree � nC 1. Define

" WD min
i
¹ dist.ˇi .�i /;Rn n Si /; dist.ˇi .�i /;Rn n Si /;

dist.�i .�i /;Rn n Si /; dist.�i .�i /;Rn n SiC1/º > 0:

Denote K WD Œ0; 1� n .
Sr
iD1.�i ; �i / [

Sr�1
iD1.�i ; �i // and recall that if I is a connected

component of K, the restriction  jI is an affine parameterization of a segment inside
some Si . By Lemma 4.5,
(0) if �W Œ0; 1�! Rn is a continuous semialgebraic map such that k � �kK < ", then

�.K/ � S and each connect component of �.K/ is contained in the required Si .
In addition, �jK\Œt1;tr � is close to ˇjK\Œt1;tr �.
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Write Si WD ¹hi1 > 0; : : : ; his > 0º, where hij 2 RŒx� is a polynomial of degree 1.
As ˇi .Œti � ıi ; ti C ıi � n ¹tiº/ � Si D ¹hi1 > 0; : : : ; his > 0º, the polynomial hij ı ˇi is
strictly positive on the interval .ti ; ti C ıi �. As each hij has degree 1 and ˇi has degree
ei � 3, then hij ı ˇi is a non-zero polynomial of degree mij � ei � 3. Analogously, as
�i .Œsi � �i ; si // � Si D ¹hi1 > 0; : : : ; his > 0º and �i ..si ; si C �i �/ � SiC1 D ¹hiC1;1 >

0; : : : ; hiC1;s > 0º, the polynomial hij ı �i is strictly positive on Œsi � �i ; si / and the
polynomial hiC1;j ı �i is strictly positive on .si ; si C �i �. Thus, hij ı �i and hiC1;j ı �i
are non-zero polynomials of degrees m0ij ; m

00
ij � di � nC 1. Consider the constants

�ij WD
ˇ̌̌ dmij
dtmij

.hij ı  jŒ�i ;�i �/
ˇ̌̌
D

ˇ̌̌ dmij
dtmij

.hij ı ˇi /
ˇ̌̌
> 0;

�0ij WD
ˇ̌̌ dm0ij
dtm

0
ij

.hij ı  jŒ�i ;si �/
ˇ̌̌
D

ˇ̌̌ dm0ij
dtm

0
ij

.hij ı �i /
ˇ̌̌
> 0;

�00ij WD
ˇ̌̌ dm00ij
dtm

00
ij

.hiC1;j ı  jŒsi ;�i �/
ˇ̌̌
D

ˇ̌̌ dm00ij
dtm

00
ij

.hiC1;j ı �i /
ˇ̌̌
> 0:

Define

(4.3) ` WD max¹mij ; m0ij ; m
00
ij W 1 � i � r; 1 � j � sº � nC 1:

By the Remark 2.13(i) to the proof of Lemma 2.12(1), we deduce that if �W Œ0; 1�! Rn

is a C`C4 semialgebraic map such that

(1) j d
mij

dtmij
.hij ı  jŒ�i ;�i �/ �

d
mij

dtmij
.hij ı 

�jŒ�i ;�i �/j<�ij ,

(2) j d
m0
ij

dt
m0
ij
.hij ı  jŒ�i ;si �/ �

d
m0
ij

dt
m0
ij
.hij ı 

�jŒ�i ;si �/j < �
0
ij ,

(3) j d
m00
ij

dt
m00
ij
.hiC1;j ı  jŒsi ;�i �/ �

d
m00
ij

dt
m00
ij
.hiC1;j ı 

�jŒsi ;�i �/j < �
00
ij ,

(4) T eiti  D T
ei
ti
� for i D 1; : : : ; r and T disi  D T

di
si 
� for i D 1; : : : ; r � 1,

then �.Œ0; 1� nK/ � S [ ¹p1; : : : ; pr ; q1; : : : ; qr�1º. In fact,

�.Œ�i ; �i �/ � Si ; �.Œ�i ; si �/ � Si and �.Œsi ; �i �/ � SiC1:

Conditions (0) to (4) concerning ", �ij , �0ij , �00ij and the Taylor expansions at the val-
ues ti and si determine when a polynomial path ˛WR! Rn, whose restriction to Œ0; 1� is
close to  , satisfies the conditions (i) to (iv) in the statement (Figure 6). Finally, such a
polynomial path ˛ exists by Lemma 2.10, as required.

4.4. Degree of the polynomial approximation in the PL case

We maintain all the notations introduced in the proof of Main Theorem 1.9. Recall that the
polynomials hij have degree 1. To simplify the presentation, we assume mij D ei , m0ij D
m00ij D di for each couple .i; j / and we take a smaller 0< "0 < " such that if k˛� kK < "0,
k˛.ei / �  .ei /kŒ�i ;�i � < "0 and k˛.di / �  .di /kŒ�i ;�i � < "0, then conditions .0/ to .3/ are
satisfied. As the polynomials hij 2 RŒx� have degree 1, the computation of "0 from "
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seems feasible without too much effort. To have in addition condition (4), we review the
proof of Lemma 2.10 and need to add a linear combination of suitable polynomials (see
equations (2.4) and (4.3)) of degrees � `C .r � 1/.`C 1/2 � nC 1C .r � 1/.nC 2/2,
which possibly forces us to take a smaller "0 > 0 (see the proof of Lemma 2.10). Due to
the high degree of the latter polynomials, the effective computation of the new "0 seems
cumbersome, because it involves bounds of several derivatives of such polynomials on
the interval Œ0; 1�, see (2.5) and (2.6). However, such polynomials are quite standard, and
the bounds for its derivatives on the interval Œ0; 1� can be computed once and then used
repeatedly when needed.

To estimate the degree � of the polynomial path ˛WR! Rn, we use Theorem 2.9. In
view of such result, there exist constants C;Ci ; Li > 0 such that if  WD .1; : : : ; n/ and
˛ WD .B�.1/; : : : ; B�.n// for an integer � � 1, then

k˛ � kK �
C

�2
,

k˛.ei / �  .ei /kŒ�i ;�i � <
ei .ei � 1/

2�
kˇ

.ei /
i k C

Ci

�2
,

k˛.di / �  .di /kŒ�i ;�i � <
di .di � 1/

2�
k�
.di /
i k C

Li

�2
�

The effective computation of the constants C; Ci ; Li > 0 requires to follow the proof of
Theorem 2.9 applied to  . The proof of Theorem 2.9 is constructive enough to make the
effective computation of the constants possible, but patience is mandatory.

We have used  jŒ�i ;�i �D ˇi and  jŒ�i ;�i �D �i and the fact that ˇi and �i are polynomial
tuples of respective degrees ei and di . In particular, kˇ.ei /i k and k�.di /i k are constants.
Thus, to compute the degree � of ˛, we need

(4.4) min
i

° C
�2

, ei .ei � 1/
2�

kˇ
.ei /
i k C

2Ci

2�2
, di .di � 1/

2�
k�
.di /
i k C

2Li

2�2

±
< "0:

For instance, we may take

(4.5) �0 WD
l

max
i

°pC
p
"0

,
p
2Ci
p
"0

,
p
2Li
p
"0

, ei .ei � 1/
"0

kˇ
.ei /
i k

, di .di � 1/
"0

k�
.di /
i k

±m
C 1:

Then, � WD max¹nC 1C .r � 1/.nC 2/2; �0º is the degree of the searched polynomial
path ˛WR! Rn.

Remark 4.6. In [15], we study the problem of representing (compact) semialgebraic
sets S � Rn (that are connected by analytic paths) as polynomial images of a closed
unit ball Bm.0; 1/. A relevant case is the representation of a finite union S � Rn of
n-dimensional convex polyhedra K` (such that S is connected by analytic paths) as a
polynomial image of either the .n C 1/-dimensional closed unit ball BnC1.0; 1/ or the
n-dimensional closed unit ball Bn.0; 1/.

If the reader follows the proofs of Theorems 1.2 and 1.3 in [15], he realizes that the
complexity of the construction concentrates on finitely many polynomial paths that can
be constructed using Main Theorem 1.9 (the PL version of Main Theorem 1.8). The poly-
nomial maps constructed to prove Theorems 1.2 and 1.3 in [15] are the composition of a
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polynomial map of degree 6 (see Lemmas 2.5 and 2.7 in [15]) that transforms the closed
unit ball Bm.0; 1/ onto the symplicial prism�m WD ¹0� x1; : : : ; 0� xm;x1C � � � C xm �
1º � Œ0; 1� (for either m D n or n � 1) with polynomial maps

'm W �m � Œ0; 1�! S; .�1; : : : ; �m; t /!
�
1 �

mX
kD1

�`

�
˛0.t/C

mX
kD1

�` ˛k.t/;

where each ˛k W Œ0; 1�! S is a polynomial path inside S that passes through the vertices
of the simplices of a suitable triangulation of the n-dimensional compact convex polyhe-
dra K`, whose union constitutes the semialgebraic set S. As 'm has degree 1 with respect
to �1; : : : ; �m, the complexity of the involved polynomials concentrates on the construc-
tion of the mentioned polynomial paths ˛k , and one would like to estimate the degree of
such polynomial paths. This can be done using Main Theorem 1.9 (the PL version of Main
Theorem 1.8).

In Main Theorem 1.9, we have provided a simplified proof and consequently an esti-
mation of the degree of such polynomial paths (see equations (4.4) and (4.5)) in terms
of the formulas provided in Theorem 2.9. Using formulas (4.4) or (4.5), the reader can
bound the degree of the polynomial paths mentioned above. Thus, one can estimate for
each n-dimensional PL semialgebraic set S�Rn (connected by analytic paths) the degree
of the polynomials maps from either the .nC 1/-dimensional closed unit ball BnC1.0; 1/
or the n-dimensional closed unit ball Bn.0; 1/ to Rn that represent S.

5. Convergence of derivatives of Bernstein’s polynomials on compact
subsets

The purpose of this section is to prove Theorem 2.9. We recall for the sake of completeness
some notation, terminology and preliminary statements from [16]. Let f W Œ0; 1�! R be a
continuous function.

5.1. Derivatives of divided differences of a continuous function

For each pair of integers s; t � 0, define

B�;s;t .f /.x/ WD

��sX
kD0

�hk
�
; : : : ;

k C s

�
; x; : : : ; x„ ƒ‚ …

t times

i
f
�
Bk;��s.x/;

where Œx0; : : : ; xk �f denotes the kth order divided difference of f at the points x0; : : : ; xk
2 Œ0; 1�. Write ` WD s C t . If f is a C`-function, there exists by [8, Cor.3.4.2] a value �k
in the smallest interval that contains the points k=�; : : : ; .k C s/=�; x such thathk

�
; : : : ;

k C s

�
; x; : : : ; x„ ƒ‚ …

t times

i
f D

f .`/.�k/

`Š
�

Thus, if x 2 Œ0; 1�, we have by Subsection 2.4.1,

(5.1) jB�;s;t .f /.x/j �

��sX
kD0

ˇ̌̌f .`/.�k/
`Š

ˇ̌̌
Bk;��s �

kf .`/kŒ0;1�

`Š
D
kf .sCt/kŒ0;1�

.s C t /Š
�
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We have B�;0;0.f / D B�.f / and by [16], p. 133.

(5.2) B�.f /.x/ � f .x/ D
1

�
x.1 � x/B�;1;1.f /.x/:

Differentiating (5.2) at a point x 2 Œ0; 1� where f is differentiable, we obtain

B�.f /
0.x/ � f 0.x/ D

1

�
..1 � 2x/B�;1;1.f /.x/C x.1 � x/.B�;1;1.f //

0.x//:

Using Leibniz rules and differentiating ` times equation (5.2) (at a point x2 Œ0; 1�where f
is ` times differentiable), we obtain (see equation (3.2) in [16])

.B�.f //
.`/.x/ � f .`/.x/ D

1

�
.�`.` � 1/.B�;1;1.f //

.`�2/.x/(5.3)

C `.1 � 2x/.B�;1;1.f //
.`�1/.x/C x.1 � x/.B�;1;1.f //

.`/.x//:

Let x 2 Œ0; 1� be a point such that f is a C`C2-function on a neighborhood of x. By
Lemma 1 in [16], one deduces

(5.4) .B�;1;1.f //
.`/.x/ D `Š

`C1X
kD1

k
� � 1

�
� � �
� � k C 1

�
B�;k;`�kC2.f /.x/:

Thus, if f is a C`C2-function on Œ0; 1�, we have by (5.1) and the equality
P`C1
kD1 k D

.`C 2/.`C 1/=2,

j.B�;1;1.f //
.`/.x/j � `Š

`C1X
kD1

k
� � 1

�
� � �
� � k C 1

�
jB�;k;`�kC2.f /.x/j(5.5)

� `Š

`C1X
kD1

k
kf .`C2/kŒ0;1�

.`C 2/Š
D
kf .`C2/kŒ0;1�

2
�

5.2. Comparison of derivatives of Bernstein’s polynomials

In the following result, we compare on a compact subset K of an open subset � � .0; 1/
the higher order derivatives of the corresponding Bernstein polynomials of degree � of
two continuous functions on Œ0; 1� that coincide on �.

Lemma 5.1 (Comparison). Let f1; f2W Œ0; 1�! R be continuous functions that coincide
on an open set � � .0; 1/ and let ` � 0. Then for each compact set K � �, there exists a
constant MK;` > 0 (depending only on K and `/ such that

jB�.f1/
.`/.x/ � B�.f2/

.`/.x/j �
MK;`

�2
kf1 � f2kŒ0;1�

for each x 2K.

Proof. Let i; j; ` � 0 be such that 2i C j � `. By Proposition 4.4 in Chapter 4 of [9],
there exist polynomials qij` 2 RŒx� that do not depend on �; k such that

d `

dx`
.xk.1 � x/��k/ D xk�`.1 � x/��k�`

X
2iCj�`

�i .k � �x/j qij`.x/:
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Write f WD f1 � f2, which is identically 0 on K. Observe that

(5.6)

B.`/� .f / D

�X
kD0

f
�k
�

���
k

�
d `

dx`
.xk.1 � x/��k/

D

�X
kD0

f
�k
�

���
k

�
xk�`.1 � x/��k�`

X
2iCj�`

�i .k � �x/j qij`.x/

D
1

x`.1 � x/`

�X
kD0

f
�k
�

�
Bk;�.x/

X
2iCj�`

�i .k � �x/j qij`.x/

D
1

x`.1 � x/`
X

2iCj�`

qij`.x/�iCj
�X
kD0

f
�k
�

��k
�
� x

�j
Bk;�.x/:

Let ı WD dist.K; Œ0;1� n�/>0. Observe that if x2K and jk=� � xj � ı, then f .k=�/ D 0.
By (1.6) in Section 1 of Chapter 10, p. 304 of [9], there exists a constant C.ı; i C j C 2/
such that

(5.7)
X

jk=��xj>ı

Bk;�.x/ � C.ı; i C j C 2/
1

�iCjC2
�

Thus, by (5.6), (5.7) and as B�.f1/.`/.x/�B�.f2/.`/.x/DB
.`/
� .f /.x/ and jk=��xj�1,

jB�.f1/
.`/.x/ � B�.f2/

.`/.x/j

�
1

x`.1 � x/`

X
2iCj�`

jqij`.x/j �
iCj

X
jk=��xj>ı

ˇ̌̌
f
�k
�

�ˇ̌̌
Bk;�.x/

�

� 1

x`.1 � x/`

X
2iCj�`

jqij`.x/jC.ı; i C j C 2/
� 1

�2
kf kŒ0;1�

for each x 2K. Now, the statement follows readily.

5.3. Some bounds for derivatives of Taylor polynomials

Let f W Œ0; 1�!R be a continuous function that is C` on an open subset�� Œ0; 1�. Define

T `f W � � Œ0; 1�! R; .y; x/ 7!
X̀
kD0

f .k/.y/

kŠ
.x � y/k :

We have
@m

@xm
T `f D

X̀
kDm

f .k/.y/
.k �m/Š

.x � y/k�m:

If K � � is a compact set,

kT `f kK�Œ0;1� WD max¹T `f .y; x/ W .y; x/ 2 K � Œ0; 1�º;

k.T `f /.m/kK�Œ0;1� WD
 @m
@xm

T `f

K�Œ0;1�

WD max
° @m
@xm

T `f .y; x/ W .y; x/2K� Œ0; 1�
±
:
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As the points x; y 2 Œ0; 1�, we deduce

(5.8) k.T `f /.m/kK�Œ0;1� �
X̀
kDm

kf .k/kK

.k �m/Š
�

In particular, k.T `f /.`/kK�Œ0;1� � kf .`/kK .

5.4. Proof of Theorem 2.9

The proof is conducted in several steps.

STEP 1. Initial preparation.
Define

P WD T `C3f W � � Œ0; 1�! R; .y; x/ 7!

`C3X
kD0

f .k/.y/

kŠ
.x � y/k :

We claim: There exists a function g W�� Œ0; 1�!R such that h.y;x/ WD f .x/�P.y;x/
D g.y;x/.x� y/`C4 on�� Œ0;1� and for each compact setK ��, there exists a constant
Nf;K > 0 such that jg.y; x/j < Nf;K for each .y; x/ 2 K � Œ0; 1� (see also Remark 5.2).

Define

g W � � Œ0; 1�! R; .y; x/ 7!

´
h.y; x/=.x � y/`C4 if x ¤ y,
0 otherwise.

Observe that g is continuous on .�� Œ0; 1�/ n�, where� WD ¹.x;x/ 2�� Œ0; 1�; x2�º.
Fix a compact setK ��. For each x2K choose "x >0 such that Œx � 2"x ;xC 2"x ��

�. As K is a compact set, there exist x1; : : : ; xk 2 K such that K � K 0 WD
Sk
jD1Œxj �

"xj ; xj C "xj �. As f .`C4/ is continuous in�, there exists a constantN1;f;K00 > 0 such that
jf .`C4/.z/j � N1;f;K00.`C 4/Š for each z 2 K 00 WD

Sk
jD1Œxj � 2"xj ; xj C 2"xj �. Define

Lj WD Œ0; 1� n .xj � 2"xj ; xj C 2"xj / and observe that

K 0 � Œ0; 1� D

k[
jD1

.Œxj � "xj ; xj C "xj � � Œxj � 2"xj ; xj C 2"xj �/

[ k[
jD1

.Œxj � "xj ; xj C "xj � � Lj /

As � \ .
Sk
jD1Œxj � "xj ; xj C "xj � � Lj / D ¿, the function g is continuous on the com-

pact set
Sk
jD1Œxj � "xj ; xj C "xj � �Lj , so there exists N2;f;K0 > 0 such that jg.y; x/j <

N2;f;K0 for each .y; x/ 2
Sk
jD1Œxj � "xj ; xj C "xj � � Lj .

As f is C`C4 on �, for each .y; x/ 2 Œxj � "xj ; xj C "xj � � Œxj � 2"xj ; xj C 2"xj �
there exists, by the Lagrange form of the remainder of Taylor’s theorem, �.y;x/2 Œxj �
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2"xj ; xj C 2"xj � � K
00 such that

h.y; x/ D
f .`C4/.�.y;x//

.`C 4/Š
.x � y/`C4;

so we have g.y; x/ D f .`C4/.�.y;x//=.`C 4/Š and jg.y; x/j < N1;f;K00 for each .y; x/ 2Sk
jD1Œxj � "xj ; xj C "xj � � Œxj � 2"xj ; xj C 2"xj �. Therefore, if we define Nf;K WD

max¹N1;f;K00 ; N2;f;K0º, the claim is proved.
Define Py WD P.y; �/ and hy WD h.y; �/ and fix a compact set K � �. Observe that

P
.k/
y .y/ D f .k/.y/ for each y 2 K and each k D 0; : : : ; ` C 3. We have B�.f / D
B�.Py/C B�.hy/. Consequently, for each y 2K,

(5.9) B.`/� .f / D B.`/� .Py/C B
.`/
� .hy/

(we are considering derivatives and Bernstein’s polynomials with respect to the vari-
able x).

STEP 2. Uniform control of the error for the Taylor polynomials.

We claim: there exists a constant Cf;K;` > 0 such that jB.`/� .hy/.y/j < Cf;K;`=�
2 for

each y 2K.
Let i; j; ` � 0 be such that 2i C j � `. By Proposition 4.4 in Chapter 4 of [9], there

exist polynomials qij` 2 RŒx� that do not depend on �; k such that

d `

dx`
.xk.1 � x/��k/ D xk�`.1 � x/��k�`

X
2iCj�`

�i .k � �x/j qij`.x/:

As hy.k=�/ D g.y; k=�/ � .k=� � y/`C4, we have

B.`/� .hy/ D

�X
kD0

hy

�k
�

���
k

�
d `

dx`
.xk.1 � x/��k/

D

�X
kD0

hy

�k
�

���
k

�
xk�`.1 � x/��k�`

X
2iCj�`

�i .k � �x/j qij`.x/

D
1

x`.1 � x/`

�X
kD0

hy

�k
�

�
Bk;�.x/

X
2iCj�`

�iCj
�k
�
� x

�j
qij`.x/

D
1

x`.1 � x/`
X

2iCj�`

qij`.x/�iCj
�X
kD0

g
�
y;
k

�

��k
�
� y

�`C4�k
�
� x

�j
Bk;�.x/:

We have proved above that there exists a constant Nf;K > 0 such that jg.y; x/j < Nf;K
for each .y; x/ 2 K � Œ0; 1�. Recall that 2.i C j / � `C j and that jk=� � yj � 1. If we
set x D y, we haveˇ̌̌ �X
kD0

g
�
y;
k

�

��k
�
� y

�`CjC4
Bk;�.y/

ˇ̌̌
� Nf;K

1

�2.iCj /C4

�X
kD0

.k � �y/2.iCj /C4Bk;�.y/

� Nf;K
1

�2.iCj /C4
AiCjC2�

iCjC2
� Nf;K AiCjC2

1

�iCjC2
(5.10)
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for a constant AiCjC2 > 0 (see (1.5) in Section 1 of Chapter 10, p. 304 of [9]). Conse-
quently,

jB.`/� .hy/.y/j �
� 1

y`.1 � y/`

X
2iCj�`

jqij`.y/jNf;KAiCjC2

� 1

�2
,

and the claim follows if we take

Cf;K;` WD
 1

y`.1 � y/`


K

X
2iCj�`

kqij`kK Nf;KAiCjC2:

STEP 3. Proof of the first part of the statement.

If x 2K, we have using STEP 2 (because P .k/x .x/D f .k/.x/ for each x 2K and each
k D 0; : : : ; `C 3),

jB.`/� .f /.x/ � f .`/.x/j � jB.`/� .Px/.x/ � f
.`/.x/j C jB.`/� .hx/.x/j(5.11)

� jB.`/� .Px/.x/ � P
.`/
x .x/j C

Cf;K;`

�2
�

By (5.3) and (5.5) applied to Px , we obtain

jB.`/� .Px/.x/ � P
.`/
x .x/j �

1

2�
.`.` � 1/kP .`/x kŒ0;1�

C `j1 � 2xj kP .`C1/x kŒ0;1� C x.1 � x/kP
.`C2/
x kŒ0;1�/:

By (5.8), we deduce

jB.`/� .Px/.x/ � P
.`/
x .x/j �

1

2�

�
`.` � 1/

`C3X
kD`

kf .k/kK

.k � `/Š

C `j1 � 2xj

`C3X
kD`C1

kf .k/kK

.k � ` � 1/Š
C x.1 � x/

`C3X
kD`C2

kf .k/kK

.k � ` � 2/Š

�
for each x 2K, and the first part of the statement holds.

STEP 4. Bound of the error.
For each " > 0 and each pair of integers s; t � 0 such that � WD s C t � `C 2, there

exists a constant Cf;K;�;" > 0 such that

(5.12)
ˇ̌̌
B�;s;t .Py/.x/ �

P
.�/
y

�Š
.x/
ˇ̌̌
<
"

�Š
C
Cf;K;�;"

�

for each .y;x/ 2K � Œ0; 1� and each � > s. In particular, B�;s;t .Py/ converges to P .�/y =�Š

uniformly on K � Œ0; 1� when � !1.
We will follow the proof of Lemma 2 in [16] making the suitable needed changes. Fix

integers s; t � 0 and denote � WD sC t . Next fix � � s and 0� k � � � s. Fix " > 0 and let
ı > 0 be such that if .y; x/; .y0; x0/ 2K � Œ0; 1� satisfy jx � x0j < ı and jy � y0j < ı, then
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jP
.�/
y .x/ � P

.�/
y0 .x

0/j < " (recall that Pz is C`C4 on Œ0; 1� for each z 2 K). Fix x 2 Œ0; 1�
and let

I� WD
°
k 2 ¹0; : : : ; � � sº W x � ı <

k

�
<
k C s

�
< x C ı

±
:

Fix y2K and pick �k in the smallest interval that contains the points x;k=�; : : : ; .kC s/=�
such that hk

�
, . . . , k C s

�
; x; : : : ; x„ ƒ‚ …

t times

i
Py D

P
.�/
y .�k/

�Š
�

Consequently,

B�;s;t .Py/.x/ D

��sX
kD0

�hk
�

, . . . , k C s
�

; x; : : : ; x„ ƒ‚ …
t times

i
Py

�
Bk;��s.x/

D
1

�Š

��sX
kD0

P .�/y .�k/Bk;��s.x/:

Define

S� WD �ŠB�;s;t .Py/.x/ � P
.�/
y .x/ D

��sX
kD0

.P .�/y .�k/ � P
.�/
y .x//Bk;��s.x/:

Write S� D C� CD� , where

C� WD
X
k2I�

.P .�/y .�k/ � P
.�/
y .x//Bk;��s.x/;

D� WD
X
k…I�

.P .�/y .�k/ � P
.�/
y .x//Bk;��s.x/:

If k 2 I� , we have j�k � xj < ı, so

jC� j �
X
k2I�

"Bk;��s.x/ � ":

Regarding D� , define

(5.13) Mf;K;� WD max
°ˇ̌̌@�P
@x�

.y; x/
ˇ̌̌
W .y; x/ 2 K � Œ0; 1�

±
for � D 0; : : : ; `C 2.

If 0 � k � � � s, we haveˇ̌̌k
�
� x

ˇ̌̌
�

ˇ̌̌ k

� � s
� x

ˇ̌̌
C

ˇ̌̌k
�
�

k

� � s

ˇ̌̌
�

ˇ̌̌ k

� � s
� x

ˇ̌̌
C
s

�

k

� � s

�

ˇ̌̌ k

� � s
� x

ˇ̌̌
C
s

�
,ˇ̌̌k C s

�
� x

ˇ̌̌
�

ˇ̌̌ k

� � s
� x

ˇ̌̌
C

ˇ̌̌k C s
�
�

k

� � s

ˇ̌̌
�

ˇ̌̌ k

� � s
� x

ˇ̌̌
C
s

�

�
1 �

k

� � s

�
�

ˇ̌̌ k

� � s
� x

ˇ̌̌
C
s

�
�
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Consequently,

max
°�k
�
� x

�2
;
�k C s

�
� x

�2±
�

� k

� � s
� x

�2
C 2

s

�
C
s2

�2
�

For each k … I� , we have

ı2 � max
°�k
�
� x

�2
;
�k C s

�
� x

�2±
�

� k

� � s
� x

�2
C 2

s

�
C
s2

�2
:

We deduce

1 �
1

ı2

�� k

� � s
� x

�2
C 2

s

�
C
s2

�2

�
;

and as jP .�/y .�k/� P
.�/
y .x/j � 2Mf;K;�, we conclude using Subsection 2.4.1 (concretely,

the property of the variance of a binomial distribution) that

jD� j �
2

ı2
Mf;K;�

X
k…I�

�� k

� � s
� x

�2
C 2

s

�
C
s2

�2

�
Bk;��s.x/

�
2

ı2
Mf;K;�

�
2
s

�
C
s2

�2
C

��sX
kD0

� k

� � s
� x

�2
Bk;��s.x/

�
D

2

ı2
Mf;K;�

�
2
s

�
C
s2

�2
C
x.1 � x/

� � s

�
:

As s < �, we obtain 0 < s=�; 1=.� � s/ < 1, so

2
s

�
C
s2

�2
C
x.1 � x/

� � s
�
3s

�
C

1

2�

�
1C

s

� � s

�
<
1C 7s

2�
�
1C 7�

2�
�

Thus, if � > s, then

jS� j � jC� j C jD� j < "C
2

ı2
Mf;K;�

1C 7�

2�
D "C

Cf;K;�;"�Š

�

for the constant

Cf;K;�;" WD
1C 7�

ı2�Š
Mf;K;� > 0:

STEP 5. Proof of the second part of the statement.
Fix � > `. By Remark 2.7 and (5.3) we have

(5.14)

�..B�.Py//
.`/.x/�P .`/y .x// �

1

2

@`

@x`
.x.1 � x/P 00y .x//

D �`.` � 1/
�
.B�;1;1.Py//

.`�2/.x/ � 1
2
P .`/y .x/

�
C `.1 � 2x/

�
.B�;1;1.Py//

.`�1/.x/ � 1
2
P .`C1/y .x/

�
C x.1 � x/

�
.B�;1;1.Py//

.`/.x// � 1
2
P .`C2/y .x/

�
:
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Write m WD ` � 2; ` � 1; `. Using that mŠ
PmC1
kD1 k D .mC 2/Š=2, we get by (5.4),

.B�;1;1 .Py//
.m/.x/ �

1

2
P .mC2/y .x/(5.15)

D mŠ

mC1X
kD1

k
� � 1

�
� � �
� � k C 1

�

�
B�;k;mC2�k.Py/.x/ �

P
.mC2/
y .x/

.mC 2/Š

�
CmŠ

mC1X
kD1

k
��
1 �

1

�

�
� � �

�
1 �

k � 1

�

�
� 1

�P .mC2/y .x/

.mC 2/Š
�

As m � ` < �, we have for k D 1; : : : ; mC 1,

0 <
�
1 �

m

�

�m
�

�
1 �

1

�

�
� � �

�
1 �

m

�

�
�

�
1 �

1

�

�
� � �

�
1 �

k � 1

�

�
< 1:

Consequently, as m=� < 1, we deduce

0 < 1 �
�
1 �

1

�

�
� � �

�
1 �

k � 1

�

�
< 1 �

�
1 �

m

�

�m
D

mX
qD1

�
m

q

�
.�1/qC1

�m
�

�q
�
1

�
m

mX
qD1

�
m

q

�
:

Thus, Lm WD m
Pm
qD1

�
m
q

�
> 0 satisfiesˇ̌̌�

1 �
1

�

�
� � �

�
1 �

k � 1

�

�
� 1

ˇ̌̌
<
Lm

�
for k D 1; : : : ; mC 1.

Recall that

mŠ

mC1X
kD1

k D
.mC 2/Š

2
and

ˇ̌̌� � 1
�
� � �
� � k C 1

�

ˇ̌̌
< 1:

Asm� `, we havemC 2� `C 2. Consequently, by (5.12) (in STEP 4), (5.13) and (5.15),
we have

j.B�;1;1.Py//
.m/.x/ �

1

2
P .mC2/y .x/j

� mŠ

mC1X
kD1

k
ˇ̌̌� � 1
�
� � �
� � k C 1

�

ˇ̌̌ ˇ̌̌
B�;k;mC2�k.Py/.x/ �

P
.mC2/
y .x/

.mC 2/Š

ˇ̌̌
CmŠ

mC1X
kD1

k
ˇ̌̌�
1 �

1

�

�
� � �

�
1 �

k � 1

�

�
� 1

ˇ̌̌
jP

.mC2/
y .x/j

.mC 2/Š

<
.mC 2/Š

2

� "

.mC 2/Š
C
Cf;K;mC2;"

�

�
C
Lm

2�
Mf;K;mC2(5.16)

D
"

2
C
Cf;K;mC2;".mC 2/ŠC LmMf;K;mC2

2�
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for each .y; x/ 2 K � Œ0; 1�. We conclude from (5.14) and (5.16),ˇ̌̌
�..B�.Py//

.`/.x/�P .`/y .x// �
1

2

@`

@x`
.x.1 � x/P 00y .x//

ˇ̌̌
� `.` � 1/

� "
2
C
.Cf;K;`;"`ŠC L`�2Mf;K;`/

2�

�
C `j1 � 2xj

� "
2
C
.Cf;K;`C1;".`C 1/ŠC L`�1Mf;K;`C1/

2�

�
C x.1 � x/

� "
2
C
.Cf;K;`C2;".`C 2/ŠC L`Mf;K;`C2/

2�

�
:

If we write

"0 WD
�
`2 C

1

4

� "
2

,

C �f;K;`;"0 WD
1

2

�
`.` � 1/.Cf;K;`;"`ŠC L`�2Mf;K;`/C `.Cf;K;`C1;".`C 1/Š

C L`�1Mf;K;`C1/C
1

4
.Cf;K;`C2;".`C 2/ŠC L`Mf;K;`C2/

�
;

we conclude, using that j1 � 2xj � 1 and x.1 � x/ � 1=4,ˇ̌̌
�..B�.Py//

.`/.x/ � P .`/y .x// �
1

2

@`

@x`
.x.1 � x/P 00y .x//

ˇ̌̌
� "0 C

C �
f;K;`;"0

�

for each .y; x/ 2 K � Œ0; 1�. If x 2K and we set y D x, we deduce (using (5.9), that is,
.B�.f //

.`/ D .B�.Px//
.`/ C .B�.hx//

.`/, and STEP 2)ˇ̌̌
�..B�.f //

.`/.x/ � f .`/.x// �
1

2

@`

@x`
.x.1 � x/f 00.x//

ˇ̌̌
D

ˇ̌̌
�..B�.Px//

.`/.x/ � P .`/x .x// �
1

2

@`

@x`
.x.1 � x/P 00x .x//

ˇ̌̌
C j�B�.hx//

.`/.x/j

� "0 C
C �
f;K;`;"0

�
C
Cf;K;`

�
�

To finish, it is enough to define C �
f;K;`;"0

WD C �
f;K;K;`;"0

C Cf;K;` (and to adjust " > 0).

Remark 5.2. In the previous proof, we have only used that the function g introduced
in STEP 1 is bounded over the sets of the form K � Œ0; 1�, where K � � is a compact
set. However, it is natural to wonder about a sufficient condition to guarantee that g is in
addition continuous: The function gW�� Œ0; 1�!R is continuous if f W�!R is a C`C5

function.
We have proved in this STEP 1 (adapted to the case when f is C`C5) that there exists

a function g0W� � Œ0; 1�! R such that

f .x/ �

`C4X
kD0

f .k/.y/

kŠ
.x � y/k D g0.y; x/.x � y/

`C5

on � � Œ0; 1� and for each compact set K � � there exists a constant N0;f;K > 0 such
that jg0.y; x/j < N0;f;K for each .y; x/ 2 K � Œ0; 1�.
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Define

g.y; x/ WD
f .`C4/

.`C 4/Š
.y/C .x � y/g0.y; x/

for each .y; x/ 2 � � Œ0; 1�. Observe that g0 is continuous outside � WD ¹.x; x/ 2 � �
Œ0; 1� W x 2�º and it is bounded on any compact neighborhood of each point of � inside
�� Œ0; 1�. Thus, h.y; x/ WD .x � y/g0.y; x/ is continuous on�� Œ0; 1�. Consequently, g
is continuous on � � Œ0; 1�, as required.

A. Modification of continuous semialgebraic paths

In the proof of Main Theorem 1.8, we needed to slightly modify continuous semialge-
braic paths to avoid certain algebraic sets (except for finitely many points), but keeping
essentially their behavior. In order to make the proof of such result more intuitive, we have
postponed such modification until now. The reader can find by himself many other ways
to modify continuous semialgebraic paths in the needed way. However, we include the
precise technicalities for the sake of completeness here.

Lemma A.1 (Modification of continuous semialgebraic paths). Let S � Rn be a pure
dimensional semialgebraic set and let S1; : : : ;Sr be open connected semialgebraic subsets
of Reg.S/ (not necessarily pairwise different). Pick control points pi 2 Cl.Si / for i D
1; : : : ; r and qi 2 Cl.Si / \ Cl.SiC1/ for i D 1; : : : ; r � 1. Fix control times s0 WD 0 <

t1 < � � � < tr < 1 DW sr and si 2 .ti ; tiC1/ for i D 1; : : : ; r � 1. Let Y � Rn be a (proper)
algebraic set that does not contain any of the Si and let ˇW Œ0; 1�! Rn be a continuous
semialgebraic path such that:

(i) ˇ.Œ0; 1�/ �
Sr
iD1 Si [ ¹p1; : : : ; pr ; q1; : : : ; qr�1º,

(ii) ˇ.ti / D pi for i D 1; : : : ; r and ˇ.si / D qi for i D 1; : : : ; r � 1,

(iii) ˇ..ti ; si // � Si for i D 1; : : : ; r and ˇ..si ; tiC1// � SiC1 for i D 1; : : : ; r � 1,

(iv) �.ˇ/ � .0; 1/ n ¹t1; : : : ; tr ; s1; : : : ; sr�1º and ˇ.�.ˇ// �
Sr
iD1 Si .

Then, for each " > 0 there exists a continuous semialgebraic path ˇ�W Œ0; 1� ! Rn

satisfying conditions (i), (ii), (iii) and (iv) above and such that .ˇ�/�1.Y / is a finite set,
�.ˇ�/ \ .ˇ�/�1.Y / D ¿, ˇ�.�.ˇ�// �

Sr
iD1 Si and kˇ � ˇ�k < ".

Proof. We fix " > 0 and conduct the proof of this result in several steps.

STEP 1. (Local) modification of ˇ around the points pi .
Fix an index i D 1; : : : ; r . We modify ˇ in a neighborhood of ti so that the new ˇ is a

Nash map around ti and ˇ.Œti � ı; ti C ı� \ Y � ¹piº if ı > 0 is small enough.
Consider the open ball Bi of center the point pi and radius "=3. Let ı0 > 0 be such

that ˇjŒti�ı0;tiCı0� is a Nash path whose image is contained in .Si \ Bi / [ ¹piº. Let Ci
and Di be the connected components of Si \Bi (maybe the same) such thatA0i WD ˇ.Œti �
ı; ti C ı�/ � Ci [Di [ ¹piº (for some 0 < ı < ı0 small enough). By Main Theorem 1.4
in [10], the semialgebraic set Ci [Di [ ¹piº is a Nash image of Rd (where d WD dim.S/)
and it is connected by analytic paths. By either Proposition 7.8 and Corollary 7.9 in [10]
or Lemma 3.1 (the first reference if Ci ¤ Di , and the second reference if Ci D Di ), we
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Y

ˇ�

ˇ

i

�

� �

�

�

�

�
� �

�
�

�
�

�

Bi B0i

Ai BiA0i B 0i
pi qi

Ci Di C0i D0iC1

ai b0i

: : : : : :�
0

�
1

� � � � � � � � � �
ti � ı ti�

ı
2

ti tiC
ı
2
tiCı si�ı si�

ı
2

si siC
ı
2
siCı

Si SiC1

Figure 7. Construction of the Nash path i and the corresponding part of ˇ�.

may find a Nash bridge (or Nash arc) Ai � Ci [Di [ ¹piº such that Ai \ Y � ¹piº. As
Si \Bi is a Nash manifold, both Ci and Di are connected Nash manifolds.

STEP 2. (Local) modification of ˇ around the points qi .
Fix an index i D 1; : : : ; r � 1. We modify ˇ in a neighborhood of si so that the new ˇ

is a Nash map around si and ˇ.Œsi � ı; si C ı�/ \ Y � ¹qiº if ı > 0 is small enough.
Let B0i be the ball of center qi and radius "=3. Let ı0 > 0 be such that ˇjŒsi�ı0;siCı0�

is a Nash path whose image is contained in ..Si \ SiC1/ \ B0i / [ ¹qiº. Let C0i and D0iC1
be the respective connected components of Si \ B0i and SiC1 \ B0i (maybe the same if
Si D SiC1) such that B 0i WD ˇ.Œsi � ı; si C ı�/ � C0i [D0iC1 [ ¹qiº (for some 0 < ı < ı0
small enough). By Main Theorem 1.4 in [10], the semialgebraic set C0i [ D0iC1 [ ¹qiº

is a Nash image of Rd (where d WD dim.S/) and it is connected by analytic paths. By
Proposition 7.8 and Corollary 7.9 in [10] or Lemma 3.1 (the first reference if C0i ¤ D0iC1,
and the second reference if C0i D D0iC1), we may find a Nash bridge (or a Nash arc)
Bi � C0i [D0iC1 [ ¹qiº such that Bi \ Y � ¹qiº. As Si \B0i is a Nash manifold, both C0i
and D0iC1 are connected Nash manifolds.

STEP 3. Modification of ˇ outside a neighborhood of ¹p1; : : : ; pr ; q1; : : : ; qr�1º.
Taking a smaller ı > 0 if necessary, we may assume bi0 WD ˇ.ti � ı/ 2 Ci , ai0 WD

ˇ.ti C ı/ 2 Di for i D 1; : : : ; r and b0i0 WD ˇ.si � ı/ 2 C0i , a
0
iC1;0 WD ˇ.si C ı/ 2 D0iC1

for i D 1; : : : ; r � 1. If ˇ.Œti C ı; si � ı�/ \ Y is a finite set, we do nothing with this
semialgebraic set. If ˇ.Œsi C ı; tiC1 � ı�/ \ Y is a finite set, we also do nothing. Let
us modify ˇ.Œti C ı; si � ı�/ if the intersection ˇ.Œti C ı; si � ı�/ \ Y has dimension 1
(Figure 7).

Pick points ai1 2 Di n Y and b0i1 2 C0i n Y and let

ˇi W Œti C ı=2; si � ı=2�! Di [ ˇ.Œti C ı; si � ı�/ [ C0i � Si

be a continuous semialgebraic path such that ˇi jŒtiCı;si�ı� D ˇjŒtiCı;si�ı�, ˇi .ti C ı=2/D
ai1, ˇi .Œti C ı=2; ti C ı�/ � Di , ˇi .si � ı=2/ D b0i1 and ˇi .Œsi � ı; si � ı=2�/ � C0i .
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Y

ˇ�

ˇ

�i
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� �

�
�

�
� � �

�

�

�
�

B0i BiC1

Bi AiC1B 0i A0iC1
qi piC1

C0i D0iC1 CiC1 DiC1

a0iC1 biC1

: : : : : :�
0

�
1

� � � � � � � � � �
si�ı si�

ı
2

si siC
ı
2
siCı tiC1�ı tiC1�

ı
2
tiC1 tiC1C

ı
2
tiC1Cı

Si SiC1

Figure 8. Construction of the Nash path �i and the corresponding part of ˇ�.

Define
"0 WD min

®
"; dist.ai0; Si nDi /; dist.ai1; Si n .Di n Y //;

dist.b0i0; Si n C
0
i /; dist.b0i1; Si n .C

0
i n Y //

¯
> 0:

By Corollary 8.9.6 in [2], there exists a Nash path i W Œti C ı=2; si � ı=2�! Si such that
kˇi � ik< "

0=3. We have i .ti C ı=2/ 2Di n Y , ai WD i .ti C ı/ 2Di , b0i WD i .si � ı/
2 C0i and i .si � ı=2/ 2 C0i n Y . By Lemma 7.7 in [10], we deduce �1i .Y / is a finite set.
As i is Nash, �.i / D ¿.

Analogously, if ˇ.Œsi C ı; tiC1 � ı�/ \ Y has dimension 1, one constructs (as before)
a Nash path �i W Œsi C ı=2; tiC1 � ı=2�! SiC1 such that kˇjŒsiCı=2;tiC1�ı=2� � �ik < "=3,
�i .si C ı=2/ 2 D0iC1 n Y , a0iC1 WD �i .si C ı/ 2 D0iC1, biC1 WD �i .tiC1 � ı/ 2 CiC1,
�i .tiC1 � ı=2/ 2 CiC1 n Y and ��1i .Y / is a finite set (Figure 8). Again, as �i is Nash,
�.�i / D ¿.

STEP 4. Full modification of ˇ.
Recall that if x;y 2Bi (or x;y 2B0i ), then kx � yk< 2"=3. In addition, Ci � Si \Bi ,

Di � Si \ Bi , C0i � Si \ B0i and D0iC1 � SiC1 \ B0i are connected Nash manifolds. By
Theorem 1.5 in [10], each connected Nash manifold is connected by Nash paths. Thus,
we can construct a continuous semialgebraic path ˇ�W Œ0; 1� ! S that connects, using
additional Nash paths that avoid Y except for perhaps finitely many points, the already
constructed Nash arcs (in STEP 1), Nash bridges (in STEP 2) and Nash paths (in STEP 3)
and satisfies the following conditions:

• ˇ�jŒ0;t1�ı� D ˇjŒ0;t1�ı� and ˇ�jŒtrCı;1� D ˇjŒtrCı;1�.
• ˇ�jŒti�ı=2;tiCı=2�W Œti � ı=2; ti C ı=2�! Ai � Ci [Di [ ¹piº � Si \ Bi is a Nash

parameterization of Ai around pi D ˇ�.ti /.
• ˇ�jŒsi�ı=2;siCı=2�W Œsi � ı=2; si C ı=2�! Bi � C0i [D0iC1 [ ¹qiº � .Si [ SiC1/\B0i

is a Nash parameterization of Bi around qi D ˇ�.si /.
• ˇ�jŒtiCı;si�ı� D i jŒtiCı;si�ı� and ˇ�jŒsiCı;tiC1�ı� D �i jŒsiCı;tiC1�ı�,
• ˇ�.Œti C ı=2; ti C ı�/ � Di � Si \Bi and ˇ�.Œsi � ı; si � ı=2�/ � C0i � Si \B0i ,
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• ˇ�.Œsi C ı=2; si C ı�/�D0iC1 � SiC1 \B0i and ˇ�.ŒtiC1 � ı; tiC1 � ı=2�/� CiC1 �

SiC1 \BiC1,
• �.ˇ�/ �

Sr
iD1¹ti � ı; ti � ı=2; ti C ı=2; ti C ıº [

Sr�1
iD1¹si � ı; si � ı=2; si C ı=2;

si C ıº and ˇ�.�.ˇ�// �
Sr
iD1 Si ,

• .ˇ�/�1.Y / is a finite set, �.ˇ�/\ .ˇ�/�1.Y /D¿ and �.ˇ�/\¹t1; : : : ; tr ; s1; : : : ; sr�1º
D ¿.
Following the construction of ˇ� we have done, one deduces that kˇ� � ˇk < ".

Thus, ˇ�W Œ0; 1�! Rn is a semialgebraic path close to ˇ that satisfies the required condi-
tions (i), (ii) and (iii) in the statement. In addition, ˇ�.Œ0; 1�/ \ Y is a finite set, �.ˇ�/ \
.ˇ�/�1.Y / D ¿, �.ˇ�/ \ ¹t1; : : : ; tr ; s1; : : : ; sr�1º D ¿ and ˇ�.�.ˇ�// �

Sr
iD1 Si .
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