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1. Introduction

A subset X ⊂ Rn is said to be basic semialgebraic if it can be written as

X := {x ∈ Rn : f(x) = 0, g1(x) > 0, . . . , gℓ(x) > 0}

for some polynomials f, g1, . . . , gℓ ∈ R[x1, . . . , xn]. The finite unions of basic semialgebraic sets are called 
semialgebraic sets.

A continuous function f : X → R is said to be semialgebraic if its graph is a semialgebraic subset of 
Rn+1. Usually, semialgebraic function just means a function, non necessarily continuous, whose graph is 
semialgebraic. However, since all semialgebraic functions occurring in this article are continuous we will 
omit for simplicity the continuity condition when we refer to them.

The sum and product of functions, defined pointwise, endow the set 𝒮(X) of semialgebraic functions on 
X with a natural structure of commutative ring whose unity is the semialgebraic function 1M with constant 
value 1. In fact 𝒮(X) is an R-algebra, if we identify each real number r with the constant function which 
just attains this value. The most simple examples of semialgebraic functions on X are the restrictions to 
X of polynomials in n variables. Other relevant ones are the absolute value of a semialgebraic function, 
the distance function to a given semialgebraic set, the maximum and the minimum of a finite family of 
semialgebraic functions, the inverse and the k-root of a semialgebraic function whenever these operations 
are well-defined.

Let 𝒮∗(X) be the subring of bounded semialgebraic functions on X. It is indeed an R-algebra and we 
will identify each real number r ∈ R with the constant function of value r.

The study of rings of continuous functions has deserved a lot of attention from specialists in analysis, 
topology and algebra. The history of this theory is long and rich and its main development goes back to 
the 1950’s and 1960’s. This subject contributed in an important way to the appearance and evolution of 
well-known tools in Mathematics like the Stone-Čech compactification, the theory of nets and filters, the 
spectrum and the maximal spectrum of a commutative ring, . . . . We refer the reader to [11] for a very 
detailed study of rings of continuous functions.

This article is inspired by the work [6], where the authors studied intermediate algebras between the 
R-algebra 𝒞(X) of continuous real valued functions on a topological space X and its sub-algebra 𝒞∗(X)
of bounded functions, which has a precedent in the paper [13]. To work with continuous functions (on a 
completely regular topological space X) presents an advantage over the semialgebraic setting: the Stone
Čech compactification βsX is a topological space containing X as a dense subspace, and so it makes sense 
to consider the R-algebra 𝒞(βsX). This is not so in the semialgebraic context. The so called semialgebraic 
Stone-Čech compactification β*

sX of a semialgebraic set X introduced in [10] enjoys most of the properties 
of the classical Stone-Čech compactification; namely, it is a compact and Hausdorff topological space one 
of whose models is the set β*

sX := Max(𝒮∗(X)) of maximal ideals of the ring 𝒮∗(X), the map

j : X → β*
sX, x ↦→ 𝔪∗

x := {f ∈ 𝒮∗(X) : f(x) = 0}

is continuous, and j(X) is a dense subspace of β*
sX. This is why we identify X with j(X). In addition, it 

is proved in [10, 4.4] that for every f ∈ 𝒮∗(X) there exists a continuous function ˆ︁f : β*
sX → R such that ˆ︁f ◦ j = f . But, in spite of its name, β*

sX is very rarely a semialgebraic set, so it has no sense to consider 
the ring 𝒮(β*

sX). Indeed, it was proved in [10] that β*
sX is homeomorphic to a semialgebraic set if and only 

if β*
sX \X is finite.
On the other hand, the topology of semialgebraic sets is more friendly, which allows to achieve sharper 

results by using specific techniques of semialgebraic geometry. Although they are neither Noetherian nor 
enjoy primary decomposition properties, rings of semialgebraic functions are closer to polynomial rings than 
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to classical rings of continuous functions. For example, the Lebesgue dimension of R is 1, see Problem 16F 
in [11], whereas the Krull dimension of the ring 𝒞(R) of real valued continuous functions on R is infinite, 
see Problem 14I [11], and the Krull dimension of the ring 𝒮(R) equals one, see [9, Thm 1.1 and Thm. 1.2]. 
Another simple but crucial example is the following. It was proved in [2, 2.2.8] that the function

f : X → R, x ↦→ dist(x, Z) := inf {∥x− z∥ : z ∈ Z}

is semialgebraic and so each closed semialgebraic subset Z of X satisfies Z = f−1(0). Thus, in the semi
algebraic context, to be closed and to be the zeroset of a continuous semialgebraic function are the same 
thing.

Indeed many tools of semialgebraic geometry have been successfully employed in [7], [8], [9], [10] and [3] 
to obtain a lot of information about rings of semialgebraic functions. We will use the results obtained in 
these previous works.

Along this article we fix a semialgebraic set X ⊂ Rn and an intermediate R-algebra A containing 𝒮∗(X)
and contained in 𝒮(X), and it is organized as follows. In Section 2, we collect most of the preliminary 
definitions, notations and results that will be used freely in the sequel. Next, in Section 3 we construct in 
Theorem 3.2 a natural bijection between the intermediate R-algebras containing 𝒮∗(X) and contained in 
𝒮(X) and the family of saturated multiplicatively closed subsets D of 𝒮∗(X) such that f−1(0) = ∅ for every 
f ∈ D. As a first consequence we prove in Corollary 3.3 that if κ𝔭 := qf(A/𝔭) denotes the field of fractions 
of A/𝔭, where 𝔭 is a prime ideal of A, then the transcendence degree over R of κ𝔭 is finite and upperly 
bounded by dim(X). To finish Subsection 3.1 we deduce from Theorem 3.2 that the Krull dimension dim(A)
of A equals dim(X) in Proposition 3.4. In Subsection 3.2 we show that the set of prime ideals containing a 
prime ideal of A is a totally ordered set. This implies that A is a Gelfand ring, that is, every prime ideal is 
contained in a unique maximal ideal of A. The main result is Theorem 3.6, where we prove that Max(A)
is a model of the semialgebraic Stone-Čech compactification of X. In Subsection 3.3 we study fixed and 
free ideals of A. We characterize fixed maximal ideals of A in Theorem 3.10. Next we introduce an unusual 
terminology. In Definition 3.11 we say that a maximal ideal 𝔪 of A is archimedean if the natural inmersion 
R ↪→ A/𝔪 is surjective. These ideals have been called frequently real in the literature. But the adjective 
real has a different meaning in Real Algebraic Geometry: an ideal 𝔞 of an unitary and commutative ring R
is said to be real if whenever the elements f1, . . . , fr ∈ R satisfy f2

1 + · · · + f2
r ∈ 𝔞, then each fi ∈ 𝔞. The 

main results of this subsection are a Łojasiewicz inequality 3.13 and a Nullstellensatz 3.16 for intermediate 
R-algebras whose maximal ideals are archimedean.

In Section 4 we study intermediate algebras generated by proper ideals. We prove first that we may 
assume that they are generated by z-ideals. Secondly, we prove in Theorem 4.11 an extension result for 
functions in such R-algebras.

2. Preliminaries

2.1. Localization and Zariski spectrum

A subset D of a commutative and unitary ring R is said to be multiplicatively closed if the unit element 
1R belongs to D, the zero element 0R / ∈ D and given d, e ∈ D then ed ∈ D. We denote 𝒰(R) the subset 
consisting on the units of R, that is, the invertible elements in R. The map φD : R → RD, r ↦→ r · 1−1

R is 
a homomorphism of unitary rings whose kernel is the intersection of D with the set of zero divisors of R. 
Thus φD is injective if and only if D does not contain zero divisors of R. In addition, φD is an isomorphism 
if and only if D ⊂ 𝒰(R).

The multiplicatively closed subset D of R is said to be saturated if whenever x, y ∈ R satisfy xy ∈ D

then x, y ∈ D.
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Let 𝔞 be an ideal of R. Then, the extended ideal 𝔞e of RD, that is, the smallest ideal of RD containing 
𝔞, is the set 𝔞e := {ad−1 : a ∈ 𝔞, d ∈ D}. Hence, 𝔞e is a proper ideal of RD, that is, 𝔞e ̸= RD, if and only if 
𝔞∩D = ∅. On the other hand, let 𝔟 be a proper ideal of RD. Then, its contraction 𝔟c := φ−1

D (𝔟) is an ideal 
of R satisfying 𝔟c ∩D = ∅. In addition, (𝔟c)e = 𝔟.

The set Spec(R) consisting of all prime ideals of R is endowed with its Zariski topology, which has the 
family of subsets

𝒟R(f) := {𝔭 ∈ Spec(R) : f / ∈ 𝔭}, where f ∈ R,

as a basis of open subsets. It is a compact space, see e.g. [1, Ch. I, Ex. 17]. In particular, the map

{𝔭 ∈ Spec(R) : 𝔭 ∩D = ∅} → Spec(RD), 𝔭 ↦→ 𝔭e

is a homeomorphism whose inverse is the map

Spec(RD) → {𝔭 ∈ Spec(R) : 𝔭 ∩D = ∅}, 𝔮 ↦→ 𝔮c.

The maximal spectrum of R is the subset Max(R) ⊂ Spec(R) consisting of all maximal ideals of R. Indeed 
Max(R) is compact too because every covering of Max(R) by subsets of the form 𝒟R(f) is a covering of 
Spec(R).

2.2. Dimension of semialgebraic sets

The dimension dim(X) of a semialgebraic set X ⊂ Rn is defined as the dimension of the smallest 
algebraic set containing X. In other words, dim(X) is the Krull dimension of the quotient ring 𝒫(X) :=
R[x1, . . . , xn]/𝒥 (X), where

𝒥 (X) := {f ∈ R[x1, . . . , xn] : X ⊂ f−1(0)}.

It is proved in [2, 2.8.10] that given a semialgebraic set X ⊂ Rn and a point x ∈ X there exists a semialgebraic 
neighborhood U of x in X such that dim(U) = dim(V ) for every semialgebraic neighborhood V ⊂ U of x. 
This common value is called the local dimension of X at x.

2.3. Semialgebraic Stone-Čech compactification of a semialgebraic set

For every real valued function f : X → R we denote 𝒵X(f) := f−1(0).
(1) Recall that a compactification of a topological space Z is a pair (K, j), where j : Z → K is a 

continuous map and j(Z) is a dense subset of the compact space K.
(2) Given two compactifications (K1, j1) and (K2, j2) of a topological space Z it is said that (K2, j2)

dominates (K1, j1), and we write (K1, j1) ≼ (K2, j2), if there exists a continuous surjective map ρ : K2 →
K1 such that ρ ◦ j2 = j1. Note that since ji(Z) is dense in Ki for i = 1, 2, the map ρ is unique satisfying 
the equality above. We say that (K1, j1) is smaller that (K2, j2).

(3) A compactification (K, j) of a semialgebraic set X is semialgebraically complete, see [10, 4.2], if for 
each f ∈ 𝒮∗(X) there exists a continuous function F : K → R such that f = F ◦ j. Notice that K is not 
necessarily a semialgebraic set.

(4) It was introduced in [10] the so called semialgebraic Stone-Čech compactification of a semialgebraic set 
X. It is a compact and Hausdorff topological space β*

sX one of whose models is the set β*
sX := Max(𝒮∗(X))

of maximal ideals of the ring 𝒮∗(X). The map
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j : X → β*
sX, x ↦→ 𝔪∗

x := {f ∈ 𝒮∗(X) : f(x) = 0}

is continuous and j(X) is a dense subspace of β*
sX. For simplicity we identify X with j(X).

In addition, it is proved in [10, 4.4] that for every f ∈ 𝒮∗(X) there exists a continuous function ˆ︁f :
β*

sX → R such that ˆ︁f ◦ j = f . For every semialgebraic subset Y of X we denote Clβ*
s X

(Y ) the closure in 
β*

sX of Y and IntX(Y ) the interior of Y in X.
(5) It was proved in [10, 4.4.3] that the semialgebraic Stone-Čech compactification β*

sX of X is the 
smallest among the semialgebraically complete compactifications of X.

3. Intermediate R-algebras as rings of fractions and consequences

As announced in the Introduction we construct first a bijection between the intermediate R-algebras 
containing 𝒮∗(X) and contained in 𝒮(X) and the family of saturated multiplicatively closed subsets D of 
𝒮∗(X) such that 𝒵X(f) = ∅ for every f ∈ D.

3.1. Transcendence degree of the residual fields and Krull dimension

Let D ⊂ 𝒮∗(X) be a multiplicatively closed subset such that 𝒵X(f) = ∅ for every f ∈ D. Thus 
D ⊂ 𝒰(𝒮(X)) and

𝒮∗(X) ⊂ 𝒮∗(X)D ⊂ 𝒮(X),

i.e. A := 𝒮∗(X)D is an intermediate R-algebra between 𝒮∗(X) and 𝒮(X).
In particular it was proved in [7, 3.2] that 𝒮(X) = 𝒮∗(X)D, where D denotes the multiplicatively closed 

subset of 𝒮∗(X) consisting on all f ∈ 𝒮∗(X) whose zeroset 𝒵X(f) is empty, that is, all f ∈ 𝒮∗(X) that are 
invertible in 𝒮(X).

Proposition 3.1. The following conditions hold:
(1) The set DA := 𝒰(A) ∩ 𝒮∗(X) is a saturated multiplicatively closed subset of 𝒮∗(X).
(2) We have A = 𝒮∗(X)DA

.

Proof. (1) The product of bounded semialgebraic functions is a bounded semialgebraic function too. In 
addition, the product of invertible elements of a unitary commutative ring is invertible too. Hence, DA is a 
multiplicatively closed subset of 𝒮∗(X). To see that it is saturated, let f, g ∈ 𝒮∗(X) such that fg ∈ DA. In 
particular there exists h ∈ A such that (fg) · h = 1A. Therefore both f and g are units in A, so f, g ∈ DA.

(2) The inclusion 𝒮∗(X)DA
⊂ A follows at once since DA ⊂ 𝒰(A). Conversely, each f ∈ A can be written 

as

f = (f · (1 + f2)−1)/(1 · (1 + f2)−1)

and f ·(1+f2)−1 ∈ 𝒮∗(X), because its absolute value is upperly bounded by 1/2, whereas 1·(1+f2)−1 ∈ DA

since its absolute value is upperly bounded by 1, so it belongs to 𝒮∗(X) ⊂ A, and it is a unit in A whose 
inverse is 1 + f2 ∈ A. □

Recall that a subset D of a commutative and unitary ring R is said to be multiplicatively closed if the 
unit element 1R belongs to D, the zero element 0R / ∈ D and given d, e ∈ D then ed ∈ D. In addition, D is 
said to be saturated if whenever x, y ∈ R satisfy xy ∈ D then x, y ∈ D.
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Theorem 3.2. Let Sat(X) be the family of saturated multiplicatively closed subsets D of 𝒮∗(X) such that 
𝒵X(f) = ∅ for every f ∈ D. Let Inter(X) be the family of intermediate R-algebras between 𝒮∗(X) and 
𝒮(X). Then the maps

Sat(X) → Inter(X), D ↦→ 𝒮∗(X)D & Inter(X) → Sat(X), A ↦→ DA := 𝒰(A) ∩ 𝒮∗(X)

are mutually inverse.

Proof. The result is the immediate consequence of Proposition 3.1 and the fact that each multiplicatively 
closed subset D of a unitary and commutative ring R admites a saturation, which is the smallest saturated 
multiplicatively closed subset of R containing D. Indeed, see [1, Exercise 3.7], the complement D of the 
union of those prime ideals of R not meeting D is a saturation of D and the map RD → RD, rd−1 ↦→ rd−1

is a bijection. □
As a consequence of Theorem 3.2 we get an upper bound of the transcendence degree over R of the 

residue fields κ𝔭 for 𝔭 a prime ideal of A.

Corollary 3.3. Let 𝔭 be a prime ideal of A and let κ𝔭 := qf(A/𝔭) be the field of fractions of A/𝔭. Then, the 
transcendence degree over R of κ𝔭 is finite and upperly bounded by dimX.

Proof. Let 𝔮 := 𝔭 ∩ 𝒮∗(X). It was proved in [9, Thm.1.3] that the transcendence degree over R of κ𝔮 :=
qf(𝒮∗(X)/𝔮) is finite and upperly bounded by dimX. Thus, all reduces to check that the field extension 
κ𝔭|κ𝔮 is algebraic. It suffices to see that each element of A/𝔭 is algebraic over κ𝔮. Let f ∈ A and ξ := p+ 𝔭. 
With the notations in Theorem 3.2 there exist F,G ∈ 𝒮∗(X) such that f := F/G where G / ∈ DA, i.e., G is 
not a unit in A. Note that f is a root of the polynomial G · t−F ∈ 𝒮∗(X)[t]. Since 𝔭 is a proper ideal of A
the intersection 𝔮∩𝒰(A) is empty, so G / ∈ 𝔮 and ξ is a root of the polynomial (G+𝔮) ·t−(f +𝔮) ∈ κ𝔮[t]. □

Next we apply Theorem 3.2 to compute the Krull dimension of A. For each point x ∈ X we denote 𝔪A;x :=
{f ∈ A : f(x) = 0}. It is a maximal ideal of A because it is the kernel of the surjective homomorphism 
A → R. f ↦→ f(x). We shall abreviate 𝔪∗ := 𝔪𝒮∗(X);x.

Proposition 3.4. The Krull dimension dim(A) of A equals dim(X).

Proof. By Theorem 3.2, A = 𝒮∗(X)DA
where DA := 𝒰(A) ∩ 𝒮∗(X). In addition, the map

Spec(A) ↪→ Spec(𝒮∗(X)), 𝔭 ↦→ 𝔭 ∩ 𝒮∗(X)

induced by the inclusion of 𝒮∗(X) into A is a homeomorphism onto its image, that is the set of prime ideals 
𝔭 of 𝒮∗(X) such that 𝔭∩DA = ∅. Thus dim(A) ≤ d := dim(𝒮∗(X)) = dim(X), where the last equality was 
proved in [9, Thm. 1.1].

To prove the equality notice that, by [2, 2.8.12] there exists a point x ∈ X such that the local dimension 
of X at x equals d. By [9, Thm.1.2] we have ht(𝔪∗

x) = d, where ht(𝔞) means the height of an ideal 𝔞. Let

𝔭0 ⊊ 𝔭1 ⊊ · · · ⊊ 𝔭d := 𝔪∗
x

be a chain of prime ideals in 𝒮∗(X). Notice that 𝒰(A) ∩ 𝔪∗
x = ∅. Otherwise pick f ∈ 𝒰(A) ∩ 𝔪∗

x. Then 
f(x) = 0 and there would exist g ∈ A such that f · g = 1A. Then 1 = f(x) · g(x) = 0, a contradiction. As 
the map

{𝔭 ∈ Spec(𝒮∗(X)) : 𝔭 ∩DA = ∅} → Spec(A), 𝔭 ↦→ 𝔭e
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is injective and inclusion-preserving we have 𝔭e0 ⊊ 𝔭e1 ⊊ · · · ⊊ 𝔭ed := 𝔪A;x. Thus d ≤ dim(A) and so 
dim(A) = dim(X). □
3.2. Main properties of the spectra of intermediate R-algebras

``Convexity'' is an ubiquitous condition in Real Geometry. This implies that the set of prime ideals 
containing a given prime ideal of A form a chain and, in particular, A is a Gelfand ring. Let us collect now 
the properties that will be useful in the sequel.

Corollary 3.5 (Convexity I). (1) Every radical ideal 𝔞 ∈ 𝒮∗(X) is absolutely convex, i.e., given f, g ∈ 𝒮∗(X)
such that |f(x)| ≤ |g(x)| for every x ∈ X and g ∈ 𝔞, then f ∈ 𝔞.

(2) A prime ideal 𝔭 of A is maximal if and only if 𝔮 := 𝔭 ∩ 𝒮∗(X) is a maximal ideal of 𝒮∗(X).
(3) Every prime ideal 𝔭 ∈ A is absolutely convex.
(4) The set of prime ideals of A containing a prime ideal 𝔭 of A is a totally ordered set by inclusion. In 

particular A is a Gelfand ring, i.e., each prime ideal of A is contained in a unique maximal ideal of A.
(5) The subspace Max(A) of Spec(A) consisting on the maximal ideals of A endowed with the Zariski 

topology is compact and Hausdorff. In addition, the map φ : X → Max(A), x ↦→ 𝔪A;x is a bijection onto a 
dense subspace of Max(A).

Proof. (1) Note that |g|2 = g2 ∈ 𝔞 because g ∈ 𝔞. As f(x)2 = |f(x)|2 ≤ |g(x)|2 for every x ∈ X it follows 
from [7, 3.1.2] that f2 ∈ 𝔞. Since 𝔞 is a radical ideal, it follows that f ∈ 𝔞.

(2) It follows from [1, Exercise 3.21] that the map

iA : Spec(A) → Spec(𝒮∗(X)), 𝔮 → 𝔮 ∩ 𝒮∗(X)

is a homeomorphism onto its image iA(A), that is the set of prime ideals 𝔮 ∈ Spec(𝒮∗(X)) such that 
𝔮 ∩DA = ∅. Its inverse is the map

iA(Spec(A)) → Spec(A), 𝔭 ↦→ 𝔭e.

Suppose that 𝔭 is maximal but 𝔮 is not maximal. Let 𝔪A be a maximal ideal of A containing properly the 
ideal 𝔮. Then 𝔭 = (𝔭c)e = 𝔮e ⊊ (𝔪c

A)e = 𝔪A, a contradiction. Conversely, suppose that 𝔮 is maximal but 𝔭
is not maximal. Let 𝔪 be a maximal ideal of 𝒮∗(X) containing properly the ideal 𝔭. Then, 𝔮 = 𝔭∩𝒮∗(X) ⊊
𝔪 ∩ 𝒮∗(X) and 𝔮 is not maximal.

(3) Let f, g ∈ A such that |f(x)| ≤ |g(x)| for every x ∈ X and g ∈ 𝔭. Let 𝔮 := 𝔭 ∩ 𝒮∗(X). Note that the 
semialgebraic functions (1 + g2)−1, f · (1 + g2)−1 and g · (1 + g2)−1 are bounded and

|f(x)| 
1 + g(x)2 ≤ |g(x)| 

1 + g(x)2 for every x ∈ X.

In addition g · (1 + g2)−1 ∈ 𝔮 because g ∈ 𝔭. As 𝔮 is a radical ideal of 𝒮∗(X) it is absolutely convex, by part 
(1). Thus h := f · (1 + g2)−1 ∈ 𝔮. Therefore f = (1 + g2) · h ∈ 𝔭.

(4) Let 𝔭1 and 𝔭2 be two prime ideals of A containing 𝔭. Let 𝔮i := 𝔭i ∩ 𝒮∗(X) for i = 1, 2 and let 
𝔮 := 𝔭∩ 𝒮∗(X). Both 𝔮1 and 𝔮2 are prime ideals of 𝒮∗(X) containing the prime ideal 𝔮 of 𝒮∗(X). Since the 
set of prime ideals of 𝒮∗(X) containing 𝔮 is totally ordered, see [7, 3.1.4] we can assume that 𝔮1 ⊂ 𝔮2, and 
so 𝔭1 = 𝔮e1 ⊂ 𝔮e2 = 𝔭2.

(5) It was proved in [12] that the maximal spectrum of a Gelfand ring is a Hausdorff space, whereas we 
recalled in 2.1 that Max(A) is a compact space. To prove that φ(X) is a dense subset of Max(A) let f ∈ A

be such that the basic open subset 𝒟A(f) is nonempty. Thus f ̸≡ 0 and it exists a point x ∈ X such that 
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f(x) ̸= 0, that is, 𝔪A;x ∈ 𝒟A(f), i.e., 𝒟A(f)∩φ(X) ̸= ∅. Notice that 𝔪A;x is a maximal ideal of A because 
it is the kernel of the surjective homomorphism A → R, f ↦→ f(x).

To finish we must show that φ is injective. Let x, y ∈ X with x ̸= y. The bounded semialgebraic function

f : X → R, z ↦→ ∥z − x∥2

1 + ∥z − x∥2

satisfies f(x) = 0 and f(y) ̸= 0. Thus f ∈ 𝔪A;x \𝔪A;y, so 𝔪A;x ̸= 𝔪A;y. □
As a consequence we show now that Max(A) is a model of the semialgebraic Stone-Čech compactification 

of X.

Theorem 3.6. Let X be a semialgebraic set and let A be an intermediate algebra between 𝒮∗(X) and 𝒮(X). 
The map ρA : Max(A) → β*

sX that maps each maximal ideal 𝔫 of A to the unique maximal ideal of 𝒮∗(X)
containing the prime ideal 𝔫 ∩ 𝒮∗(X) of 𝒮∗(X) is a homeomorphism.

Proof. The map ρA is the composition of the inmersions

Max(A) ↪→ Spec(A) and Spec(A) ↪→ Spec(𝒮∗(X)), 𝔭 ↦→ 𝔭 ∩ 𝒮∗(X)

with the retraction ρ∗X : Spec(𝒮∗(X)) → β*
sX that maps each prime ideal of 𝒮∗(X) to the unique maximal 

ideal of 𝒮∗(X) containing it (recall that 𝒮∗(X) is a Gelfand ring). Indeed it follows from [12, 1.2] that ρ∗X is 
continuous and so ρA is continuous too. Consequently, since Max(A) and β*

sX are compact and Hausdorff, 
ρA is a closed map, and this implies that it is surjective because its image is a closed subset of β*

sX that 
contains the dense subspace {𝔪∗

x = ρA(𝔪A;x) : x ∈ X}, see 2.3 (4). Thus all we need to prove is that ρA is 
injective. Let 𝔪1 and 𝔪2 be two distinct maximal ideals of A. Then 𝔪1 + 𝔪2 = A and there exist f1 ∈ 𝔪1
and f2 ∈ 𝔪2 such that f1 + f2 = 2. In particular 𝒵X(f2

1 + f2
2 ) = 𝒵X(f1) ∩ 𝒵X(f2) = ∅. Let us see that

|fi(x)| 
f1(x)2 + f2(x)2 ≤ 1 for i = 1, 2 and for every point x ∈ X. (3.1)

It is enough to prove it for i = 1. If |f1(x)| ≤ 1 then f1(x) ≤ 1 and f2(x) ≥ 1 ≥ |f1(x)|. If |f1(x)| ≥ 1
then f1(x)2 + f2(x)2 ≥ f1(x)2 ≥ |f1(x)|. In both cases the inequality (3.1) holds for i = 1. Consequently, 
gi := |fi| · (f2

1 + f2
2 )−1 ∈ 𝒮∗(X) ⊂ A. In addition, |fi|2 = f2

i ∈ 𝔪i, so |fi| ∈ 𝔪i. Hence the function

Fi = f2
i

f2
1 + f2

2
= |fi| · gi ∈ 𝔪i.

Thus F1 and F2 are bounded semialgebraic functions and Fi ∈ 𝔪i for i = 1, 2. Consequently Fi ∈ ρA(𝔪i), 
which implies that ρA(𝔪1) ̸= ρA(𝔪2) since F1 + F2 = 1. □
3.3. Fixed and free ideals

Definition 3.7. An ideal 𝔞 of A is said to be fixed if all functions in 𝔞 vanish simultaneously at some point 
of X. Otherwise, the ideal 𝔞 is free.

Our first goal is this subsection is to characterize the fixed maximal ideals of A. First we need some 
preliminaries.

Proposition 3.8. Let f ∈ A whose zeroset 𝒵X(f) is not compact. Then f lies in some proper free ideal 𝔞 of 
A.
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Proof. Since 𝒵X(f) is not compact, there exists a family {Wi}i∈I of open semialgebraic subsets of Rn which 
covers 𝒵X(f) and admitting no finite subcovering. For each index i ∈ I there exists gi ∈ 𝒮∗(Rn) such that 
𝒵Rn(gi) = Rn \Wi. Let us show that the ideal 𝔞 of A generated by f and the restrictions fi := gi|X ∈ A is 
a proper free ideal. In case 𝔞 = A we have an equality

1 = gf +
∑︂
j∈J 

fjhj (3.2)

for some finite subset J of I and some functions g, hj ∈ A. Since the finite family {Wj}j∈J does not cover 
𝒵X(f) there exists a point x ∈ 𝒵X(f) \⋃︁j∈J Wj , which contradicts the equality (3.2). Thus, 𝔞 is a proper 
ideal of A, and we check now that it is free. Since 𝒵X(f) ⊂ ⋃︁

i∈I Wi we have⋂︂
h∈𝔞

𝒵X(h) = 𝒵X(f) ∩
⋂︂
i∈I

𝒵X(fi) = 𝒵X(f) ∩
⋂︂
i∈I

(Rn \Wi) = ∅,

and so 𝔞 is a proper free ideal of A. □
Remarks 3.9. (1) Let X ⊂ Rn be a semialgebraic set and let A be an intermediate R-algebra between 𝒮∗(X)
and 𝒮(X). The semialgebraic homeomorphism

φ : Bn(0, 1) := {x ∈ Rn : ∥x∥ < 1} → Rn, x ↦→ x √︁
1 − ∥x∥2

,

induces an R-algebras isomorphism ˜︁φ : 𝒮(X) → 𝒮(Y ), f ↦→ f ◦ φ, where Y := φ−1(X) is bounded, that 
maps 𝒮∗(X) onto 𝒮∗(Y ). Thus, B := ˜︁φ(A) is an intermediate R-algebra between 𝒮∗(Y ) and 𝒮(Y ). Hence, 
substituting X by Y and A by B if necessary, we may always assume that X is bounded.

(2) If X is not compact then A has free maximal ideals. Indeed, we may assume, by part (1), that X
is bounded, and so there exists a point p ∈ ClRn(X) \ X. Consider the bounded semialgebraic function 
f : X → R, x → ∥x− p∥ whose zeroset is empty, so the ideal generated by f in A is free.

(3) The fixed maximal ideals of A are those of the form 𝔪A;x for some x ∈ X. We noticed in the proof of 
Corollary 3.5 (5) that 𝔪A;x is a maximal ideal. In addition it is fixed because x ∈ 𝒵X(f) for every f ∈ 𝔪A;x. 
Conversely, let 𝔫 ∈ Max(A) be a fixed ideal and let x ∈ X be a point such that all functions in 𝔫 vanish at 
x. This means that 𝔫 ⊂ 𝔪A;x and, since 𝔫 is maximal, the equality 𝔫 = 𝔪A;x holds true.

(4) Let 𝔫 be a maximal ideal of 𝒮∗(X). The map R → 𝒮∗(X)/𝔫; r ↦→ r + 𝔫, is an isomorphism. It is 
injective because R is a field, and it is surjective because R does not admit proper archimedean extensions 
and 𝒮∗(X)/𝔫 is an archimedean extension of R since given f ∈ 𝒮∗(X) there exists r ∈ R such that |f(x)| < r

for every x ∈ X. Thus, since R admits a unique automorphism, there is no ambiguity to refer f + 𝔫 ∈ R as 
a real number for every f ∈ 𝒮∗(X). In particular, for each x ∈ X the isomorphism 𝒮∗(X)/𝔪∗

x
∼ = R identifies 

f + 𝔪∗
x with f(x).

(5) It was proved in [10, Corollary 3.10] that the equality 𝒮∗(X) = 𝒮(X) holds if and only if X is 
compact. In this case there is no proper intermediate algebras between 𝒮∗(X) and 𝒮(X).

(6) In the statement of Theorem 3.10 and the proof of Proposition 3.13 we will use [10, 3.6] that says that 
for every maximal ideal 𝔪∗ of 𝒮∗(X) there exists a unique maximal ideal 𝔪 of 𝒮(X) such that 𝔪∩𝒮∗(X) ⊂
𝔪∗.

Theorem 3.10. Let 𝔪A be a maximal ideal of A, let 𝔭 := 𝔪A∩𝒮∗(X) and let 𝔪∗ be the unique maximal ideal 
of 𝒮∗(X) containing 𝔭. Let 𝔪 be the unique maximal ideal of 𝒮(X) such that 𝔮 := 𝔪 ∩ 𝒮∗(X) ⊂ 𝔪∗. Then, 
the following assertions are equivalent:
(1) ht(𝔪A) = ht(𝔪∗) = ht(𝔪).
(2) 𝔭 = 𝔪∗ = 𝔮.
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(3) 𝔪 is a fixed ideal of 𝒮(X) and 𝔪A is a fixed ideal of A.
(4) 𝔪∗ is a fixed ideal of 𝒮∗(X).

Proof. The equivalence (1) ⇐⇒ (2) follows from Proposition 3.1 because A = 𝒮∗(X)DA
is the localization 

of 𝒮∗(X) at DA and 𝒮(X) is the localization of 𝒮∗(X) at the multiplicatively closed set 𝒲(X) := {f ∈
𝒮∗(X) : 𝒵X(f) = ∅}.

(2) =⇒ (3) Since 𝔮 = 𝔪∗ it follows from [10, 3.7] that 𝔪 is a fixed ideal of 𝒮(X). Let x ∈ X such that all 
functions in 𝔪 vanish at x. As 𝔭 = 𝔮 ⊂ 𝔪, all functions in 𝔭 vanish at x. Let f ∈ 𝔪A. Then f · (1+f2)−1 ∈ 𝔭

vanish at x, and so f(x) = 0. Thus, 𝔪A is a fixed ideal of A.
(3) =⇒ (4) Let x ∈ X such that 𝔪 := 𝔪A;x. All functions in 𝔭 vanish at x, so 𝔭 ⊂ 𝔪∗

x. Since 𝒮∗(X) is a 
Gelfand ring, 𝔪∗ = 𝔪∗

x is a fixed ideal.
(4) =⇒ (2) The equality 𝔮 = 𝔪∗ follows from [10, 3.7]. To show that 𝔭 = 𝔪∗ is equivalent to prove 

that 𝔭 is a maximal ideal. To that end note that since 𝔪∗ is a fixed ideal there exists a point x ∈ X

such that each function in 𝔪∗ vanishes at x. Let f ∈ 𝔪A. Since (1 + f2)−1 ∈ 𝒮∗(X) ⊂ A the function 
g := f · (1 + f2)−1 ∈ 𝔭 ⊂ 𝔪∗. Thus g(x) = 0 and so f(x) = 0. This shows that 𝔪A = 𝔪A;x, which implies 
𝔭 = 𝔪A ∩ 𝒮∗(X) = 𝔪A;x ∩ 𝒮∗(X) = 𝔪∗. Hence 𝔭 is a maximal ideal, as wanted. □
Proposition and Definition 3.11. (1) A maximal ideal 𝔪 of A is said to be archimedean if the natural 
inmersion R ↪→ A/𝔪 is surjective.

(2) All maximal ideals of 𝒮∗(X) are archimedean.
(3) The ideal 𝔪 is archimedean if and only if 𝔭 := 𝔪 ∩ 𝒮∗(X) is a maximal ideal.

Proof. (2) This is part (4) in Remark 3.9.
(3) Notice that R ⊂ 𝒮∗(X)/𝔭 ⊂ A/𝔪. Thus, if 𝔪 is archimedean we have R ⊂ 𝒮∗(X)/𝔭 ⊂ R, so 

𝒮∗(X)/𝔭 = R is a field. Hence 𝔭 is a maximal ideal.
Conversely, suppose that 𝔭 is a maximal ideal. Let DA := 𝒰(A) ∩ 𝒮∗(X). The quotient A/𝔪 is the 

ring of fractions of 𝒮∗(X)/𝔭 with respect to the image DA(𝔭) := π(DA) by the projection π : 𝒮∗(X) →
𝒮∗(X)/𝔭. As the ideal 𝔭 is maximal the quotient 𝒮∗(X)/𝔭 is a field. Hence it coincides with its localization 
(𝒮∗(X)/𝔭)DA(𝔭) = A/𝔪. Therefore, using part (4) in Remark 3.9 again, A/𝔪 = 𝒮∗(X)/𝔭 = R. □

We are in position to present a Łojasiewicz’s inequality for some intermediate R-algebras between 𝒮∗(X)
and 𝒮(X). First we introduce new notations.

Notations 3.12. (1) Let f ∈ A. We denote 𝒵Max(A)(f) := {𝔪 ∈ Max(A) : f ∈ 𝔪}.
(2) In the particular case that A := 𝒮∗(X) we denote 𝒵β*

s X
(f) := {𝔪∗ ∈ β*

sX : f ∈ 𝔪∗}.

Proposition 3.13 (Łojasiewicz’s inequality). Let A be an intermediate algebra whose maximal ideals are 
archimedean. Let f, g ∈ A be such that 𝒵Max(A)(f) ⊂ 𝒵Max(A)(g). Then there exists h ∈ A and a positive 
integer ℓ such that gℓ = fh.

Proof. Consider the bounded semialgebraic functions

f1 := f

(1 + f2) · (1 + g2) and g1 := g

(1 + f2) · (1 + g2) .

Let us prove that 𝒵β*
s X

(f1) ⊂ 𝒵β*
s X

(g1). Let 𝔪∗ ∈ 𝒵β*
s X

(f1). By [10, Thm. 3.5] there exists a unique 
maximal ideal 𝔪 of 𝒮(X) such that 𝔪 ∩ 𝒮∗(X) ⊂ 𝔪∗. As 𝔪 ∩ A is a prime ideal of A there exists, by 
Corollary 3.5 (4) a unique maximal ideal 𝔪A of A such that 𝔪∩A ⊂ 𝔪A. By hypothesis 𝔪A is an archimedean 
maximal ideal and, by 3.11, 𝔪A ∩𝒮∗(X) is a maximal ideal. As 𝔭 := 𝔪∩𝒮∗(X) ⊂ 𝔪∩A ⊂ 𝔪A we have 𝔭 ⊂
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𝔪A ∩𝒮∗(X). Thus, 𝔪∗ and 𝔪A∩𝒮∗(X) are maximal ideals of the Gelfand ring 𝒮∗(X) containing the prime 
ideal 𝔭 of 𝒮∗(X). Consequently, 𝔪A ∩ 𝒮∗(X) = 𝔪∗ and so 𝔪A ∩ 𝒮∗(X) ∈ 𝒵β*

s X
(f1). In particular f1 ∈ 𝔪A

and so f ∈ 𝔪A. Hence g ∈ 𝔪A. Then g1 ∈ 𝔪A ∩ 𝒮∗(X) = 𝔪∗, that is, 𝔪∗ ∈ 𝒵β*
s X

(g1). Now, by [8, 3.10], 
there exist h1 ∈ 𝒮∗(X) ⊂ A and a positive integer ℓ such that gℓ1 = f1h1. denote F := (1+f2) · (1+g2) ∈ A. 
Then

gℓ

F ℓ
=

(︃
f

F

)︃
· h1, and so, gℓ = f · (F ℓ−1 · h1).

Therefore h := F ℓ−1 · h1 does the job. □
Our next goal is to obtain a Nullstellensatz for functions in the intermediate algebra A. First we need to 

introduce some terminology and basic results.

Definitions and Proposition 3.14. (1) The family of all sets 𝒵Max(A)(f) for f ∈ A is denoted by

𝒵Max(A) := {𝒵Max(A)(f) : f ∈ A}.

A subset ℱ of 𝒫(𝒵Max(A)) is a zAfilter on X if it satisfies the following properties:
(1.1) ∅ ̸∈ ℱ.
(1.2) Given Z1, Z2 ∈ ℱ then Z1 ∩ Z2 ∈ ℱ.
(1.3) Given Z ∈ ℱ and Z ′ ∈ 𝒵Max(A) such that Z ⊂ Z ′ then Z ′ ∈ ℱ.
(2) Let ℱ be a zAfilter on X. We denote

𝒥 (ℱ) := {f ∈ A : 𝒵Max(A)(f) ∈ ℱ},

which is a proper ideal of A satisfying 𝒵Max(A)[𝒥 (ℱ)] = ℱ. Indeed, by condition (1.1) the set 𝒥 (ℱ) contains 
no unit of A. Let f, g ∈ 𝒥 (ℱ). Then

𝒵Max(A)(f + g) ⊃ 𝒵Max(A)(f) ∩ 𝒵Max(A)(g) ∈ ℱ.

Hence, 𝒵Max(A)(f + g) ∈ ℱ, and therefore f + g ∈ 𝒥 (ℱ). Now, let f ∈ 𝒥 (ℱ) and g ∈ A. Then

𝒵Max(A)(fg) = 𝒵Max(A)(f) ∪ 𝒵Max(A)(g) ⊃ 𝒵Max(A)(f) ∈ ℱ.

Thus, 𝒵Max(A)(fg) ∈ ℱ, that is, fg ∈ 𝒥 (ℱ). Finally, if Z ∈ 𝒵Max(A)[𝒥 (ℱ)] there exists f ∈ 𝒥 (ℱ) such that 
Z = 𝒵Max(A)(f), hence, Z ∈ ℱ. Consequently, 𝒵Max(A)[𝒥 (ℱ)] = ℱ.
(3) An ideal 𝔞 of A is said to be a zA-ideal if 𝒥 (𝒵Max(A)[𝔞]) = 𝔞. Note that each zA-ideal is radical because 
𝒵Max(A)(f) = 𝒵Max(A)(fk) for all f ∈ A and all k ≥ 1.
(4) Notice that the equality 𝒵Max(A)[𝒥 (ℱ)] = ℱ implies that 𝒥 (ℱ) is a zA-ideal whenever ℱ is a zAfilter.

Example 3.15. Let 𝔞 be a proper ideal of A. Let us check that: The family

𝒵Max(A)[𝔞] := {𝒵Max(A)(f) : f ∈ 𝔞}

is a zAfilter on X. Indeed, if ∅ ∈ 𝒵Max(A)[𝔞] there exists f ∈ 𝔞 such that 𝒵Max(A)(f) = ∅, that is, f ̸∈ 𝔪

for each maximal ideal 𝔪 of A. Hence, f is a unit in A, a contradiction. In addition, let f, g ∈ 𝔞. Then,

𝒵Max(A)(f) ∩ 𝒵Max(A)(g) = 𝒵Max(A)(f2 + g2) ∈ 𝒵Max(A)[𝔞].
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The inclusion

𝒵Max(A)(f) ∩ 𝒵Max(A)(g) = 𝒵Max(A)(f2 + g2)

is evident. Conversely, let 𝔪 ∈ 𝒵Max(A)(f2 + g2). Since 0 ≤ f2(x) ≤ f2(x)+ g2(x) for every x ∈ X it follows 
from Corollary 3.5 (3) that f2 ∈ 𝔪, and so f ∈ 𝔪. Analogously, g ∈ 𝔪. Thus 𝔪 ∈ 𝒵Max(A)(f)∩𝒵Max(A)(g). 
Finally, let 𝒵Max(A)(g) ⊂ 𝒵Max(A)(f) and g ∈ 𝔞. Then 𝒵Max(A)(f) = 𝒵Max(A)(fg) ∈ 𝒵Max(A)[𝔞], because 
fg ∈ 𝔞.

We are ready to apply Łojasiewicz inequality, 3.13, to prove the following Nullstellensatz for intermediate 
R-algebras between 𝒮∗(X) and 𝒮(X).

Corollary 3.16 (Nullstellensatz). Let A be an intermediate algebra whose maximal ideals are archimedean. 
Let 𝔞 be an ideal of A. Then,
(1) 𝔞 is a zA-ideal if and only if 𝔞 is radical.
(2) 𝒥 (𝒵Max(A)[𝔞]) =

√
𝔞.

(3) In particular, if 𝔭 is a prime ideal, then 𝔭 is a zA-ideal.

Proof. (1) Let 𝔞 be a radical ideal of A and let g ∈ A such that 𝒵Max(A)(g) ∈ 𝒵Max(A)[𝔞]. Then, there 
exists f ∈ 𝔞 such that 𝒵Max(A)(f) = 𝒵Max(A)(g). By Proposition 3.13 there exist ℓ ≥ 1 and h ∈ A such 
that gℓ = fh ∈ 𝔞. Since 𝔞 is a radical ideal, g ∈ 𝔞. Thus, radical ideals are zA-ideals, and the converse was 
noticed above in 3.14 (3).

(2) For each g ∈ 𝒥 (𝒵Max(A)[𝔞]) there exists f ∈ 𝔞 such that 𝒵Max(A)(g) = 𝒵Max(A)(f) and so, by 
Proposition 3.13, gℓ = fh ∈ 𝔞 for some integer ℓ ≥ 1 and some function h ∈ A. Hence, g ∈ √

𝔞. Since the 
argument is reversible we deduce 𝒥 (𝒵Max(A)[𝔞]) =

√
𝔞.

(3) Since prime ideals are radical we conclude that all prime ideals of A are zA-ideals. □
4. Intermediate algebras generated by proper ideals

As in the precedent sections, X ⊂ Rn is a semialgebraic set and A is an intermediate R-algebra A between 
𝒮∗(X) and 𝒮(X).

Definition 4.1. Let Λ ⊂ 𝒮(X) be a family of semialgebraic functions on X. Let 𝒮∗(X)[xΛ] be the polynomial 
ring with coefficients in 𝒮∗(X) in the variables xf where f ∈ Λ. Let

ev : 𝒮∗(X)[xΛ] → 𝒮(X)

be the homomorphism that fixes each function in 𝒮∗(X) and maps each variable xf to f . We denote its 
image 𝒮∗(X)[Λ] and we call it the intermediate R-algebra generated by Λ over 𝒮∗(X). Clearly it is the 
smallest subring of 𝒮(X) containing 𝒮∗(X)∪Λ. In case Λ is finite we say that 𝒮∗(X)[Λ] is finitely generated.

In particular, if Λ := {f} is a singleton we write 𝒮∗(X)[Λ] := 𝒮∗(X)[f ], and we say that 𝒮∗(X)[f ] is a 
simple extension of 𝒮∗(X).

Proposition 4.2 (Convexity II). (1) The R-algebra A is absolutely convex, that is, whenever f, g ∈ 𝒮(X)
satisfy |f(x)| ≤ |g(x)| for every x ∈ X, and g ∈ A, then f ∈ A.

(2) Let f ∈ 𝒮(X). Then, f ∈ A if and only if |f | ∈ A.
(3) The intermediate R-algebras between 𝒮∗(X) and 𝒮(X) are, exactly, the absolutely convex subrings of 

𝒮(X) containing the constant functions.
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Proof. (1) The product h := f · (1 + g2)−1 ∈ 𝒮∗(X) because |f(x)| ≤ |g(x)| for each point x ∈ X. Thus 
h ∈ A and so f = h · (1 + g2) ∈ A too.

(2) This is the immediate consequence of part (1).
(3) Let A be an absolutely convex subring of 𝒮(X) containing the constant functions. Let f ∈ 𝒮∗(X)

and let r ∈ R be such that |f(x)| ≤ r for every x ∈ X. As A is absolutely convex we deduce that f ∈ A. □
Proposition 4.3. (1) Let A be a simple extension of 𝒮∗(X). Then, for every real number r > 1 there exists 
f ∈ 𝒮(X) such that f(x) ≥ r for every point x ∈ X and A = 𝒮∗(X)[f ].

(2) Let f ∈ 𝒮(X) be such that there exists a real number r > 1 satisfying f(x) ≥ r for each x ∈ X. Then,

𝒮∗(X)[f ] = {g ∈ 𝒮(X) : there exists k ∈ Z+ such that |g(x)| ≤ f(x)k for each point x ∈ X}.

(3) Let g1, . . . , gn ∈ 𝒮(X). Then,

𝒮∗(X)[g1, . . . , gn] = 𝒮∗(X)[|g1| + · · · + |gn|].

In particular, every finitely generated intermediate R-algebra between 𝒮∗(X) and 𝒮(X) is simple.

Proof. (1) Let g ∈ A such that A = 𝒮∗(X)[g]. Since g ∈ A it follows from Proposition 4.2 that |g| ∈ A. 
As the constant function r ∈ 𝒮∗(X) ⊂ A, the sum f := |g| + r ∈ A. Consequently 𝒮∗(X)[f ] ⊂ A and 
f(x) ≥ r for every point x ∈ X. To prove the converse inclusion note that since 𝒮∗(X)[f ] is an intermediate 
R-algebra between 𝒮∗(X) and 𝒮(X) it follows from Proposition 4.2 that 𝒮∗(X)[f ] is absolutely convex. 
In addition, |g(x)| < f(x) = |f(x)| for each x ∈ X and f ∈ 𝒮∗(X)[f ]. Therefore g ∈ 𝒮∗(X)[f ]. Thus 
A = 𝒮∗(X)[g] ⊂ 𝒮∗(X)[f ] and the equality A = 𝒮∗(X)[f ] holds true.

(2) Since 𝒮∗(X)[f ] is an absolutely convex intermediate R-algebra between 𝒮∗(X) and 𝒮(X) that contains 
fk for every k ∈ Z+, the inclusion ⊃ follows. Conversely, let g ∈ 𝒮∗(X)[f ]. Then there exists a nonnegative 
integer n and g0, . . . , gn ∈ 𝒮∗(X) such that

g(x) =
n ∑︂

j=0 
gj(x)f(x)j for every x ∈ X.

Let c > 1 be a real number such that |gj(x)| < c for every x ∈ X and j = 0, . . . , n. Note that limm→∞{rm} =
+∞, so there exists m0 ∈ N such that n + 1, c < rm0 ≤ f(x)m0 for every x ∈ X. Thus, the integer 
k := 2m0 + n satisfies that for every x ∈ X,

|g(x)| ≤
n ∑︂

j=0 
|gj(x)| · f(x)j ≤ f(x)m0 ·

n ∑︂
j=0 

f(x)n = (n + 1) · f(x)m0 · f(x)n ≤ f(x)2m0+n = f(x)k.

(3) Define f := |g1| + · · · + |gn| and A := 𝒮∗(X)[g1, . . . , gn]. Note that for each point x ∈ X and 
each j = 1, . . . , n we have |gj(x)| ≤ |g1(x)| + · · · + |gn(x)| = |f(x)|. Thus, by Proposition 4.2 (1), each 
gj ∈ 𝒮∗(X)[f ]. Hence, A ⊂ 𝒮∗(X)[f ]. For the converse inclusion note that, by Proposition 4.2 (2), each 
|gj | ∈ A, so f ∈ A and 𝒮∗(X)[f ] ⊂ A. □

In 3.14 we studied filters of zerosets in the space of maximal ideals of an intermediate R-algebra between 
𝒮∗(X) and 𝒮(X). Now we need similar results about filters of closed semialgebraic sets.

4.1. Filters of closed semialgebraic subsets

Let X ⊂ Rn be a semialgebraic set and let ∥ · ∥ be the euclidean norm of Rn. Let Z be a closed 
semialgebraic subset of X. It was proved in [2, 2.2.8] that the function



14 E. Baro et al. / Topology and its Applications 375 (2025) 109547 

f : X → R, x ↦→ dist(x, Z) = inf {∥x− z∥ : z ∈ Z}

is semialgebraic and, since Z is closed in X, we have Z = 𝒵X(f). Thus every closed semialgebraic subset of 
X is the zeroset of a continuous semialgebraic function defined on X.
(3) Let 𝒵X be the collection of all closed semialgebraic subsets of X. Let 𝒫(𝒵X) be the set of all subsets of 
𝒵X . A subset ℱ of 𝒫(𝒵X) is a semialgebraic filter on X if it satisfies the following properties:
(3.1) ∅ ̸∈ ℱ.
(3.2) Given Z1, Z2 ∈ ℱ then Z1 ∩ Z2 ∈ ℱ.
(3.3) Given Z1 ∈ ℱ and Z2 ∈ 𝒵X such that Z1 ⊂ Z2 then Z2 ∈ ℱ.
(4) Let ℱ be a semialgebraic filter on X. We define the closure of ℱ in β*

sX as the set

Clβ*
s X

(ℱ) :=
⋂︂
Z∈ℱ

Clβ*
s X

(Z).

(5) Let 𝔞 be a proper ideal of 𝒮(X). Then:
(5.1) The family 𝒵X [𝔞] := {𝒵X(f) : f ∈ 𝔞} is a semialgebraic filter on X.

The units of 𝒮(X) are those semialgebraic functions f with empty zeroset since in such a case X →
R, x ↦→ 1/f(x) is a well defined semialgebraic function. Thus ∅ ̸∈ 𝒵X [𝔞] because 𝔞 is a proper ideal of 
𝒮(X). In addition, if f, g ∈ 𝔞 satisfy Z1 := 𝒵X(f) and Z2 := 𝒵X(g) then f2 + g2 ∈ 𝔞 and Z1 ∩ Z2 =
𝒵X(f2 + g2) ∈ 𝒵X(𝔞). Finally, let Z1 ∈ 𝒵X(𝔞) and Z2 ∈ 𝒵X be such that Z1 ⊂ Z2. By (2) there exists 
f ∈ 𝒮(X) such that Z2 = 𝒵X(f). Since Z1 ∈ 𝒵X(𝔞) there exists g ∈ 𝔞 such that 𝒵1 = 𝒵X(g). Thus, 
h = fg ∈ 𝔞 and Z2 = 𝒵X(h) ∈ 𝒵X [𝔞].
(5.2) If ℱ is a semialgebraic filter on X, then 𝒥 (ℱ) := {f ∈ 𝒮(X) : 𝒵X(f) ∈ ℱ} is a proper ideal of 𝒮(X)
satisfying 𝒵X [𝒥 (ℱ)] = ℱ.

Indeed, given f, g ∈ 𝒥 (ℱ) their zero sets Z1 := 𝒵X(f) and Z2 := 𝒵X(g) belong to ℱ. Thus

𝒵X(f2 + g2) = 𝒵X(f) ∩ 𝒵X(g) = Z1 ∩ Z2 ∈ ℱ

and Z1 ∩ Z2 ⊂ 𝒵X(f − g), so 𝒵X(f − g) ∈ ℱ, that is, f − g ∈ 𝒥 (ℱ). Furthermore, given f ∈ 𝒮(X) and 
g ∈ 𝒥 (ℱ) we have 𝒵X(g) ∈ ℱ and 𝒵X(g) ⊂ 𝒵X(fg). Thus 𝒵X(fg) ∈ ℱ and so fg ∈ 𝒥 (ℱ). This proves that 
𝒥 (ℱ) is an ideal of 𝒮(X), and it is proper because 𝒵X(1) = ∅ / ∈ ℱ.

Let us check the equality 𝒵X [𝒥 (ℱ)] = ℱ. Given Z ∈ ℱ there exists, by (2), f ∈ 𝒮(X) such that 
Z = 𝒵X(f). Hence f ∈ 𝒥 (ℱ) and Z = 𝒵X(f) ∈ 𝒵X [𝒥 (ℱ)]. Conversely, let Z ∈ 𝒵X [𝒥 (ℱ)]. Then there exists 
f ∈ 𝒥 (ℱ) such that Z = 𝒵X(f) ∈ ℱ.
(6) An ideal 𝔞 of 𝒮(X) is a z-ideal if 𝒥 (𝒵X [𝔞]) = 𝔞, that is, whenever there exist f ∈ 𝔞 and g ∈ 𝒮(X)
satisfying 𝒵X(f) ⊂ 𝒵X(g), we have g ∈ 𝔞.

Remark 4.4. Notice that the equality 𝒵X [𝒥 (ℱ)] = ℱ implies that 𝒥 (ℱ) is a z-ideal whenever ℱ is a semial
gebraic filter, because given f ∈ 𝒥 (ℱ) and g ∈ 𝒮(X) satisfying 𝒵X(f) ⊂ 𝒵X(g) it follows that 𝒵X(g) ∈ ℱ

since ℱ is a semialgebraic filter and 𝒵X(f) ∈ ℱ. Hence g ∈ 𝒥 (ℱ). Thus, every semialgebraic filter ℱ on X
has the form ℱ = 𝒵X [𝔞] for some z-ideal 𝔞 of 𝒮(X).

4.2. Intermediate R-algebras generated by proper ideals

Definition 4.5. The intermediate R-algebra between 𝒮∗(X) and 𝒮(X) generated by the proper ideal 𝔞 of 
𝒮(X) is

A := 𝒮∗(X) + 𝔞 := {f + g : f ∈ 𝒮∗(X), g ∈ 𝔞}.
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We shall see in Proposition 4.8 that in the definition above we may assume that 𝔞 is a z-ideal. First we 
need two auxiliary lemmas.

Lemma 4.6. Let 𝔞 be an ideal of 𝒮(X). The z-closure of 𝔞 is the set

𝔞z := {f ∈ 𝒮(X) : there exists g ∈ 𝔞 such that 𝒵X(g) = 𝒵X(f)},

which is the smallest z-ideal of 𝒮(X) containing 𝔞.

Proof. Let us see that 𝔞z is an ideal of 𝒮(X). First we prove that f := f1 − f2 ∈ 𝔞z for every f1, f2 ∈ 𝔞z. 
Let g1, g2 ∈ 𝔞 such that 𝒵X(gi) = 𝒵X(fi) for i = 1, 2. Then g := g2

1 + g2
2 ∈ 𝔞, so fg ∈ 𝔞 and

𝒵X(fg) = 𝒵X(f) ∪ 𝒵X(g) = 𝒵X(f) ∪ (𝒵X(g1) ∩ 𝒵X(g2)) = 𝒵X(f) ∪ (𝒵X(f1) ∩ 𝒵X(f2))

⊂ 𝒵X(f) ∪ 𝒵X(f1 − f2) = 𝒵X(f) ⊂ 𝒵X(fg),

so 𝒵X(f) = 𝒵X(fg), which implies that f ∈ 𝔞z. In addition, let ℓ ∈ 𝔞z and h ∈ 𝒮(X). There exists g ∈ 𝔞

with 𝒵X(g) = 𝒵X(ℓ), so hg ∈ 𝔞 and

𝒵X(hg) = 𝒵X(h) ∪ 𝒵X(g) = 𝒵X(h) ∪ 𝒵X(ℓ) = 𝒵X(hℓ).

Thus hf ∈ 𝔞z. To show that 𝔞z is a z-ideal note that given f, g ∈ 𝒮(X) with f ∈ 𝔞z and 𝒵X(f) ⊂ 𝒵X(g)
there exists h ∈ 𝔞 such that 𝒵X(f) = 𝒵X(h). Hence, hg ∈ 𝔞 and

𝒵X(hg) = 𝒵X(h) ∪ 𝒵X(g) = 𝒵X(f) ∪ 𝒵X(g) = 𝒵X(g) ⊂ 𝒵X(hg),

that is, 𝒵X(g) = 𝒵X(hg) and hg ∈ 𝔞. Therefore, g ∈ 𝔞z.
Finally, the inclusion 𝔞 ⊂ 𝔞z is evident and, if 𝔟 is a z-ideal containing 𝔞 it also contains 𝔞z. In fact, for 

every f ∈ 𝔞z there exists g ∈ 𝔞 such that 𝒵X(f) = 𝒵X(g). Since 𝔟 is a z-ideal containing g it follows that 
f ∈ 𝔟. □
Lemma 4.7. Let f, g ∈ 𝒮(X) with 𝒵X(g) ⊂ IntX(𝒵X(f)). Then, there exists h ∈ 𝒮(X) with f = gh and 
𝒵X(f) ⊂ 𝒵X(h).

Proof. The open semialgebraic subsets U := X\𝒵X(g) and V := IntX(𝒵X(f)) of X cover X and f |U∩V ≡ 0. 
Thus,

h : X → R, x ↦→
{︄

f(x)
g(x) if x ∈ U ,

0 if x ∈ V ,

is a semialgebraic function satisfying f = gh and 𝒵X(f) ⊂ 𝒵X(h). □
Proposition 4.8. Let 𝔞 be a proper ideal of 𝒮(X). Then

𝒮∗(X) + 𝔞 = 𝒮∗(X) + 𝔞z.

Hence the intermediate R-algebra generated by an ideal is also generated by a z-ideal.

Proof. The inclusion ⊂ follows because 𝔞 ⊂ 𝔞z. Conversely, let f := g + h where g ∈ 𝒮∗(X) and h ∈ 𝔞z. 
Consider the disjoint closed semialgebraic subsets of X
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C1 := {x ∈ X : |h(x)| ≤ 1/2} and C2 := {x ∈ X : |h(x)| ≥ 1}.

By [10, Cor. 2.4] there exists f ∈ 𝒮∗(X) such that f |C1 ≡ 0 and f |C2 ≡ 1. In addition, after substituting f
by the quotient

2|f | 
1 + f2

we may assume that 0 ≤ f(x) ≤ 1 for every point x ∈ X. Define h1 := f · h and let us show that the 
semialgebraic function h− h1 is bounded. Pick a point x ∈ X. If |h(x)| ≥ 1 then x ∈ C2 and so f(x) = 1. 
Thus h1(x) = h(x) and (h− h1)(x) = 0. On the other hand, if |h(x)| ≤ 1 then

|(h− h1)(x)| = |h(x)| · |1 − f(x)| ≤ 1

because 0 ≤ f(x) ≤ 1. Hence, h − h1 ∈ 𝒮∗(X), as wanted. In addition, as h ∈ 𝔞z there exists ℓ ∈ 𝔞 such 
that 𝒵X(h) = 𝒵X(ℓ). Consider the open semialgebraic subset

U := {x ∈ X : |h(x)| < 1/2}.

Then,

𝒵X(ℓ) = 𝒵X(h) ⊂ U ⊂ C1 ⊂ 𝒵X(f) ⊂ 𝒵X(h1),

which implies 𝒵X(ℓ) ⊂ IntX(𝒵X(h1)). By Lemma 4.7 there exists h2 ∈ 𝒮(X) such that h1 = h2 · ℓ. Finally,

f = (f − h1) + h2 · ℓ = (g + h− h1) + h2 · ℓ ∈ 𝒮∗(X) + 𝔞

because both g and h− h1 are bounded and h2 · ℓ ∈ 𝔞. □
Definition 4.9. Let ℱ be a semialgebraic zfilter on the semialgebraic set X.
(1) Given a semialgebraic subset Y ⊂ X we define

𝒮∗(X | Y ) := {f ∈ 𝒮(X) such that f |Y is bounded}.

(2) We denote

𝒮∗(X | ℱ) :=
⋃︂
Z∈ℱ

𝒮(X | Z).

Proposition 4.10. Let 𝔞 be a proper ideal of 𝒮(X). Then 𝒮∗(X) + 𝔞 = 𝒮∗(X | 𝒵X [𝔞]).

Proof. Let f ∈ 𝒮∗(X) + 𝔞. Then there exist g ∈ 𝒮∗(X) and h ∈ 𝔞 such that f = g + h. Thus f ≡ g on 
𝒵X(h), and so f is bounded on 𝒵X(h) ∈ 𝒵X [𝔞], i.e. f ∈ 𝒮∗(X | 𝒵X [𝔞]).

Conversely, let f ∈ 𝒮(X) that is bounded on the set 𝒵X(h) for some function h ∈ 𝔞. Thus f |𝒵X(h) :
𝒵X(h) → R is a bounded semialgebraic function on the closed semialgebraic subset 𝒵X(h) of X. By 
the semialgebraic version of the Tietze–Urysohn Lemma due to Delfs and Knebusch, see [5], there exists 
f1 ∈ 𝒮∗(X) such that f1|𝒵X(h) = f |𝒵X(h). Consequently, 𝒵X(h) ⊂ 𝒵X(f − f1). Hence p := h · (f − f1) ∈ 𝔞

and 𝒵X(f − f1) = 𝒵X(p), which implies that f − f1 ∈ 𝔞z. Therefore, by Proposition 4.8,

f = f1 + (f − f1) ∈ 𝒮∗(X) + 𝔞z = 𝒮∗(X) + 𝔞. □
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Theorem 4.11. Let ℱ be a semialgebraic filter on X. Then:
(1) There exists a z-ideal 𝔞 of 𝒮(X) such that ℱ = 𝒵X [𝔞].
(2) For every f ∈ 𝒮∗(X) + 𝔞 there exists a continuous function F : X ∪ Clβ*

s X
(ℱ) → R such that F |X = f .

(3) Let 𝔪 be a maximal ideal of 𝒮(X). Then, for every f ∈ 𝒮∗(X) + 𝔪 there exists a continuous function 
F : X ∪ {𝔪} → R such that F |X = f .

Proof. (1) This has been proved in 4.1 (5.2) and Remark 4.4.
(2) By part (1) and Proposition 4.10,

𝒮∗(X | ℱ) = 𝒮∗(X | 𝒵X [𝔞]) = 𝒮∗(X) + 𝔞.

Thus there exists Z ∈ ℱ such that the restriction f |Z is bounded. Hence, by 2.3 (4), there exists a unique 
continuous extension ˆ︁f : β*

sZ → R of f |Z . Let φ : 𝒮∗(X) → 𝒮∗(Z), f ↦→ f |Z . It was proved in [7, 6.3-5] 
that the map

˜︁φ : β*
sZ → Clβ*

s X
(Z), 𝔭 ↦→ φ−1(𝔭)

is a homeomorphism. Therefore, with an obvious abuse of notation, there exists a continuous extension ˆ︁f : Clβ*
s X

(Z) → R of f |Z . In addition X ∩ Clβ*
s X

(Z) = ClX(Z) = Z and ˆ︁f |Z = f |Z . Thus the function

G : X ∪ Clβ*
s X

(Z) → R, x ↦→
{︄

f(x) if x ∈ X,ˆ︁f(x) if x ∈ Clβ*
s X

(Z),

is a well defined continuous function and F := G|X∪Cl
β*
s X

(ℱ) satisfies F |X = f .
(3) It is enough to apply part (2) to the ideal 𝔞 := 𝔪. □

Comment 4.12. It is a natural question to ask if a given intermediate R-algebra A containing 𝒮∗(X) and 
contained in 𝒮(X) for some semialgebraic set X is isomorphic to 𝒮(Y ) for some semialgebraic set Y . To 
provide examples in which the answer is negative we introduce right now the notion of real closed ring, see 
[4, Definition 1].

Definition 4.13. A commutative ordered ring A with unit that is not a field is said to be real closed if given 
a, b ∈ A with a < b and a polynomial p ∈ A[t] such that p(a) · p(b) < 0 then there exists c ∈ A such that 
a < c < b an p(c) = 0.

It was proved by N. Schwartz in [14, §III.1] that for every semialgebraic set X the rings 𝒮∗(X) and 𝒮(X)
partially ordered by: f ≤ g if f(x) ≤ g(x) for every point x ∈ X, are real closed rings.

Examples 4.14. (1) Let f : R → R, x ↦→ |x|, which is a continuous semialgebraic function. Then, the 
simple extension A := 𝒮∗(R)[f ] is not isomorphic to either 𝒮∗(Y ) or 𝒮(Y ) for every semialgebraic set Y
because A is not a real closed ring. Indeed the polynomial p(t) := t2 − f satisfies p(0) = −f < 0 and 
p(1 + f) = f2 + f + 1 > 0, but p has no root in A since the semialgebraic function g(x) :=

√︁|x| does not 
belong to A.

(2) Consider the continuous semialgebraic function

f : R → R, x ↦→
{︄

0 if x ≤ 0,

x if x ≥ 0,
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and the ideal 𝔞 := f · 𝒮(R). Then, the intermediate algebra A := 𝒮∗(R) + 𝔞 is not isomorphic to either 
𝒮∗(Y ) or 𝒮(Y ) for every semialgebraic set Y because A is not a real closed ring. Indeed, the polynomial 
p(t) := t2−f satisfies p(0) = −f < 0 and p(1+f) = f2+f+1 > 0, but p has no root in A. Suppose, by way 
of contradiction that there exists g ∈ 𝒮∗(R) and h ∈ 𝒮(R) such that p(g+fh) = 0. Thus, g(t)+ t ·h(t) =

√
t

for every real number t ≥ 0, that is,

g(t) =
√
t · (1 +

√
t · h(t)) for every real number t > 0,

which is a contradiction since g is bounded.
(3) In the setting of classical rings of continuous functions it is known that if 𝔪 is a non-real maximal ideal 

in 𝒞(X), then 𝒞(X) cannot be obtained by adjoining countably many elements to the subalgebra R+𝔪. We 
have not been able to prove or disprove this result in the semialgebraic setting. One of the reasons is that 
semialgebraic algebra has a finitary flavor and known strategies do not adapt well to infinitary statements.

(4) It is easier to find a semialgebraic set X and an ideal 𝔞 of 𝒮(X) such that R + 𝔞 does not contain 
𝒮∗(X). To that end it suffices to choose X := R and the ideal 𝔞 in (2). The continuous semialgebraic 
function

g : R → R, x ↦→ 1 
1 + x2

is bounded but it does not belong to R + 𝔞. Otherwise there would exist r ∈ R and h ∈ 𝒮(R) such that

1 
1 + x2 = g(x) = r + f(x) · h(x).

Evaluating in x := 0 it follows r = 1. Therefore,

f(x) · h(x) = 1 
1 + x2 − 1 = −x2

1 + x2

and we get a contradiction evaluating at x := −1 because f(−1) = 0.
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