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SUMS OF SQUARES IN REAL ANALYTIC RINGS

JOSÉ F. FERNANDO

Abstract. Let A be an analytic ring. We show: (1) A has finite Pythagoras
number if and only if its real dimension is ≤ 2, and (2) if every positive
semidefinite element of A is a sum of squares, then A is real and has real
dimension 2.

1. Introduction

In the study of positive semidefinite elements (= psd) and sums of squares (=
sos) the two main problems are these:
• Qualitative problem: To know whether every positive semidefinite element is

a sum of squares.
• Quantitative problem: To know whether there is p ∈ N such that every sum

of squares is a sum of p squares.
These two problems have a meaning over any commutative ring A in terms of the
real spectrum Specr(A): we consider the set P(A) ⊂ A of all f ∈ A such that
f(α) ≥ 0 for every prime cone α ∈ Specr(A), and the set Σ(A) ⊂ A of all sums of
squares in A; the elements of P(A) are the psd’s of A, and the elements of Σ(A)
are the sos’s of A. Hence, Σ(A) ⊂ P(A) and the qualitative problem is whether
P(A) = Σ(A). For the quantitative problem we have the Pythagoras number which
is the smallest integer p(A) = p ≥ 1 such that any sum of squares of A is a sum of
p squares, and p(A) = +∞ if such an integer does not exist. This is a very delicate
invariant whose study has attracted a lot of attention from specialists in number
theory, quadratic forms, real algebra and real geometry. The history of psd’s and
sos’s is long and rich, and we refer the reader to [BCR] and [ChDLR] for further
details. One particular case which is receiving more attention lately is that of local
rings, see for instance [Sch2]. Here real algebra and the techniques of real spectra
appear in essential ways. In this paper we deal with these matters for analytic
rings.

An analytic ring (over R) is a ring A = R{x}/I, where I is an ideal of the
ring R{x} of convergent power series in the indeterminates x = (x1, . . . , xn). The
ideal I defines a zero set germ X = Z(I) ⊂ Rn, and the elements of A can be
seen as function germs on X . Note however that the ring of function germs on
X is O(X) = R{x}/J (X), where J (X) stands for the zero ideal of X . The real
Nullstellensatz says that J (X) is the real radical r

√
I of I, hence A = O(X) if and
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only if A is real, and in general we only have a canonical epimorphism A→ O(X).
In any case, by the real Positivstellensatz for germs the elements f ∈ P(A) are
exactly the elements which are ≥ 0 on X . (For all of this see [AnBrRz, VIII.2,3]).

The most general known results are p(A) = +∞ and P(A) 6= Σ(A) for any local
regular ring A of dimension ≥ 3 ([ChDLR], [Sch2]); from this, it is not difficult
to deduce that all real analytic rings of dimension ≥ 4 have the same properties
(see [Rz3], [Fe1]). There are also a lot of results for curve germs ([Rz1], [CaRz]
and [Or]) and for surface germs ([Rz3], [FeRz], [Fe1] and [Fe2]). But there is a
serious lack of information without the regularity assumption for dimension 3. In
this framework, our main results are the following. Let A = R{x}/I be an analytic
ring, and X = Z(I) its zero set germ as above.

Theorem 1.1. The Pythagoras number p(A) is finite if and only if dimX ≤ 2.

Theorem 1.2. If P(A) = Σ(A), then A is real and dimX ≤ 2.

We see now some aspects of their proofs.

Proof of the if part in 1.1. This is simple. We follow closely an idea in [ChDLR,
2.5].

Let h1, . . . , hs be generators of J (X) = r
√
I. There are gij ∈ R{x} such that

h2mi
i + g2

i1 + · · ·+ g2
ir ∈ I.

Consider the ideal J = (h2m1
1 , . . . , h2ms

s , I), so that
√
J = r

√
I, and let B = R{x}/J .

Then, dimB = n − ht(J) = n − ht(
√
J) = n − ht( r

√
I) = dim(X) ≤ 2 and B is

a finitely generated R{x1, x2}-module after a linear change of coordinates ([Rz2,
II.2.3]). In [Fe2, 3.10] we see that the Pythagoras number of a ring which is
generated as a module over R{x1, x2} by m elements is bounded by 2m, hence
p(B) = p < +∞.

To conclude, let a = a2
1 + . . .+ a2

q be a sum of squares in A. Then a is a sum of
p squares in B and therefore

a = α2
1 + · · ·+ α2

p + β1h
2m1
1 + · · ·+ βsh

2ms
s in A.

Now, we pick real numbers ci > 0 such that c2i +βi(0) > 0 and consequently c2i +βi
has a square root γi ∈ A. Therefore, since h2mi

i + g2
i1 + · · ·+ g2

ir = 0 in A we get

βih
2mi
i = γ2

i h
2mi
i + c2i g

2
i1 + · · ·+ c2i g

2
ir.

Thus a is a sum of p+ s(r + 1) squares in A, and so p(A) is finite.

Another elementary part of the above theorems is this:

Proof of the reality part in 1.2. This is a version of [Sch1, 6.3] and we include the
argument because of its simplicity. Suppose that A is not real, that is, there
exist 0 6= h, g1, . . . , g` ∈ A such that h2m + g2

1 + · · · + g2
` = 0. It is clear that

h, g1, . . . , g` ∈ mA; furthermore, h|X ≡ 0 and then h ∈ P(A). We claim that if
P(A) = Σ(A) then h ∈

⋂
k∈Nmk

A, against the condition h 6= 0.
Indeed, since h ∈ P(A) = Σ(A) then h = h2

1 + · · · + h2
s in A. Thus hi ∈ mA

and so h ∈ m2
A. Furthermore, since h|X ≡ 0 then hi|X ≡ 0 and hi ∈ P(A). Again

hi = h2
i1 + · · ·+ h2

iri where hij ∈ mA and hij |X ≡ 0, thus h ∈ m4
A. Repeating this,

we conclude that h ∈
⋂
k∈Nmk

A.
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Concerning the only if part of 1.1, note that p(A) < +∞ implies p(O(X)) < +∞,
via the epimorphism A → O(X). Thus we can assume that A = O(X) is real.
Therefore for both theorems we only have to consider real analytic rings. More
precisely, let X be an analytic set germ (at the origin of Rn). We denote by P(X)
the set of all psd’s on X and by Σ(X) the set of all sums of squares in O(X), and
let p[X ] stand for the Pythagoras number p(O(X)).

We have reduced Theorems 1.1, 1.2 to prove the following:

Theorem 1.3. Let X be a real analytic germ of dimension ≥ 3. Then P(X) 6=
Σ(X) and p[X ] = +∞.

This is done in several steps:
(i) Firstly, we see that it is enough to solve the case when X is irreducible.

(ii) Secondly, we use local parametrization to replace X by a hypersurface. This
requires keeping track of a universal denominator.

(iii) Finally, we blow-up points and lines to achieve a regular situation:

Lemma 1.4. Let f ∈ R{x1, . . . , xn} change sign at the origin and have no multiple
factors. Then there exists a finite sequence T of local blowings-up of points and lines
such that, after a linear change of coordinates, the strict transform of f is

f̃ ◦ T = (x1 + g(x2, . . . , xn))U

where g ∈ R{x2, . . . , xn} has order ≥ 2 and U ∈ R{x1, . . . , xn} is a unit.

To illustrate this desingularization idea, we prove here an easier result concern-
ing meromorphic germs. We denote by M(X) the ring of meromorphic function
germs in X , which is the total ring of fractions of O(X) (and is a field when X is
irreducible). For instance,M(Rn) is the field of fractions R({x}) of R{x}. Finally,
let p(X) stand for p(M(X)). We have

Theorem 1.5. Let X be a real analytic germ of dimension d ≥ 3. Then p(X) ≥
d+ 1.

Proof. We have M(X) =
∏
M(Y ) where each Y is an irreducible component

of X . Thus p(X) is the maximum of the p(Y )’s and it is enough to prove the
result for X irreducible. In that case, by [AnRz] there exists a regular local ring
B ⊂ K = M(X) which dominates A = O(X) and has residue field R (this is
local uniformization: B can even be obtained by a finite sequence of quadratic
transforms). Let u = (u1, . . . , ud) be a regular system of parameters of B, and
consider the commutative diagram:

A → B → B̂ = R[[u]]
↘ ↓ ↓

K → K̂ = R((u))

where all the arrows are inclusions, and the u1, . . . , ud can be seen as indeterminates
over R. Let f ∈ R[u] ⊂ B be a homogeneous polynomial which is sum of d + 1
squares but not of d squares in R(u) ⊂ K (these polynomials exist for d ≥ 3,
[BCR, 6.4.20]). Now, if f was a sum of d squares in K ⊂ R((u)), we would find
a1, . . . , ad, b ∈ R[[u]] with

b2f = a2
1 + · · ·+ a2

d.

Then, comparing initial forms in the expression above f could be written as a sum
of d squares in R(u), which is impossible.
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From these theorems, we see that real analytic germs with P = Σ and/or finite
Pythagoras number must have dimension 2. However, it seems a very difficult
matter to find them all. So far, we know the embedded surface germs with those
properties (a small list of multiplicity 2 germs whose Pythagoras number is 2, [Rz3]
and [Fe1]) and a few aditional examples of arbitrary multiplicity and embedding
dimension (the Veronese cones, also with Pythagoras number 2, [Fe3]).

On the other hand, our results can be generalized in a quite straightforward
way for local noetherian rings with real closed residue field. Let us stress that this
condition on the residue field is in fact the most serious obstruction to get fully
satisfactory general statements.

The author thanks Professor J. Ruiz for helpful discussions during the prepara-
tion of this work.

2. Local uniformization of a hypersurface

The purpose of this section is to prove Lemma 1.4. Before that we need some
notation and terminology from desingularization (simplified to the most).

2.1. Strict transforms. We will use homomorphisms ϕ : R{x} → R{x} of the
following three types:

(a) linear changes: ϕ(x) = Ax,
(b) quadratic transforms: ϕ(x) = (x1, x1x2, . . . , x1xn),
(c) modified quadratic transforms: ϕ(x) = (x1, x1x2, x

λ
1x3, . . . , x

λ
1xn), λ > 1.

In other words, we use sequences of local blowings-up of points and lines, which
up to linear changes have those formulas (a modified quadratic transform is the
blowing-up of a point followed by (λ− 1) many blowings-up of the same line).

Then for any series f ∈ R{x} and any sequence T = [ϕ1, . . . , ϕr] (the ϕi’s as
above) one has the strict transform f̃ ◦ T of f via T , defined step by step:

(a) for linear changes: f̃ ◦ ϕ = f ◦ ϕ,
(b) for quadratic transforms and modified quadratic transforms

f̃ ◦ ϕ := (f ◦ ϕ)/xµ1 ,

where µ is the greatest integer such that xµ1 divides f ◦ ϕ.
If f ∈ R{x} is a series and ϕ a quadratic transform, then f ◦ ϕ = x

ω(f)
1 (f̃ ◦ ϕ)

and ω(f̃ ◦ ϕ) ≤ ω(f). Also, we recall here that:
(i) if f has no multiple factors then neither has f̃ ◦ T ,
(ii) each irreducible factor of f̃ ◦ T lies over one of f .
Furthermore, we have

Lemma 2.1. Let T = [ϕ1, . . . , ϕr]. Then there exist finitely many analytic series

q1, . . . , q` ∈ R{x} such that for every f ∈ R{x} we have f ◦ T = qν ˜(f ◦ T ), where
qν = qν1

1 · · · q
ν`
` for suitable integers ν1, . . . , ν` ≥ 0. Moreover, f̃ ◦ T is relatively

prime with all qi’s.

Proof. We proceed by induction on r. For r = 1:
(i) if ϕ1 is a linear change, then f ◦ T = f̃ ◦ T ,
(ii) if ϕ1 is a local blowing-up then f ◦ T = xν1

1 f̃ ◦ T , and then x1 and f̃ ◦ T are
relatively prime.
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Suppose now r > 1, and let T1 = [ϕ1, . . . , ϕr−1]. By induction hypothesis there
exist finitely many series p1, . . . , p` ∈ R{x} so that for every f ∈ R{x}

f ◦ T1 = pν1
1 · · · pν`` (f̃ ◦ T1), ν1, . . . , ν` ≥ 0,

and f̃ ◦ T is relatively prime with all pi. Therefore,

f ◦ T = f ◦ T1 ◦ ϕr = (p1 ◦ ϕr)ν1 · · · (p` ◦ ϕr)ν`(f̃ ◦ T1 ◦ ϕr).
We distinguish again two cases:
(i) if ϕr is a linear change, we take qi = pi ◦ ϕr for all i.
(ii) if ϕr is a local blowing-up, factoring out all x1’s we get

f ◦ T = x
ν`+1
1 (p̃1 ◦ ϕr)ν1 · · · (p̃` ◦ ϕr)ν`(f̃ ◦ T )

and we take qi = p̃i ◦ ϕr for i = 1, . . . , ` and q`+1 = x1.
It is clear from (ii) above that f̃ ◦ T is relatively prime with qi for i = 1, . . . , `

and with q`+1 by the definition of the strict transform.

Now, we prove Lemma 1.4 in two steps:

Proposition 2.2. Let f ∈ R{x} change sign at the origin. Then there exists a
sequence T = [ϕ1, . . . , ϕ`] such that the initial form of f̃ ◦ T is indefinite.

Proof. For any f ∈ R{x} we will denote the following:

r(f), the minimum order of a substitution f(α(t)) with f(α(t)) < 0 for t > 0,
s(f), the minimum order of a substitution f(β(t)) with f(β(t)) > 0 for t > 0.

Both integers exist by the curve selection lemma and both are ≥ ω(f). Let In(f)
be the initial form of f . We claim that:

a) In(f) is indefinite if and only r(f) = s(f) = ω(f);
b) In(f) is positive semidefinite if and only if s(f) = ω(f) < r(f);
c) In(f) is negative semidefinite if and only if s(f) > ω(f) = r(f).
Indeed, if γ is a half-branch centered at the origin in Rn, we can write γ(t) =

tpγ(t) with p ≥ 1 and γ(0) 6= 0. Then:

f(γ(t)) = tpm In(f)(γ(0)) + · · · , m = ω(f).

Thus, if r(f) = s(f) = m, there exist half-branches α = tα, β = tβ with
In(f)(α(0)), In(f)(β(0)) not equal zero such that f(α(t)) < 0, f(β(t)) > 0 for
t > 0 small. Hence, In(f)(α(0)) < 0, In(f)(β(0)) > 0 and we conclude that In(f)
is indefinite. On the other hand, if there exist α ∈ Rn (resp. β ∈ Rn) such that
In(f)(α) < 0, (resp. In(f)(β) > 0), we consider the half-branch α(t) = αt, (resp.
β(t) = βt) to get s(f) = ω(f) (resp. r(f) = ω(f)). From these the equivalences
follow.

Now, let λ(f) denote the maximum of r(f) and s(f). We prove the proposition
by double induction on all pairs (ω(f), λ(f)) for f ∈ R{x} (changing sign at the
origin), ordered lexicographically. Firstly, if ω(f) = 1, In(f) is indefinite and we are
done. Let (1, 1) < (a, b) and suppose the result true for g with (ω(g), λ(g)) < (a, b).
We are to show it for f with (ω(f), λ(f)) = (a, b).

If a = b, In(f) is indefinite again; so we can suppose a < b and In(f) semidefinite.
Changing f by −f (if needed) we can suppose also that In(f) is psd. Then s(f) =
ω(f) = a < b = r(f).
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Now we select α(t) such that f(α(t)) < 0 for t > 0 and ω(f(α(t))) = b. After a
linear change L1,

α(t) = (tm1 , a2t
m2 + · · · , . . . , antmn + · · · ),

where 1 ≤ m1 < . . . < mn, and after another

L2(x1, . . . , xn) = (x1 + c1xn, . . . , xn−1 + cn−1xn, xn)

f is regular of order a with respect to xn. It is clear that α is now

α(t) = (tm1 , b2t
m2 + · · · , . . . , bntmn + · · · ),

Set ϕ(x1, . . . , xn) = (x1, x1x2, . . . , x1xn) and consider

γ(t) = (tm1 , b2t
m2−m1 + · · · , . . . , bntmn−m1 + · · · ).

Thus, g = f̃ ◦ ϕ has the following properties:

(i) g =
f ◦ ϕ
xa1

and ω(g) ≤ a by (2.1).

(ii) {g < 0} 6= ∅ and r(g) < b.
Indeed, since

g(γ(t)) =
f ◦ ϕ(γ(t))

tam1
=
f ◦ α(t)
tam1

< 0 for t > 0.

we conclude that {g < 0} 6= ∅ and that

r(g) ≤ ω(g(γ(t))) = ω(f(α(t))) − am1 < ω(f(α(t))) = b.

(iii) {g > 0} 6= ∅ and s(g) ≤ s(f). Hence (ω(g), λ(g)) < (a, b).
Indeed, since f is regular of order a with respect to xn, there exist a Weierstrass

polynomial P in xn (of degree and order equal to a) and a unit U such that f = PU .
Furthermore, U(0) > 0 because In(f) is psd. Then, if f = fm + fm+1 + · · · we
deduce

g =
∑
k≥m

fk(1, x2, . . . , xn)xk−m1 = (P̃ ◦ ϕ)(U ◦ ϕ).

Therefore, since fm is psd we have

0 ≤ fm(1, 0, . . . , 0, t) = g(0, . . . , 0, t)

= U(0) (P̃ ◦ ϕ)(0, . . . , 0, t) = U(0) (tm +
m∑
j=1

ajt
m−j) 6= 0

where aj ∈ R and U(0) > 0. Whence, we conclude that {g > 0} 6= ∅ and that
s(g) ≤ ω(g(0, . . . , 0, t)) ≤ m = ω(f) = s(f) < r(f) = a.

By induction hypothesis there exists a sequence T1, such that g̃ ◦ T1 has indefinite
initial form. Consequently, T = [T1, L1, L2, ϕ] is the sequence we sought.

Proposition 2.3. (a) Let f1 ∈ R{x, y} be a series in two variables without mul-
tiple factors such that In(f1) is indefinite. Then there exists a sequence S =
[ψ1, . . . , ψs] of linear changes and quadratic transforms such that f̃1 ◦ S is a se-
ries of order one.
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(b) Let f ∈ R{x1, . . . , xn} be a series without multiple factors such that In(f)
is indefinite. Then there exists a sequence T = [ϕ1, . . . , ϕs] of linear changes and
quadratic transforms such that

f̃ ◦ T = (l(x1, x2) + g(x2, . . . , xn))U

where l 6= 0 is a linear form, g ∈ R{x2, . . . , xn} is an analytic series of order ≥ 2
and U ∈ R{x1, . . . , xn} is a unit.

Proof. (a) In our hypotheses there exists a linear change ψ1 such that f1 ◦ ψ1 =
Q1 · · ·QrU where U ∈ R{x, y} is a unit and the Qi ∈ R{y}[x] are irreducible Weier-
strass polynomials with degree equal to order and pairwise different. Furthermore,
since In(f1) is indefinite we can also suppose that In(Q1) is indefinite. Then Q1 = 0
contains a real curve germ at the origin, and working with it as in [JP, 5.3.8], there
exist a sequence S1 = [ψ1, . . . , ψ`] of linear changes and quadratic transforms such
that Q̃1 ◦ S1 has order 1. Let h = f̃1 ◦ S1. If h has order 1 we are done, so suppose
that ω(h) > 1. After a linear change ψ`+1 we can assume

h = (y − a(x))P (x, y)Q(x, y)U(x, y)

where P,Q ∈ R{x}[y] are Weierstrass polynomials, P irreducible and U ∈ R{x, y}
a unit. Let α be a root of P (α is a Puiseux series with (possibly) complex coeffi-
cients); since h has no multiple factors (as had g), α 6= a; say a =

∑
i≥1 aix

i and
α =

∑
k≥1 ckx

k/q .
We now work by induction on θ[α − a] = min{k ∈ N| ω(α − a) ≤ k}. Suppose

first θ[α − a] = 1, that is, 0 < ω(α − a) ≤ 1. Then ck 6= 0 for some k < q or
a1 − cq 6= 0. Up to the linear change ψ`+2(x, y) = (x, y + a1x) we have

y − a = y −
∑
i≥2

aix
i.

But P is the irreducible polynomial of α over R({x}), the quotient field of the ring
R{x}, and there are two cases:

(i) P has a root in a real closure of R({x}). Then

P =
q∏
j=1

y − q−1∑
k=1

ckη
kxk/q − (cq − a1)x −

∑
k≥q+1

ckη
kxk/q


where η = e2πi/q.

(ii) P does not have a root in a real closure of R({x}). Then

P =
q∏
j=1

y − q−1∑
k=1

ckη
kxk/q − (cq − a1)x−

∑
k≥q+1

ckη
kxk/q


·
q∏
j=1

y − q−1∑
k=1

ckη
kxk/q − (cq − a1)x−

∑
k≥q+1

ckη
kxk/q


where η = e2πi/q.
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Consider ψ`+3(x, y) = (x, xy). It is clear from the equations above that ˜P ◦ ψ`+3

is a unit. Therefore the order of

˜h ◦ ψ`+3 = (y −
∑
i≥2

aix
i−1)( ˜P ◦ ψ`+3)( ˜Q ◦ ψ`+3)(U ◦ ψ`+3)

is smaller than ω(h) and ˜h ◦ ψ`+3 has an irreducible factor of order 1.
This completes the case θ = 1. Next, let θ[α − a] = j > 1 or, equivalently,

j − 1 < ω(α − a) ≤ j. Then α =
∑j−1

i=1 aix
i +

∑
k≥q(j−1)+1 ckx

k/q . Let ψ`+3 be

as above. The irreducible polynomial of β =
∑j−1
i=2 aix

i−1 +
∑

k≥q(j−1)+1 ckx
k/q−1

over R({x}) is ˜P ◦ ψ`+3. Moreover θ[β −
∑
i≥2 aix

i−1] ≤ j − 1 and

˜h ◦ ψ`+3 = (y −
∑
i≥2

aix
i−1)( ˜P ◦ ψ`+3)( ˜Q ◦ ψ`+3)(U ◦ ψ`+3)

so by induction hypothesis we are done.
(b) Suppose first that f1 = f(x1, x2, 0, . . . , 0) is a series without multiple

factors whose initial form is indefinite. Then by (a) there exists a finite sequence
S = [ψ1, . . . , ψs] such that f̃1 ◦ S has order 1. Let

(i) ϕj(x1, . . . , xn) = (ψj(x1, x2), x3, . . . , xn), if ψj is a linear change,
(ii) ϕj(x1, . . . , xn) = (x1, x1x2, x

λ
1x3, . . . , x

λ
1xn), if ψj(x1, x2) = (x1, x1x2).

Let T = [ϕ1, . . . , ϕs]. It follows easily that for λ large enough

f̃ ◦ T = (l(x1, x2) + g(x2, . . . , xn))U

where l is a linear form, g ∈ R{x2, . . . , xn} has order ≥ 2 and U ∈ R{x1, . . . , xn}
is a unit.

So we only have to get the condition on f1 = f(x1, x2, 0, . . . , 0) by some linear
change L. Firstly, there exist a linear change L1 such that f ◦ L1 is regular with
respect to x1 of order ω(f) and then f ◦ L1 = P V where P is a Weierstrass
polynomial with degree equal to order and V is a unit. Let

∆ = Resx1

(
P,

∂P

∂x1

)
be the discriminant of P which is 6= 0 since f has no multiple factors. Since In(f)
is indefinite, the same is true for In(P ). Therefore, as ∆ 6= 0 there exist a ∈ Rn
such that In(P )(a) < 0 and In(∆)(a) 6= 0. Since ∆ ∈ (x2, . . . , xn)R{x2, . . . , xn},
ai 6= 0 for some i ≥ 2; say i = 2. We consider the linear change

L2(x1, . . . , xn) = (x1 + a1x2, a2x2, x3 + a3x2, . . . , xn + anx2).

Let ∆′ be the discriminant of Q = P ◦ L2. It is easy to see from the properties of
the discriminant that ∆′ = ∆ ◦ L2. Furthermore,

Resx1

(
Q(x1, x2, 0, . . . , 0),

∂Q(x1, x2, 0, . . . , 0)
∂x1

)
= ∆′(x2, 0, . . . , 0)

= ∆ ◦ L2(x2, 0, . . . , 0) = ∆(a2x2, . . . , anx2) = xq2 In(∆)(a) + · · · 6= 0
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and therefore f ◦L1 ◦L2(x1, x2, 0, . . . , 0) has no multiple factors and its initial form
is indefinite, because

In(f ◦ L1 ◦ L2)(x1, x2, 0, . . . , 0) = V (0) In(P ◦ L1 ◦ L2)(x1, x2, 0, . . . , 0)

= V (0) In(P (x1 + a1x2, a2x2, . . . , anx2))

and

In(P (x1 + a1x2, a2x2, . . . , anx2))(0, 1) = In(P )(a) < 0,
In(P (x1 + a1x2, a2x2, . . . , anx2))(1, 0) = 1 > 0.

So L = L1 ◦ L2 is the linear change we sought.

Whence, Lemma 1.4 follows from 2.2 and 2.3 (b).

3. Proof of the statements

The purpose of this section is to prove Theorem 1.3. The key result is the
following.

Proposition 3.1. Let f,∆ ∈ R{x} be such that f has no multiple factors, changes
sign at the origin and f,∆ are relatively prime. Then, there exist:

a sequence of transforms T = [ϕ1, . . . , ϕr],
a substitution τ(x2, . . . , xn) = (h, x2, . . . , xn) with h ∈ R{x2, . . . , xn}, ω(h) ≥ 2,
a linear change Γ (x2, . . . , xn) in the variables x2, . . . , xn, and
a quadratic transform ρ(x2, . . . , xn) = (x2, x2x3, . . . , x2xn), such that given

∆2g = α2
1 + . . .+ α2

p + fβ, g, α1, . . . , αp, β ∈ R{x1, . . . , xn},

then the strict transform of g̃ ◦ T ◦τ via [Γ, ρ] is a sum of p squares in R{x2, . . . , xn}.

Proof. First, by 1.4, there exist a sequence T = [ϕ1, . . . , ϕr] and a series h ∈
R{x2, . . . , xn} of order ≥ 2 such that f̃ ◦ T = (x1 − h)U where U ∈ R{x1, . . . , xn}
is a unit. Now, in view of 2.1 there exist finitely many analytic series q1, . . . , q` ∈
R{x1, . . . , xn} such that for every G ∈ R{x1, . . . , xn}

G ◦ T = qν · G̃ ◦ T , for ν = (ν1, . . . , ν`)

and G̃ ◦ T , qi are relatively prime for all i.
Therefore, q̂i = qi◦τ 6= 0 for all i. Furthermore, since f,∆ are relatively prime so

are ∆̃ ◦ T , f̃ ◦ T ; in particular, x1 = h is not a root of ∆̃ ◦ T and ∆̂ = ∆̃ ◦ T ◦τ 6= 0.
So there exist a linear change Γ such that the series q̂1, . . . , q̂`, ∆̂ are all regular
with respect to x2. Thus q̂i ◦ Γ ◦ ρ = x

ω(q̂i)
2 Vi and ∆̂ ◦ Γ ◦ ρ = x

ω(∆̂)
2 W where

W,Vi ∈ R{x2, . . . , xn} are units (this an easy consequence of the fact that if P is a

Weierstrass polynomial with respect to x2 of degree equal to order, then ˜(P ◦ ρ) is
a unit).

If we plug the sequence T into the equation

∆2g = α2
1 + · · ·+ α2

p + fβ,

we obtain

qν
(

∆̃ ◦ T
)2

(g̃ ◦ T ) = (∆2g) ◦ T = (α′1)2 + · · ·+ (α′p)
2 + (f̃ ◦ T )β′

= (α′1)2 + · · ·+ (α′p)
2 + (x1 − h(x2, . . . , xn))Uβ′
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with α′1, . . . α
′
p, β
′ ∈ R{x}. Therefore, if we substitute τ : x1 = h we have

q̂ ν ∆̂2 (g̃ ◦ T ◦ τ) = (α′1 ◦ τ)2 + · · ·+ (α′p ◦ τ)2.

Finally, if M ∈ R{x2, . . . , xn} denotes the strict transform of g̃ ◦ T ◦ τ via [Γ, ρ]
we have

xµ2 V
νW 2M = (α′1 ◦ τ ◦ Γ ◦ ρ)2 + · · ·+ (α′p ◦ τ ◦ Γ ◦ ρ)2

for an integer µ ≥ 0 and therefore, there exist a1, . . . , ap ∈ R{x2, . . . , xn} such that

xµ2M = a2
1 + · · ·+ a2

p.

It follows that xµ2 can be simplified, and we are done.

Now we are finally ready to prove 1.3.

Proof of Theorem 1.3. Let X be an analytic germ of dimension d ≥ 3 and let X1 be
an irreducible component of X of the same dimension as X . By local parametriza-
tion ([Rz2, II.3.4]), after a linear change, there exist an irreducible Weierstrass
polynomial f ∈ R{x1, . . . , xd}[xd+1] with degree p equal to order, and discriminant
∆ ∈ R{x1, . . . , xd} such that the canonical homomorphism A = R{x1, . . . , xd} →
O(X1) is injective and finite and θd+1, the class of xd+1 mod J (X1), is a primitive
element of the quotient field of O(X1) over the quotient field of A. Then, by [Rz2,
II.3.2],

∆ · O(X1) ⊂ A+Aθd+1 + · · ·+Aθp−1
d+1
∼= O(X ′1),

where X ′1 ⊂ Rd+1 is the hypersurface germ f = 0. Let T, τ, Γ, ρ be as in 3.1.
We prove first that Σ(X) 6= P(X). Let M = x6

2 + x4
3x

2
4 + x2

3x
4
4 − 3x2

2x
2
3x

2
4

be the Motzkin polynomial which is a psd form on Rd+1 that is not a sum of
squares of polynomials ([BCR, 6.3.6]). We can easily construct a polynomial g ∈
R[x1, . . . , xd+1] such that the strict transform of g̃ ◦ T ◦ τ via [Γ, ρ] is M . In fact,
we do it step by step:

(i) For ρ, we consider M1 = x6
2M(x2, x3/x2, x4/x2) which satisfies M̃1 ◦ ρ = M .

(ii) For Γ , we take M2 = M1 ◦ Γ−1; it is clear that M2 ◦ Γ = M1.
(iii) For τ , we consider again M2 ∈ R[x2, . . . , xd] because M2 ◦ τ = M2.
(iv) For each ϕj , j = r, . . . , 1, in the sequence T we take:
(a) Mr−j+3 = Mr−j+2 ◦ ϕ−1

j if ϕj is a linear change, and

(b) Mr−j+3 = xµ1Mr−j+2

(
x1,

x2

xλ1
, . . . ,

xn

xλ1

)
if ϕj is a modified quadratic trans-

form, that is, ϕj(x) = (x1, x1x2, x
λ
1x3, . . . , x

λ
1xd+1), and where µ is the smallest

integer such Mr−j+3 ∈ R[x1, . . . , xn].
In the end g = Mr+2.

Since all our mappings are birational, g is a psd polynomial on Rd+1, hence on
Rn = Rd+1 ×Rn−d−1. Thus g ∈ P(X), and we claim that g is not an sos in O(X).
Indeed, otherwise it would be one in O(X1) and since ∆ · O(X1) ⊂ O(X ′1), ∆2 · g
would be a sum of squares in O(X1). By 3.1 the strict transform of (̃g ◦ T ) ◦ τ via
[Γ, ρ], which is M , would be a sum of squares in R{x2, . . . , xd}. Looking at the
initial forms, we would conclude that M is a sos of polynomials, contradiction. The
claim is proved.

For p[X ] = +∞, it is enough to prove p[X1] = +∞. To that end, one proceeds
as above for every p ≥ 1, using instead of M an homogeneous polynomial P ∈
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R[x2, x3, x4] which is sum of p+ 1 squares but not of p squares ( [ChDLR, §4]), and
the conclusion is clear.
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