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ON THE SEMIALGEBRAIC STONE–ČECH

COMPACTIFICATION OF A SEMIALGEBRAIC SET

JOSÉ F. FERNANDO AND J. M. GAMBOA

Dedicated to José Maŕıa Montesinos on the occasion of his 65th birthday

Abstract. In the same vein as the classical Stone–Čech compactification, we
prove in this work that the maximal spectra of the rings of semialgebraic and
bounded semialgebraic functions on a semialgebraic set M ⊂ Rn, which are
homeomorphic topological spaces, provide the smallest Hausdorff compactifi-
cation of M such that each bounded R-valued semialgebraic function on M
extends continuously to it. Such compactification β∗

sM , which can be charac-
terized as the smallest compactification that dominates all semialgebraic com-
pactifications of M , is called the semialgebraic Stone–Čech compactification
of M , although it is very rarely a semialgebraic set. We are also interested in
determining the main topological properties of the remainder ∂M = β∗

sM \M
and we prove that it has finitely many connected components and that this
number equals the number of connected components of the remainder of a suit-
able semialgebraic compactification of M . Moreover, ∂M is locally connected
and its local compactness can be characterized just in terms of the topology
of M .

1. Introduction

A subset M ⊂ Rn is said to be basic semialgebraic if it can be written as

M = {x ∈ Rn : f(x) = 0, g1(x) > 0, . . . , gm(x) > 0}

for some polynomials f, g1, . . . , gm ∈ R[x1, . . . , xn]. The finite unions of basic semi-
algebraic sets are called semialgebraic sets. A continuous function f : M → R is
said to be semialgebraic if its graph is a semialgebraic subset of Rn+1. Usually,
semialgebraic function just means a function, not necessarily continuous, whose
graph is semialgebraic. However, since all semialgebraic functions occurring in this
article are continuous we will omit for simplicity the continuity condition when we
refer to them.

The sum and product of functions, defined pointwise, endow the set S(M) of
semialgebraic functions on M with a natural structure of commutative ring whose
unity is the function with constant value 1. In fact, S(M) is an R-algebra if we
identify each real number r with the constant function which just attains this value.
The most simple examples of semialgebraic functions on M are the restrictions to
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M of polynomials in n variables. Other relevant ones are the absolute value of
a semialgebraic function, the maximum and the minimum of a finite family of
semialgebraic functions, and the inverse and the k-root of a semialgebraic function
whenever these operations are well defined.

It is obvious that the subset S∗(M) of bounded semialgebraic functions on M is
a real subalgebra of S(M). For the time being we denote by S�(M), indistinctly,
either S(M) or S∗(M) in case the involved statements or arguments are valid for
both rings.

The first remarkable fact concerning the maximal spectra of these rings is that the
respective maximal spectra βsM and β*

sM of S(M) and S∗(M) are homeomorphic
(see 3.5). This phenomenon occurs identically for rings of continuous functions on a
completely regular topological space, although the techniques involved to prove such
facts are substantially different (see for instance [GJ, §6-§7]). The homeomorphism
between βsM and β*

sM constructed in 3.5 allows us to characterize algebraically
those maximal ideals of the rings S�(M) corresponding to a point in M (see 3.7
and 3.11) and the compactness of M in terms of the equality of the rings S(M)
and S∗(M).

In the same vein as the classical Stone–Čech compactification, we prove (see 4.4
and 4.7) that β*

sM is the smallest compactification of M such that each bounded R-
valued semialgebraic function on M extends continuously to β*

sM . This is why we
will call β*

sM the semialgebraic Stone–Čech compactification of M , although β*
sM

is very rarely (homeomorphic to) a semialgebraic set. In fact, we characterize in
5.17 the semialgebraic sets M such that β*

sM is a semialgebraic set, as those whose
subset of points of local dimension ≥ 2 is compact. Note that for a 1-dimensional
M the compactification β*

sM is obtained by adding to M an ending point at each
open half-branch (see 4.20). For instance, if M = [0, 1) or (0, 1), then β*

sM = [0, 1]
(see 4.9).

Furthermore, the semialgebraic Stone–Čech compactification of M is the small-
est compactification that dominates each semialgebraic compactification of M and,
in fact, it is decisive to realize that β*

sM is the “inverse limit” of the collection of
such semialgebraic compactifications of M (see 4.6). These results suggest that the
topology of β*

sM can be recovered from the semialgebraic compactifications of M .
We are interested in determining the main topological properties of the remainder
∂M = β*

sM \M , and we prove (see 5.8) that it has finitely many connected compo-
nents and that in fact this number equals the number of connected components of
the remainder of a suitable semialgebraic compactification of M . In any case, the
number of connected components of ∂M upperly bounds the number of connected
components of the remainder X \M of any semialgebraic compactification X of M
(see 5.2). Other remarkable properties of ∂M are its local connectedness (see 5.13)
and that the topology of M determines its local compactness (see 5.14).

This article is organized as follows. In Section 2, we collect most of the prelim-
inary definitions, notation and results that will be used freely in the sequel. It is
worthwhile mentioning 2.9 which is a technical refinement of the classical theorem
[BCR, 9.2.1] concerning triangulations of compact semialgebraic subsets of Rn, and
this will be crucial for the proof of 5.8. Next, in Section 3 we develop the algebraic
approach to the homeomorphism between βsM and β*

sM mentioned above, while
in Section 4 we analyze this space β*

sM from the topological point of view. Finally,



ON THE SEMIALGEBRAIC STONE–ČECH COMPACTIFICATION 3481

Section 5 is devoted to the study of some of the most remarkable topological prop-
erties of the remainder ∂M . Also in this section, we prove that the space β*

sM is
rarely (homeomorphic to) a semialgebraic set and we study under what conditions
the operator β*

s commutes with finite products.
To finish this Introduction, we point out that our guideline to initially approach

this work has been [GJ], and many statements have been proposed after properly
adapting the corresponding ones for rings of continuous functions on a completely
regular topological space. However, the advantageous conditions of rings of semial-
gebraic functions on a semialgebraic set allow us to achieve sharper results by using
specific techniques of semialgebraic geometry.

2. Preliminaries on semialgebraic sets and semialgebraic functions

To begin this section we introduce some terminology, notation and preliminary
results that will be used systematically in this work. For each f ∈ S�(M) and
each semialgebraic subset N ⊂ M , we denote ZN (f) = {x ∈ N : f(x) = 0} and
DN (f) = N \ ZN (f). In case N = M , we say that ZM (f) is the zeroset of f . We
respectively denote by Bn(x, ε) and Bn(x, ε) the open and closed balls of Rn of center
x and radius ε, while their common boundary is denoted by Sn−1(x, ε). Sometimes
it will be useful to assume that the semialgebraic set M we are working with is
bounded. Such an assumption can be done without loss of generality. Namely,

Remark 2.1. Let M ⊂ Rn be a semialgebraic set. The semialgebraic homeomor-
phism

ϕ : Bn(0, 1) → Rn, x �→ x√
1− ‖x‖2

induces a ring isomorphism S(M) → S(N), f �→ f ◦ ϕ, where N = ϕ−1(M), that
maps S∗(M) onto S∗(N). Hence, if necessary, we may always assume that M is
bounded.

The next result, which concerns the representation of closed semialgebraic sub-
sets of a semialgebraic set as zerosets of semialgebraic functions, is well known and
will be used freely in this work (see for instance [FG1, 2.2]).

Lemma 2.2. Let Z be a closed semialgebraic subset of a semialgebraic set M ⊂ Rn.
Then, there exists h ∈ S∗(M) such that Z = ZM (h).

As a crucial ingredient in many proofs of this work, here we recall the following
semialgebraic version of the Tietze–Urysohn Lemma due to Delfs and Knebusch
(see [DK]) that will be used freely in what follows.

Theorem 2.3. Let N ⊂ M ⊂ Rn be semialgebraic sets such that N is closed in
M . Then, the homomorphism S�(M) → S�(N), F �→ F |N is surjective.

As a straightforward consequence, we have the following:

Corollary 2.4. Let C1, C2 ⊂ M ⊂ Rn be semialgebraic sets such that C1 and C2

are closed disjoint subsets of M . Then, there exists f ∈ S∗(M) such that f |C1
≡ 0

and f |C2
≡ 1.

Next, we present the triangulability of semialgebraic sets, which is one of the most
powerful tools to approach topological properties of this kind of sets. Moreover,
we include some results about triangulations that will be needed in forthcoming
sections.
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(2.5) Triangulations of semialgebraic sets. Let P0, . . . , Pk be k + 1 affinely
independent points in Rn. The k-simplex [P0, . . . , Pk] is the set of those x ∈ Rn

such that there exist nonnegative real numbers λ0, . . . , λk with
∑k

i=0 λi = 1 and

x =
∑k

i=0 λiPi. Of course, the k-simplex [P0, . . . , Pk] is a compact semialgebraic

manifold with boundary, semialgebraically homeomorphic to the closed ball Bk(0, 1)
of Rk. Next, if {Pi0 , . . . , Pi�} is a nonempty subset of {P0, . . . , Pk}, then the �-
simplex [Pi0 , . . . , Pi� ] is called an �-face of [P0, . . . , Pk]. If σ is a simplex, then the
open simplex σ0 is the subset of points of σ not belonging to any proper face of σ.
Note that ClRn(σ0) = σ and that σ = σ0 just in case σ is a point.

A finite simplicial complex of Rn is a finite collection of simplices K = (σi)
p
i=1

such that the faces of every σi belong to K and such that, for every 1 ≤ i, j ≤ p, the
intersection σi∩σj is either empty or a common face of σi and σj . A straightforward
computation shows that σ0

i ∩ σj is either empty or σ0
i . The realization of the

complex K is |K| =
⋃p

i=1 σi =
⋃p

i=1 σ
0
i ; in fact, the open simplices σ0

i constitute
a partition of |K|. A semialgebraic triangulation of a compact semialgebraic set
X ⊂ Rn is a pair (K,Φ), where K is a finite simplicial complex and Φ : |K| → X
is a semialgebraic homeomorphism. The triangulation (K,Φ) of X is said to be
compatible with a finite family F of semialgebraic subsets of X if each set S ∈ F is
the union of some Φ(σ0) with σ ∈ K.

(2.5.1) We recall a well-known procedure to triangulate a d-dimensional simplex
σ from a triangulation of one of its (d − 1)-dimensional faces τ . Observe that
there exists a unique vertex P of σ which is not contained in τ . This way, each

triangulation K of τ induces a triangulation K̂ of σ defined as follows. For each

simplex η ∈ K denote by η̂ the simplex generated by η and P . Then, K̂ is the
triangulation of σ whose simplices are the simplices η̂ generated by η and P , the
simplices of K and {P}.

The fundamental result about semialgebraic triangulations of compact semial-
gebraic sets is the following theorem (see [BCR, 9.2.1]).

Theorem 2.6 (Semialgebraic triangulation). Let X ⊂ Rn be a compact semialge-
braic set and let F be a finite family of semialgebraic subsets of X. Then, there
exists a semialgebraic triangulation of X compatible with F .

A particular case to be considered consists of a semialgebraic setX ⊂ Rn which is
itself a simplex, and whose trivial triangulation is the one whose simplices areX and
all its faces. For later purposes (see 5.8), we need more sophisticated triangulations
of a compact semialgebraic set than the one provided in 2.6. More precisely,

Lemma 2.7. Let M ⊂ X ⊂ Rn be semialgebraic sets such that X is compact.
Let F be a finite family of semialgebraic subsets of X containing M . Then, there
exists a semialgebraic triangulation (K,Φ) of X compatible with F such that for
each simplex σ ∈ K either σ ⊂ Φ−1(M) or there exists a face τ of σ satisfying
τ0 ⊂ σ \ Φ−1(M) ⊂ τ .

Before proving 2.7, we need a preliminary technical result. Namely,

Lemma 2.8. Let X ⊂ Rn be an n-dimensional simplex and let M be a union of
some open faces of X such that for each face σ of X either σ ⊂ M or there exists
a face τ of σ such that τ0 ⊂ σ \M ⊂ τ . Let K be a triangulation of X compatible
with the open faces of X. Then, for all θ ∈ K, either θ ⊂ M or there exists a face
ζ of θ such that ζ0 ⊂ θ \M ⊂ ζ.
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Proof. We proceed by induction on the dimension d of θ. If dim θ = 0, then θ is
a singleton, and so, either θ ⊂ M or θ0 = θ \ M = θ if θ �⊂ M . Assume that for
each k-dimensional simplex θ ∈ K with k ≤ d − 1, either θ ⊂ M or there exists a
face ζ of θ such that ζ0 ⊂ θ \M ⊂ ζ, and let us check that the same holds for the
d-dimensional simplices of the complex K.

Indeed, let θ ∈ K be a d-dimensional simplex such that θ �⊂ M . Let σ be the
unique face of X such that θ0 ⊂ σ0. Since θ �⊂ M , also σ �⊂ M , and so there exists a
face τ of σ such that τ0 ⊂ σ\M ⊂ τ . Observe that θ\M = θ∩(σ\M) ⊂ (θ∩τ )\M .
Since K is compatible with τ and θ \M �= ∅, the intersection θ ∩ τ is the union of
the relative interiors of some faces of θ. Since θ and τ are compact and convex, so
is its intersection θ ∩ τ . Thus, θ ∩ τ is the union of some faces of θ; let P1, . . . , Ps

be all the vertices of θ which belong to τ . Since θ ∩ τ is the union of some faces of
θ and it is convex, we deduce that  = θ ∩ τ is the simplex [P1, . . . , Ps] ∈ K. Now,
we distinguish two cases:

Case 1. If dim  = d, then  = θ and so θ ⊂ τ . Hence, ∅ �= θ0 ⊂ τ ∩ σ0 and
therefore τ = σ. Thus, σ0 ⊂ σ \M and we deduce

θ0 = θ0 ∩ σ0 ⊂ θ ∩ (σ \M) = θ \M ⊂ θ,

which implies θ0 ⊂ θ \M ⊂ θ.

Case 2. If dim  < d, then, by induction hypothesis, there exists a face ζ of ,
which is also a face of θ, such that ζ0 ⊂  \M ⊂ ζ. Hence,

ζ0 ⊂  \M = (θ ∩ τ ) \M = θ ∩ (τ \M) ⊂ θ \M ⊂ (θ ∩ τ ) \M =  \M ⊂ ζ,

that is, ζ0 ⊂ θ \M ⊂ ζ, as wanted. �

Proof of Lemma 2.7. We first study the fundamental case in which M is a finite
union of open faces of a simplex X of dimension d and F = {M}. We proceed by
induction on the dimension of X, the case dimX = 0 being trivial. If dimX = 1,
it is enough to choose as K a barycentric subdivision of the trivial triangulation of
X. Suppose the result is true for dimX = d− 1 and let us see that it is also true
for dimX = d.

(2.7.1) First, we choose an initial triangulation K0 of X as follows. If X0 �⊂ M
we consider in X its trivial triangulation K0. On the other hand, if X0 ⊂ M ,
we choose a barycentric subdivision of X which provides a triangulation K0 of X
whose simplices are:

(a) all the proper faces of X,
(b) the barycenter G of X, and

(c) those simplices δ̂ generated by G and a proper face δ of X.

Observe that in this second case in which X0 ⊂ M , each d-dimensional simplex σ
of K0 satisfies one of the following conditions:

(1) σ ⊂ M .
(2) There exists a (d − 1)-dimensional (proper) face ε of σ, which is also a

proper face of X, such that σ \M ⊂ ε and σ = ε̂ is the simplex generated
by G and ε.

Of course, σ0 ⊂ X0 ⊂ M and the barycenter of X is a point of X0. Moreover, each
proper face of the simplex X is a face of some of the (d − 1)-dimensional faces of
the simplex X.



3484 JOSÉ F. FERNANDO AND J. M. GAMBOA

(2.7.2) For each simplex ϑ ∈ K0, we denote Mϑ = M ∩ ϑ. For each (d − 1)-
dimensional simplex ν ∈ K0 there exists, by induction hypothesis, a triangulation
Kν of ν such that for each simplex ς ∈ Kν either ς ⊂ Mν or there exists a face ι of
ς satisfying ι0 ⊂ ς \Mν ⊂ ι. Next, we distinguish two cases:

Case 1. X0 �⊂ M . Since M is a finite union of open faces of the simplex X, we
have X0 ∩M = ∅. By 2.6, there exists a triangulation K1 of X compatible with
X0 and all the open faces of all the simplices in the triangulations Kν of all the
(d − 1)-dimensional simplices ν of K0. Fix a simplex θ ∈ K1 such that θ �⊂ M .
If θ ∩ X0 = ∅, then θ is contained in a (d − 1)-dimensional face ν of X and, by
2.8, there exists a face ζ of θ such that ζ0 ⊂ θ \ M ⊂ ζ. On the other hand, if
θ∩X0 �= ∅, then also θ0∩X0 �= ∅ and, since K1 is compatible with X0, we deduce
θ0 ⊂ X0. Hence, θ0 \M = θ0 ∩ (X0 \M) = θ0 and so θ0 ⊂ θ \M ⊂ θ. Thus, K1

has the desired property that for each simplex θ ∈ K1 either θ ⊂ M or there exists
a face ζ of θ satisfying ζ0 ⊂ θ \M ⊂ ζ.

Case 2. X0 ⊂ M . If σ ∈ K0 is a d-dimensional simplex satisfying condition (1) in
2.7.1, that is, σ ⊂ M , we choose the trivial triangulation Kσ of σ. On the other
hand, if σ satisfies condition (2) in 2.7.1 we proceed as follows. Recall that σ = ε̂
is the simplex generated by the barycenter G and a (d − 1)-dimensional face ε of
X such that σ \ M ⊂ ε. Let Kε be a triangulation of ε given by the inductive

hypothesis. Now, we construct the triangulation Kσ = K̂ε of σ = ε̂ induced by Kε;
see 2.5.1. Let us check that for each simplex θ of Kσ:

(2.7.3) Either θ ⊂ Mσ or there exists a proper face ζ of θ such that ζ0 ⊂ θ\Mσ ⊂ ζ.
Indeed, by the properties of Kε, the claim of 2.7.3 is true if θ ⊂ ε because

Mε = Mσ ∩ ε. Moreover, since G ∈ X0 ∩ σ ⊂ M ∩ σ = Mσ, then {G} ⊂ Mσ.
Thus, we may assume that θ �⊂ Mσ and θ = ̂ for some  ∈ Kε. In this case, since
G ∈ X0, we have θ \  ⊂ X0 ∩ σ ⊂ M ∩ σ = Mσ. Thus, θ \ Mσ ⊂  and, since
θ �⊂ Mσ, we deduce that  �⊂ Mσ. By the properties of Kε, there exists a face ζ of
 such that ζ0 ⊂  \Mε ⊂ ζ. Observe that since  ⊂ ε, we have

ζ0 ⊂  \Mε =  \ (M ∩ ε) =  \M ⊂ θ \M = θ \Mσ ⊂  \Mσ =  \Mε ⊂ ζ

and so ζ0 ⊂ θ \Mσ ⊂ ζ, which proves the claim of 2.7.3.
Now, let K1 be a triangulation of X compatible with all the open faces of all the

simplices in the triangulations Kσ of all the d-dimensional simplices of K0. Notice
that, by 2.8, for all θ ∈ K1, either θ ⊂ M or there exists a face ζ of θ such that
ζ0 ⊂ θ \M ⊂ ζ.

(2.7.4) We now study the general case. By 2.6, there exist a finite simplicial complex
K ′ = {si}pi=1 in Rn and a semialgebraic triangulation (K ′,Ψ) of X compatible
with {M}. Proceeding as above with each simplex si, we get a triangulation Ki

of si satisfying the conditions in the statement for si and Ψ−1(M) ∩ si. Let H
be the union of F and the family of all open faces of all simplices occurring in
all triangulations Ki. By 2.6, there exists a semialgebraic triangulation (K ′′,Φ)
of X compatible with H; by 2.8 this triangulation satisfies the conditions in the
statement. �

Corollary 2.9. Let M ⊂ X ⊂ Rn be semialgebraic sets such that X is compact
and M is dense in X. Let F be a finite family of semialgebraic subsets of X con-
taining M . Then, there exists a semialgebraic triangulation (K,Φ) of X compatible
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with F such that, for each simplex σ ∈ K which is not a face of other simplex of
the triangulation (K,Φ), either σ ⊂ Φ−1(M) or there exists a proper face τ of σ
satisfying τ0 ⊂ σ \ Φ−1(M) ⊂ τ .

Proof. First, by 2.7, there exists a semialgebraic triangulation (K,Φ) of X com-
patible with the family F such that for each simplex σ ∈ K either σ ⊂ Φ−1(M)
or there exists a face τ of σ satisfying τ0 ⊂ σ \ Φ−1(M) ⊂ τ . Let us check that if
σ ∈ K is not a face of other simplex of the triangulation (K,Φ) and σ �⊂ Φ−1(M),
then τ is a proper face of σ.

Indeed, let σ1, . . . , σs be the collection of all simplices of K different from σ.
Since σ is not a face of other simplex of the triangulation (K,Φ), we deduce that
σ0 = |K| \

⋃s
i=1 σi, and so Φ(σ0) is a nonempty open subset of X. Now, since

M is dense in X, the intersection Φ(σ0) ∩ M is nonempty. This implies, since
(K,Φ) is compatible with M , that Φ(σ0) ⊂ M . This, together with the inclusion
τ0 ⊂ σ\Φ−1(M), implies that τ �= σ, that is, τ is a proper face of σ, as wanted. �

3. Maximal spectra of rings of semialgebraic functions

The purpose of this section is to study the maximal spectra of rings of semial-
gebraic and bounded semialgebraic functions on a semialgebraic set M ⊂ Rn. As
we will see in this section both maximal spectra of S(M) and S∗(M) are Hausdorff
compactifications of M with nice properties, which are in fact homeomorphic. We
refer the reader to [BCR, §1, §7] for more details about real or orderable fields and
the real spectrum of a commutative ring with unity.

(3.1) Maximal spectra. We will denote by β�
sM the collection of all maximal

ideals of S�(M). As usual, we consider in β�
sM the Zariski topology, having the

family of sets Dβ�
sM (f) = {m ∈ β�

sM : f �∈ m}, where f ∈ S�(M), as a basis of open
sets. We will denote Zβ�

sM (f) = β�
sM \ Dβ�

sM (f).

(3.1.1) We recall that: for each maximal ideal m of S�(M), the field S�(M)/m
admits a unique ordering whose positive elements are the squares. Indeed, it is
enough to check that modulo m each function f ∈ S�(M) is either a square or
the opposite of a square. Since (f − |f |)(f + |f |) = f2 − |f |2 = 0 ∈ m, we have

f +m = ±(|f |+m) = ±(
√
|f |+m)2, where

√
|f | ∈ S�(M).

(3.1.2) Hence, the map m �→ (m,≤) defines a bijection between β�
sM and the real

maximal spectrum of S�(M). Thus, in what follows we will denote both spectra by
β�
sM . Recall that a basis of the usual spectral topology for β�

sM is the family of
sets

Uβ�
sM (f1, . . . , fr) = {m ∈ β�

sM : fi +m > 0 in S�(M)/m},
for f1, . . . , fr ∈ S�(M). As one can check straightforwardly, for each f ∈ S�(M),

Dβ�
sM (f) = Uβ�

sM (f) ∪ Uβ�
sM (−f) and Uβ�

sM (f) = Dβ�
sM (f + |f |),

and so, as is well known, the spectral and the Zariski topologies of β�
sM coincide.

(3.1.3) At this point we also recall that M (endowed with the Euclidean topology)
can be embedded in β�

sM as a dense subspace via the embedding

φ : M → β�
sM, p �→ m

�
p,

where m�
p denotes the maximal ideal of all functions of S�(M) vanishing at p. Thus,

we identify M with φ(M) and this provides the equalities DM (f) = Dβ�
sM (f) ∩M

and ZM (f) = Zβ�
sM (f) ∩M .
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The operator β�
s enjoys the expected functorial behaviour (see for instance [FG3,

§6] for further details). In fact, given a semialgebraic map ϕ : N → M between
semialgebraic setsN ⊂ Rn andM ⊂ Rm, there exists a unique continuous extension
β�
sϕ : β�

sN → β�
sM of ϕ.

(3.1.4) Moreover, in [FG3, 6.3-5] we prove that β�
s enjoys a natural behaviour

with respect to the closed semialgebraic subsets of a given semialgebraic set. More
precisely, let C,C1, C2 be closed semialgebraic subsets of M . Then,

(i) The space β�
sC is homeomorphic to Clβ�

sM (C) ⊂ β�
sM via β�

s j : β
�
sC → β�

sM ,
where j : C ↪→ M is the inclusion map.

(ii) Clβ�
sM (C1 ∩ C2) = Clβ�

sM (C1) ∩ Clβ�
sM (C2).

(3.1.5) Concerning the connected components of the maximal spectrum of S�(M),
the situation is the one we desire (see [FG3, 6.6]). Let M1, . . . ,Mk be the connected
components of a semialgebraic set M ⊂ Rn. Then, their closures Clβ�

sM (Mi) ∼=
β�
sMi are the connected components of β�

sM . In particular, β�
sM has a finite number

of connected components, and it is connected if and only if M is connected too.

(3.1.6) On the other hand, by [BCR, 7.1.25(ii)], β�
sM is a compact, Hausdorff

space and, by 3.1.3, it contains M as a dense subspace, that is, β�
sM is a Hausdorff

compactification of M . Now let us see that, as it happens for rings of continuous
functions (see [GJ, §7]), the respective maximal spectra βsM and β*

sM of S(M) and
S∗(M) are homeomorphic. We recall at this point that S�(M) is a Gelfand ring
(see [FG2, 3.1(iii)]). Hence, a natural map from βsM to β*

sM associates to each
maximal ideal m of S(M) the unique maximal ideal m∗ of S∗(M) that contains
the prime ideal m∩S∗(M). Before proving that this map is a homeomorphism, we
need some preliminary results.

Definitions 3.2. Let M ⊂ Rn be a semialgebraic set. For every f ∈ S(M) and
ε > 0 we denote

Bε(f) = f−1([−ε, ε]) = ZM

(
ε− |f | − |ε− |f ||

)
= Bε(|f |).

Let us fix in what follows an ideal a of S(M), and define

a
∗ = {f ∈ S∗(M) : ∀ε > 0 ∃ g ∈ a with ZM (g) ⊂ Bε(f)},

which, as one can check straightforwardly, is a radical ideal which satisfies the
following convexity condition: given h ∈ S∗(M) and f ∈ a∗ such that 0 ≤ h(x) ≤
f(x) for each x ∈ M , then h ∈ a∗.

We will next prove some preliminary results.

Lemma 3.3. Let M ⊂ Rn be a semialgebraic set and let p be a prime ideal of
S(M) and m the unique maximal ideal of S(M) containing p. Then, p∗ = m∗ is
the unique maximal ideal in S∗(M) containing p ∩ S∗(M).

Proof. First, let us prove that p∗ = m∗. The inclusion p∗ ⊂ m∗ is clear, and let
us check that in fact it is an equality. Suppose by way of contradiction that there
exists f ∈ m∗ \ p∗. Since f �∈ p∗ there exists ε > 0 such that for all g ∈ S(M) with
ZM (g) ⊂ Bε(f), we have g �∈ p. In particular, the function g1 = ε− |f | − |ε− |f ||
satisfies Bε(f) = ZM (g1), and so g1 ∈ S(M) \ p. On the other hand, since f ∈ m∗,
there exists g2 ∈ m such that ZM (g2) ⊂ Bε/2(f). Next, by 2.2, there exists h ∈
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S(M) such that ZM (h) = {x ∈ M : |f(x)| ≥ ε}. Since g1h = 0 ∈ p and g1 �∈ p, we
deduce that h ∈ p ⊂ m and so g22 + h2 ∈ m. However,

ZM (g22 + h2) ⊂ Bε/2(f) ∩ {x ∈ M : |f(x)| ≥ ε} = ∅,

or equivalently, g22 + h2 ∈ m is a unit of S(M), a contradiction. Hence, p∗ = m∗.
Thus, to prove the second part of the statement, we may assume that p = m is

a maximal ideal of S(M). We already know that m∗ is an ideal of S∗(M). Before
proving that m∗ is maximal we show that m ∩ S∗(M) ⊂ m∗. Let f ∈ m ∩ S∗(M);
given ε > 0 there exists, by 2.2, g ∈ S(M) such that Bε(f) = ZM (g), and it suffices
to check that g ∈ m. By 2.2, there exists h ∈ S(M) such that

{x ∈ M : |f(x)| ≥ ε} = ZM (h).

Then, gh ≡ 0 ∈ m, and so it is enough to prove that h �∈ m, or equivalently,
f2 + h2 �∈ m, but this is obvious because ZM (f2 + h2) = ∅.

To finish let us prove that m∗ is a maximal ideal of S∗(M). Given f ∈ S∗(M)\m∗

we must show that 1 ∈ fS∗(M) +m∗. Since f2 �∈ m∗ there exists 0 < ε < 1/2 and
g ∈ S(M) \ m such that ZM (g) = Bε(f

2). Moreover, since m is a maximal ideal
and g �∈ m, there exist h ∈ S(M) and b ∈ m such that 1 = gh + b. Notice that
c = |b|/(1 + b2) ∈ m ∩ S∗(M) ⊂ m∗ and Bε(f

2) ∩ Bε(c) = ZM (g) ∩ Bε(c) = ∅.
Thus, ε ≤ f2(x) + c(x) for each x ∈ M ; hence, d = 1/(f2 + c) ∈ S∗(M) and
1 = d(f2 + c) = f2d+ cd ∈ fS∗(M) +m∗, as wanted. �
Lemma 3.4. Let M ⊂ Rn be a semialgebraic set and let m be a maximal ideal of
S(M) and f ∈ S(M). Then, the following conditions are equivalent:

(i) The function f ∈ m.
(ii) ZM (f) ∩Bε(b) �= ∅ for each ε > 0 and each b ∈ m∗.

Proof. Suppose first that f ∈ m, and let ε > 0 and b ∈ m∗. Then, there exists
g ∈ m such that ZM (g) ⊂ Bε(b). Thus,

∅ �= ZM (f2 + g2) = ZM (f) ∩ ZM (g) ⊂ ZM (f) ∩Bε(b),

because f2 + g2 ∈ m.
Conversely, let f ∈ S(M) be a semialgebraic function satisfying (ii). We will

prove:

(3.4.1) ZM (f) ∩ ZM (g) �= ∅ for all g ∈ m.
Once this is done, suppose, by way of contradiction, that f �∈ m. Then, there

exists h ∈ S(M) with g = hf−1 ∈ m, and so ZM (f)∩ZM (g) = ∅, which contradicts
3.4.1.

Next, assume, again by way of contradiction, that 3.4.1 does not hold. Then,
there exists g ∈ m such that f and g have no common zero. Therefore, the semialge-
braic function h = g2/(f2 + g2) ∈ S∗(M) satisfies h|ZM (f) ≡ 1 and h|ZM (g) ≡ 0. In
particular, h ∈ S∗(M) and for every ε > 0, ZM (g) = ZM (h) ⊂ Bε(h); hence,
we have h ∈ m∗. Since f fulfills condition (ii) in the statement, there exists
x ∈ ZM (f) ∩B1/2(h), and so 1 = h(x) ≤ 1/2, a contradiction. �
Theorem 3.5. Let M ⊂ Rn be a semialgebraic set. Then, the map

Φ : βsM → β*
sM, m �→ m∗,

which maps each maximal ideal m of S(M) to the unique maximal ideal m∗ of
S∗(M) that contains m∩S∗(M), is a homeomorphism. Moreover, Φ(mp) = m∗

p for
all p ∈ M .
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Proof. First, we prove that the map Φ is continuous, proper and surjective. Indeed,
the map (·)∗ : Specs(M) → β*

sM, p → p∗ is the composition rM◦j1 of the continuous
map j1 : Specs(M) → Spec*s (M), p → p ∩ S∗(M) with the (continuous) retraction
rM : Spec*s (M) → β*

sM which maps each prime ideal of S∗(M) onto the unique
maximal ideal containing it (see [MO, 1.2]). Hence, the map (·)∗ is continuous.
Thus, if j2 : βsM ↪→ Specs(M) is the inclusion map, then the composition

Φ = rM ◦ j1 ◦ j2 = (·)∗ ◦ j2 : βsM → β*
sM

is also continuous. Moreover, since mp ∩ S∗(M) = m∗
p for each p ∈ M , we deduce

that Φ(mp) = m∗
p for all p ∈ M . Thus, since βsM is compact, the set imΦ, which

contains M , is closed in the Hausdorff space β*
sM . Hence, imΦ = Clβ*

sM
(M) =

β*
sM , and so Φ is surjective. Therefore, Φ : βsM → β*

sM is continuous, proper and
surjective, and it only remains to prove its injectivity.

Indeed, let m1 and m2 be distinct maximal ideals of S(M), and let f ∈ m1 \m2.
Then, by 3.4, there exist ε > 0 and b ∈ m∗

2 such that ZM (f) ∩ Bε(b) = ∅. Since
f ∈ m1, necessarily b �∈ m∗

1 (again use 3.4). Thus, m∗
1 �= m∗

2, and we are done. �

Remarks 3.6. (i) Notice that the inverse homeomorphism

Φ−1 : β*
sM → βsM, m∗ �→ m

is defined by m = {f ∈ S(M) : ZM (f) ∩Bε(b) �= ∅ ∀ε > 0& ∀b ∈ m∗} (see 3.4).
(ii) As a consequence of 3.5, it is not an abuse of notation to denote m∗ for

every maximal ideal of S∗(M). Moreover, m will denote the unique maximal ideal
of S(M) such that m ∩ S∗(M) ⊂ m∗.

(iii) Observe that the inclusion map R ↪→ S∗(M)/m∗, r �→ r+m∗, is an (injective)
homomorphism of ordered fields; in fact, it is an isomorphism, because S∗(M)/m∗

is an archimedean extension of R. Thus, since R admits a unique automorphism,
there is no ambiguity to refer to f +m∗ ∈ R as a real number for every f ∈ S∗(M).
In particular, for each p ∈ M the isomorphism S∗(M)/m∗

p
∼= R identifies f + m∗

p

with f(p). Therefore, each bounded semialgebraic function f : M → R defines

a natural extension f̂ : β*
sM → R, m∗ → f + m∗, which is continuous because

f̂−1((a, b)) = Uβ*
sM

(f − a, b− f) for every pair of real numbers a < b. Of course, f̂

is the unique continuous extension of f to β*
sM because M is dense in β*

sM .

In contrast to what happens in dealing with ideals of polynomial rings, the zeroset
of a prime ideal p of S�(M) provides no substantial information about p, because it
is either a point or the empty set (see for instance [FG1, 2.3]). An ideal a of S�(M)
is said to be fixed if all functions in a vanish simultaneously at some point of M .
Otherwise, the ideal a is free. The fixed maximal ideals of the ring S�(M) are those
of the form m�

p where p ∈ M . As we have already commented, mp ∩ S∗(M) = m∗
p

for each point p ∈ M . In fact, the equality m∩S∗(M) = m∗ characterizes the fixed
maximal ideals of S�(M). Namely, if ht(a) denotes the height of an ideal a, we
have:

Proposition 3.7. Let M ⊂ Rn be a semialgebraic set and let m be a maximal ideal
of S(M). Then, the following assertions are equivalent:

(i) m∗ is a fixed ideal.
(ii) m ∩ S∗(M) = m∗.
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(iii) m is a fixed ideal.
(iv) ht(m) = ht(m∗).

Before proving 3.7 we need some preliminaries.

Proposition 3.8. Let M ⊂ Rn be a semialgebraic set and f ∈ S�(M).

(i) If the zeroset ZM (f) is not compact, then f lies in some free ideal a of
S�(M).

(ii) If S�(M) = S(M), the converse of (i) is true.

Proof. (i) Since ZM (f) is not compact, there exists a family {Wi}i∈I of open semi-
algebraic subsets of Rn which covers ZM (f) and admits no finite subcovering. For
each index i ∈ I, let gi ∈ S∗(Rn) such that ZRn(gi) = Rn \Wi. Let us show that
the ideal a of S�(M) generated by f and the restrictions fi = gi|M is a free ideal.
In case a = S�(M) we have an equality 1 = gf +

∑
j∈J fjhj for some finite subset

J of I and some functions g, hj ∈ S�(M). Since the finite family {Wj}j∈J does
not cover ZM (f) there exists a point x ∈ ZM (f) \

⋃
j∈J Wj , which contradicts the

equality above. Thus, a is a proper ideal of S�(M), and we now check that it is
free. In fact, ZM (f) ⊂

⋃
i∈I Wi or, equivalently,⋂

h∈a

ZM (h) = ZM (f) ∩
⋂
i∈I

ZM (fi) = ZM (f) ∩
⋂
i∈I

(Rn \Wi) = ∅,

and so a is a free ideal.
To prove (ii), assume that f ∈ a for some free ideal a of S(M). Then, the

intersection
⋂

g∈a
ZM (g) = ∅, that is, the family {DM (g) : g ∈ a}, is an open

covering of ZM (f). Notice that the finite unions DM (g1) ∪ · · · ∪ DM (gr) do not
cover ZM (f), and so this last is not compact. Otherwise, if

ZM (f) ⊂ DM (g1) ∪ · · · ∪DM (gr)

for some g1, . . . , gr ∈ a, the intersection ZM (f) ∩ ZM (g1) ∩ · · · ∩ ZM (gr) = ∅, and
this implies that f2+g21+ · · ·+g2r ∈ a would be a unit in S(M), a contradiction. �

Remark 3.9. Note that 3.8(ii) is not true for S∗(M) ifM is not compact. Indeed, we
may assume, by 2.1, that M is bounded, and so there is a point p ∈ ClRn(M) \M .
Consider the bounded semialgebraic function f : M → R, x → ‖x − p‖ whose
zeroset is empty, hence, compact, and the ideal generated by f in S∗(M) is free.
This also proves that if M is not compact, then S∗(M) has free maximal ideals.
Of course, if M is a compact semialgebraic set there is nothing to discuss because
S(M) = S∗(M).

Now, we are ready to prove 3.7.

Proof of Proposition 3.7. The equivalence (i) ⇐⇒ (iii) is clear, and the one of (ii)
and (iv) follows from the fact that S(M) = S∗(M)W(M) is the localization of S∗(M)
at the multiplicative subset W(M) of those bounded semialgebraic functions on M
with empty zeroset. Thus, it suffices to check the implications (i) =⇒ (ii) =⇒ (iii).

Indeed, if m∗ = m∗
p for some p ∈ M , then mp ∩ S∗(M) = m∗

p. Next, let m be a
maximal ideal of S(M) such that m ∩ S∗(M) = m∗. By 2.1, we may assume that
M is bounded and we consider the compact semialgebraic set X = ClRn(M). We
have the following sequence of ring monomorphisms

S(X) = S∗(X) ↪→ S∗(M) ↪→ S(M),
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where the first one is defined as the restriction to M , while the second one is the
inclusion. Let us see that n = m∗ ∩ S(X) = m ∩ S∗(M) ∩ S(X) = m ∩ S(X) is a
maximal ideal of S(X). Consider the following composition of homomorphisms:

ψ : S(X) ↪→ S∗(M) → S∗(M)/m∗ ∼= R.

Since n = kerψ, we get R ↪→ S(X)/n → S∗(M)/m∗ ∼= R, and so S(X)/n ∼= R;
that is, n is a maximal ideal of S(X). Next, by the compactness of X there exists,
by 3.8, a point p ∈ X such that n = np = {f ∈ S(X) : f(p) = 0}. The function
g(x) = ‖x − p‖ ∈ n = m ∩ S(X) ⊂ m. Since m is an ideal of S(M), the point
p ∈ M (otherwise g would be a unit of S(M)). Thus, m ⊂ mp, because if not,
there exists h ∈ m such that h(p) �= 0; hence the zeroset of g2 + h2 ∈ m is empty, a
contradiction. Therefore, m being a maximal ideal, we conclude that m = mp is a
fixed ideal, as wanted. �

Corollary 3.10. Let M ⊂ Rn be a semialgebraic set. Then, the following asser-
tions are equivalent:

(i) M is compact.
(ii) Each maximal ideal of S(M) is fixed.
(iii) Each maximal ideal of S∗(M) is fixed.
(iv) S(M) = S∗(M).

Proof. The equivalence of (i) and (ii) follows from 3.8 and the one of (ii) and (iii)
follows from 3.7. Finally, we check that the rings S(M) and S∗(M) coincide if and
only if M is compact. The equality S(M) = S∗(M) is obvious if M is compact.
Conversely, if S(M) = S∗(M), then m ∩ S∗(M) = m∗ for each maximal ideal m of
S(M). Thus, by 3.7, all maximal ideals of S(M) are fixed and, by the equivalence
of (i) and (ii), M is compact. �

We have shown in 3.5 that the maximal spectra of S(M) and S∗(M) are home-
omorphic. However, there exists a difference in dealing with them. While all
quotients S∗(M)/m∗ are (isomorphic to) R, for the maximal ideals m of the ring
S(M) this is true if and only if m is a fixed maximal ideal. Namely,

Corollary 3.11. Let M ⊂ Rn be a semialgebraic set and let m be a maximal ideal
of S(M). Then, S(M)/m is (isomorphic to) R if and only if m is a fixed maximal
ideal.

Proof. Note that S(M)/mp
∼= R for every fixed maximal ideal mp of S(M), since

mp is the kernel of the epimorphism evaluation at p. For the converse, consider the
homomorphisms S∗(M) ↪→ S(M) → S(M)/m ∼= R. The composition is surjective
and its kernel is m∩ S∗(M), which is henceforth a maximal ideal of S∗(M). Thus,
m∩S∗(M) = m∗ is, by 3.7, a fixed ideal of S∗(M). We conclude, again by 3.7, that
m is a fixed ideal of S(M). �

4. Semialgebraic Stone–Čech compactification

The classical Stone–Čech compactification is a crucial tool for the study of rings
of continuous functions. It is characterized as the “smallest” Hausdorff compacti-
fication to which all bounded R-valued continuous functions extend continuously.
This suggests that we make a similar construction in the semialgebraic setting. To
illustrate the used strategy we begin by constructing a compactification to which
a finite family of bounded semialgebraic functions can be extended. In this case,
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we can force the compactification to be moreover semialgebraic. As we will see
later the semialgebraicity of a compactification to which all bounded semialgebraic
functions extend is kept just for very particular situations.

Proposition 4.1. Let M ⊂ Rn be a semialgebraic set and let f1, . . . , fr ∈ S∗(M).
Then, there exists a compact semialgebraic set X ⊂ Rn+r and a semialgebraic
embedding j : M ↪→ X such that (X, j) is a compactification of M , and for each fi
there exists Fi ∈ S(X) such that Fi ◦ j = fi. In fact, if M is bounded, we can take
X = ClRn+r (graph(f1, . . . , fr)).

Proof. First, we may assume, by 2.1, that M is bounded. Consider the graph Γ of
the semialgebraic map ϕ : M → Rr, x �→ (f1(x), . . . , fr(x)). Let X be the closure
in Rn+r of Γ. Since M and the functions f1, . . . , fr are bounded, the same holds
true for Γ; hence, X is compact. Let j : M → Γ ↪→ X, x �→ (x, f1(x), . . . , fr(x))
and, for 1 ≤ i ≤ r, let Fi = πn+i|X be the restriction to X of the projection
πn+i : R

n+r → R, (x1, . . . , xn+r) → xn+i. Then, the pair (X, j) and the functions
Fi satisfy the required conditions. �

Once this is done, we attack the problem of extending simultaneously all bounded
semialgebraic functions on a semialgebraic set.

Definitions 4.2. (i) Let M ⊂ Rn be a semialgebraic set. A compactification (X, j)
of M is semialgebraically complete if for each f ∈ S∗(M) there exists a continuous
function F : X → R such that f = F ◦ j.

(ii) Given two compactifications (X1, j1) and (X2, j2) of a semialgebraic set M ⊂
Rn, we say that (X2, j2) dominates (X1, j1), and we write (X1, j1) � (X2, j2) if there
exists a continuous surjective map ρ : X2 → X1 such that ρ ◦ j2 = j1. Note that
since ji(M) is dense in Xi for i = 1, 2, the map ρ is unique with such property.

The domination relation � is an order relation (up to homeomorphism compat-
ible with the embeddings) in the set of all compactifications of M , and we look
for the smallest one among those being semialgebraically complete. Before that we
need some preliminaries.

Lemma 4.3. Let (X1, j1) and (X2, j2) be two compactifications of a semialgebraic
set M ⊂ Rn such that (X1, j1) � (X2, j2). Let ρ : X2 → X1 be the unique continu-
ous and surjective map such that ρ ◦ j2 = j1.

(i) Suppose that X2 is Hausdorff. Then, ρ−1(X1 \ j1(M)) = X2 \ j2(M). In
particular, ρ(X2 \ j2(M)) = X1 \ j1(M).

(ii) Suppose that (X2, j2) � (X1, j1). Then, ρ is a homeomorphism.
(iii) Let f : X1 → R be a continuous function. Then, f ◦ ρ : X2 → R is the

unique continuous function such that f ◦ j1 = (f ◦ ρ) ◦ j2.

Proof. Statement (i) alone requires some comments. Indeed, let us first see that
X2 \ j2(M) ⊂ ρ−1(X1 \ j1(M)). Let x2 ∈ X2 \ j2(M). Since j2(M) is dense in X2,
there exists a net {sd, D,≤} in M such that the net {j2(sd), D,≤} converges to
x2. By continuity, the net {j1(sd) = (ρ ◦ j2)(sd), D,≤} converges to ρ(x2). If this
point occurs in j1(M), then the net {sd, D,≤} converges to a point y ∈ M . Since
X2 is Hausdorff and the points x2 and j2(y) are limits of the net {j2(sd), D,≤},
we conclude that x2 = j2(y) ∈ j2(M), a contradiction. Conversely, suppose there
exists x2 ∈ ρ−1(X1 \ j1(M)) ∩ j2(M). Then, ρ(x2) �∈ j1(M), but x2 = j2(y) for
some y ∈ M . This implies ρ(x2) = ρ(j2(y)) = j1(y) ∈ j1(M), a contradiction.
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Finally, since ρ is surjective and ρ−1(X1 \ j1(M)) = X2 \ j2(M), we conclude that
ρ(X2 \ j2(M)) = X1 \ j1(M). �

In the rest of this section, all the involved compactifications will be Hausdorff.
To construct the smallest semialgebraically complete compactification of a semial-
gebraic set we imitate, adapted to the semialgebraic context, the classical method
to construct the Stone–Čech compactification of a completely regular topological
space.

(4.4) Semialgebraic Stone–Čech compactification. Let M ⊂ Rn be a semi-
algebraic set. For each semialgebraic function f ∈ S∗(M) consider the bounded
interval If = [infM (f), supM (f)] � R, and let

∏
f∈S∗(M) If which, endowed with

the product topology, is a compact and Hausdorff topological space.

(4.4.1) The map ϕ : M →
∏

f∈S∗(M) If , x �→ (f(x))f∈S∗(M) is a topological

embedding.
To prove this it is enough to check (see [Mu, Ch. 4]) that the ring S∗(M) separates

points and closed subsets of M . Indeed, given a point p ∈ M and a closed subset
C ⊂ M , let B be the intersection of M with an open ball centered at p of small
enough radius, such that B∩C is empty. Then, K = M \B is a closed semialgebraic
subset of M containing C and p �∈ K. From 2.4 applied to the disjoint closed
semialgebraic subsets C1 = K and C2 = {p} of M , there exists f ∈ S∗(M) such
that f(p) = 1 and f |K ≡ 0. Hence, f separates p and C, and so ϕ is an embedding.

(4.4.2) Let us define β∧
sM as the closure of ϕ(M) in

∏
f∈S∗(M) If , which is a

compact set, and let us see that (β∧
sM,ϕ) is a semialgebraically complete compact-

ification of M . Indeed, given g ∈ S∗(M) the projection

πg : β∧
sM → Ig ⊂ R, (xf )f∈S∗(M) → xg

is a continuous function and πg ◦ ϕ = g.

(4.4.3) The compactification (β∧
sM,ϕ) is the smallest among the semialgebraically

complete compactifications of M (see 4.3). To prove this, let (X,ψ) be another
semialgebraically complete compactification of M . For each f ∈ S∗(M), let us

denote f̂ : X → R as the unique continuous function such that f̂ ◦ ψ = f . The
continuous map

Ψ : X →
∏

f∈S∗(M)

If , x �→ (f̂(x))f∈S∗(M)

satisfies Ψ ◦ ψ = ϕ, and we just need to check that imΨ = β∧
sM . This is obvious

since X is compact, ψ(M) and ϕ(M) are dense in X and β∧
sM , respectively, and

Ψ ◦ ψ = ϕ.
Because of 4.4.1-4.4.3, we say that (β∧

sM,ϕ) is the semialgebraic Stone–Čech
compactification of M . The adjective semialgebraic refers to the nature of the
functions expected to be continuously extended and not to the set β∧

sM , which
very rarely is semialgebraic (see 5.17). Clearly, by definition, β∧

sM = M if and only
if M is compact.

(4.5) Semialgebraic compactifications. Let M ⊂ Rn be a semialgebraic set.
A compactification (X, j) of M is said to be a semialgebraic compactification of
M if j is a semialgebraic map between the semialgebraic sets M and X ⊂ Rm.
Proposition 4.1 provides a large family of semialgebraic compactifications of M .
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Our next goal is to compare the semialgebraic Stone–Čech compactification with
the semialgebraic ones.

Proposition 4.6. Let M ⊂ Rn be a semialgebraic set. Then:

(i) Each semialgebraic compactification (X, j) of M satisfies that (X, j) �
(β∧

sM,ϕ).
(ii) Let (Y, i) be a compactification of M such that (X, j) � (Y, i) for every

semialgebraic compactification (X, j) of M . Then, (β∧
sM,ϕ) � (Y, i).

Proof. (i) Write j = (j1, . . . , jm) : M → X ⊂ Rm. Since X is compact, each

component jk ∈ S∗(M), and we denote by ĵk : β∧
sM → R its unique continuous

extension, that is, ĵk ◦ ϕ = jk. Consider the continuous map

ρ = (ĵ1, . . . , ĵm) : β∧
sM → Rm.

By definition, ρ ◦ ϕ = j. Hence, ρ(ϕ(M)) = j(M) ⊂ X and so ρ(β∧
sM) ⊂ X. Since

ρ(β∧
sM) is closed in X and contains the dense subset j(M), we have ρ(β∧

sM) = X.
Therefore, (X, j) � (β∧

sM,ϕ).
(ii) By 4.4.3, it suffices to prove that (Y, i) is semialgebraically complete. To that

end, let f ∈ S∗(M). By 4.1, there exist a semialgebraic compactification (X, j) of
M and a function F ∈ S(X) such that F ◦ j = f . Since (X, j) � (Y, i) there exists
a surjective continuous map ρ : Y → X such that ρ ◦ i = j. Therefore, the function
G = F ◦ ρ : Y → R satisfies G ◦ i = F ◦ ρ ◦ i = F ◦ j = f , as wanted. �

We showed in 3.3.1 that (β*
sM,φ) is a Hausdorff compactification of the semialge-

braic setM . Let us now see that it is the semialgebraic Stone–Čech compactification
of M . This way, we get a new model for such a compactification.

Proposition 4.7. Let M ⊂ Rn be a semialgebraic set and consider the canonical
inclusion φ : M ↪→ β*

sM, p �→ m∗
p. Then, the pair (β*

sM,φ) is the semialgebraic

Stone–Čech compactification of M .

Proof. First, observe that for each f ∈ S∗(M) the map f̂ : β*
sM → R, m∗ �→ f+m∗

is continuous and f = f̂ ◦ φ (see 3.6). In particular (β*
sM,φ) is semialgebraically

complete. Next, we show that β*
sM

∼= β∧
sM , via a homeomorphism Ψ such that

Ψ◦φ = ϕ, where ϕ is the topological embedding defined in 4.4.1. With the notation
of 4.4, observe that for each f ∈ S∗(M),

f̂(β*
sM) = f̂(Clβ*

sM
(φ(M))) ⊂ ClR(f̂(φ(M))) = ClR(f(M)) ⊂ If .

Moreover, the family of continuous functions {f̂ : f ∈ S∗(M)} separates points and
closed subsets of β*

sM . Indeed, let n∗ ∈ β*
sM and let C ⊂ β*

sM be a closed subset
of β*

sM such that n∗ �∈ C. Thus, there exists f ∈ S∗(M) such that n∗ ∈ Dβ*
sM

(f) ⊂
β*
sM \ C. Clearly, f satisfies f̂ |C ≡ 0 and f̂(n∗) �= 0. Therefore, the map

Ψ : β*
sM →

∏
f∈S∗(M)

If , m∗ �→ (f̂(m∗))f∈S∗(M)

is an embedding.
To check the equality Ψ ◦ φ = ϕ, observe that for each point p ∈ M and each

function f ∈ S∗(M) we know that f̂(m∗
p) = f + m∗

p = f(p) or, in other words,
Ψ ◦ φ = ϕ.
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To finish we must just check that imΨ = β∧
sM , which follows at once from the

compactness of β*
sM , the equality Ψ ◦φ = ϕ and the fact that φ(M) and ϕ(M) are

dense subspaces of β*
sM and β∧

sM , respectively. �
As a straightforward consequence of 3.5 and 4.7, we have the following.

Corollary 4.8. Let M ⊂ Rn be a semialgebraic set and consider the canonical
inclusion φ : M ↪→ βsM, p �→ mp. Then, the pair (βsM,φ) is the semialgebraic

Stone–Čech compactification of M .

Thus, we have constructed three different models of the semialgebraic Stone–
Čech compactification of a semialgebraic set M . We will choose, according to the
involved situation, the suitable model to work with, but we will always denote it by
β*
sM . Only if a particular question requires more details will we use a more specific

notation.
For the sake of simplicity, given a compactification (X, j) of M we identify M

with its image j(M) and we will write M ⊂ X. Moreover, if (X1, j1) � (X2, j2),
there exists a continuous surjective map ρ : X2 → X1 which commutes with the
inclusions. After our identification, we will say that ρ is the identity on M . More-
over, the remainder β*

sM \M of the semialgebraic Stone–Čech compactification of
M will be denoted by ∂M .

Let us now see an example of a semialgebraic Stone–Čech compactification that
will be used to determine the semialgebraic Stone–Čech compactification of semi-
algebraic curves.

Example 4.9. If M = [0, 1) or (0, 1), then β*
sM

∼= [0, 1].

Proof. We just consider the case M = [0, 1) because the other one is similar. It is
clear that X = [0, 1] is a semialgebraic compactification of M . By [BCR, 2.5.3],
each bounded semialgebraic function f defined on [0, 1) can be extended to [0, 1]
just taking f(1) = limt→1 f(t). Thus, X is semialgebraically complete. Hence, by
4.4, there exists a continuous surjective map ρ : [0, 1] → β*

sM . Moreover, by 4.3(i),
ρ({1}) = ρ(X \ M) = β*

sM \ M = ∂M . Hence, ∂M is a singleton, and so ρ is a
continuous bijective map from a compact space to a Hausdorff space. Therefore, ρ
is a homeomorphism and β*

sM
∼= [0, 1]. �

The compactification β*
sM being Hausdorff, it is a normal topological space, that

is, two closed disjoint subsets can be separated by a continuous function. However,
since we are dealing with semialgebraic objects it is desirable to separate closed
disjoint subsets of β*

sM by means of the continuous extension to β*
sM of some

f ∈ S∗(M).

Proposition 4.10. Let M ⊂ Rn be a semialgebraic set. Given two closed disjoint
subsets K1 and K2 of β*

sM there exists a bounded semialgebraic function f : M → R

such that f̂ |K1
≡ 0 and f̂ |K2

≡ 1.

Proof. The open subset β*
sM \ K1 is a union

⋃
i∈I Dβ*

sM
(gi) with gi ∈ S∗(M).

Moreover, since β*
sM is compact, K2 ⊂ β*

sM \K1 is compact too, and so there exists
a finite subset J of I with K2 ⊂

⋃
i∈J Dβ*

sM
(gi) = Dβ*

sM
(g), where g =

∑
i∈J g2i .

Therefore,

r = min{ĝ(m) : m ∈ K2} > 0 and Dβ*
sM

(g) ⊂
⋃
i∈I

Dβ*
sM

(gi) = β*
sM \K1.
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Thus, the bounded semialgebraic function f : M → R, x �→ min{r, g(x)}
r satisfies

f̂ |K1
≡ 0 and f̂ |K2

≡ 1. �

(4.11) Locally compact semialgebraic sets. In general topology the locally
compact Hausdorff spaces are characterized as those spaces which admit a Haus-
dorff compactification by a single point ([Mu, 3.29.1]). For our purposes, it will be
profitable to use semialgebraic compactifications by a single point of locally com-
pact semialgebraic sets. On the other hand, it must be pointed out that the local
closedness has been revealed, in the semialgebraic setting, as an important property
for the validity of results which are in the core of semialgebraic geometry. Recall
that the locally closed subsets of a locally compact topological space coincide with
the locally compact ones (see for instance [Bo, §9.7, Prop. 1 2-13]). Namely,

Lemma 4.12. Let T be a Hausdorff and locally compact topological space. Given
M ⊂ T , the following conditions are equivalent:

(i) M is locally closed.
(ii) M = U ∩ ClT (M), where U = T \ (ClT (M) \M) is an open subset of T .
(iii) M is a locally compact space.

Remark 4.13. IfM ⊂ Rn is a semialgebraic set, then the sets ClRn(M) and U = Rn\
(ClRn(M)\M) are also semialgebraic. Thus, ifM is a locally compact semialgebraic
set, it can be written as the intersection of a closed and an open semialgebraic
subsets of Rn.

Corollary 4.14. Let M ⊂ Rn be a semialgebraic set. The following statements
are equivalent:

(i) M is locally compact.
(ii) The remainder X \ j(M) of each Hausdorff compactification (X, j) of M is

a closed subset of X.
(iii) There exists a Hausdorff compactification (X, j) of M whose remainder

X \ j(M) is a closed subset of X.

Next, we recall some properties of the largest locally compact and dense subset
Mlc of a semialgebraic set M whose construction is a main goal of [Fe1, 3.8].

Theorem 4.15. Let M ⊂ Rn be a semialgebraic set. Define

ρ0(M) = ClRn(M) \M and ρ1(M) = ρ0(ρ0(M)) = ClRn(ρ0(M)) ∩M.

Then, the semialgebraic set Mlc = M \ ρ1(M) = ClRn(M) \ ClRn(ρ0(M)) is the
largest locally compact and dense subset of M and coincides with the set of points
of M which have a compact neighbourhood in M .

Corollary 4.16. Let M ⊂ Rn be a bounded noncompact semialgebraic set. Then,
the semialgebraic set ClRn(M) \ (ClRn(ρ1(M)) ∪M) is nonempty.

Proof. Suppose by way of contradiction that ClRn(M) = ClRn(ρ1(M)) ∪M . Sub-
tracting M on both sides we get

ρ0(M) = ClRn(M) \M = ClRn(ρ1(M)) \M ⊂ ClRn(ρ1(M)) = ClRn(ρ0(ρ0(M))).

But this is impossible, because by [BCR, 2.8.13],

dimClRn(ρ0(ρ0(M))) = dim ρ0(ρ0(M)) < dim ρ0(M),

and we are done. �
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Now, we show that each locally compact semialgebraic set admits a semialgebraic
compactification by a single point. Namely,

Lemma 4.17 (Semialgebraic compactification by a single point). Let M ⊂ Rn be
a locally compact but not compact semialgebraic set. Then,

(i) There exists a semialgebraic homeomorphism between M and a closed semi-
algebraic subset of Rn+1.

(ii) There exists a semialgebraic homeomorphism ϕ : M → ϕ(M) ⊂ Rn+2 such
that ϕ(M) ⊂ Rn+2 \{0} and ClRn+2(ϕ(M)) = ϕ(M)∪{0} is a compact set.

Proof. (i) Since locally compact semialgebraic subsets of Rn are locally closed, the
statement follows from [BCR, 2.2.9].

(ii) Identify Rn+1 with the hyperplane {xn+2 = 0} � Rn+2 and consider a
stereographic projection

φ : S =
{
x ∈ Rn+2 :

n+1∑
i=1

x2
i + (xn+2 + 1)2 = 1

}
\ {0} → Rn+1.

Let us denote ψ : M → ψ(M) ⊂ Rn+1 as a semialgebraic homeomorphism, where
ψ(M) is a closed semialgebraic subset of Rn+1. Hence, the composition ϕ = φ−1◦ψ
does the job. �

Finally in this section we present a class of semialgebraic sets whose semialgebraic
Stone–Čech compactification is (homeomorphic to) a semialgebraic set. In fact, as
we will prove in 5.17, this is the class of those semialgebraic sets whose semialgebraic
Stone–Čech compactification is a semialgebraic set.

(4.18) For the time being, given a semialgebraic set M ⊂ Rn, we denote by
M≥2 = {p ∈ M : dimp M ≥ 2} the set of points of M of local dimension ≥ 2. We
refer the reader to [BCR, 2.8.10-11] for further details about the local dimension of
semialgebraic sets. This set M≥2 turns out to be semialgebraic, and there exists a
closed semialgebraic subset L ⊂ M of dimension ≤ 1 such that M = M≥2 ∪ L and
M≥2 ∩ L is either empty or a finite set (see for instance [FG4, 2.7(ii)]). In fact, L
is the closure in M of the set of points of M of dimension ≤ 1. Also recall that by
[FG4, 2.7(iii)], if M≥2 is compact, then M is locally compact.

Proposition 4.19. Let M ⊂ Rn be a semialgebraic set such that M≥2 is compact.
Then, β*

sM is homeomorphic to a semialgebraic set and ∂M is a finite set.

Proof. If M is compact there is nothing to prove. Thus, in what follows we as-
sume that M is not compact. By 4.18, we may write M = M≥2 ∪ L, where the
semialgebraic set L is the closure in M of the set of points in M of local dimen-
sion ≤ 1; in particular, M≥2 ∩ L is either empty or a finite set. Since M≥2 is
compact, M is locally compact and we may assume, by 4.17, that M ∪ {0} is com-
pact. Next, by [BCR, 9.3.6], there exist ε > 0 and a semialgebraic homeomorphism
ϕ : Bn(0, ε) → Bn(0, ε) such that:

(i) ‖ϕ(y)‖ = ‖y‖ for every y ∈ Bn(0, ε),
(ii) ϕ|Sn−1(0, ε) is the identity map,

(iii) ϕ−1(M ∩Bn(0, ε)) is the cone with vertex 0 and basis M ∩Sn−1(0, ε), with
its vertex excluded.
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Let us also denote ϕ : Rn → Rn as the extension of such homeomorphism to
the whole Rn using the identity map outside Bn(0, ε), and identify M with ϕ(M).
Notice that since M≥2 is compact, {0} is adherent to L but not to M≥2, and so
M ∩ Sn−1(0, ε) is a finite set. This allows us to write M as the union of a compact
semialgebraic set Z = M ∩ (Rn \ Bn(0, ε)) and finitely many segments C1, . . . , Cr,
which are Nash diffeomorphic to [0, 1) and whose closure connects the irreducible
components of the finite semialgebraic set Z ∩ Sn−1(0, ε) with the origin. Now
consider the semialgebraic set C written as the disjoint union C = C1 � · · · �Cr of
its connected components Ci. Since Z is compact, C is closed in M and M = Z∪C,
we have

β*
sM = Clβ*

sM
(M) = Clβ*

sM
(C) ∪ Clβ*

sM
(Z) = Clβ*

sM
(C) ∪ Z

and Clβ*
sM

(C) ∼= β*
sC (see 3.1.4). To simplify notation we identify the last two

spaces and write β*
sM = β*

sC ∪ Z. Thus, since C is closed in M , we have

∂M = β*
sM \M = (β*

sC ∪ Z) \M = β*
sC \ C.

On the other hand, by 3.1.5, β*
sC can be written as the disjoint union

β*
sC = β*

sC1 � · · · � β*
sCr,

and, by 4.9, each β*
sCi is homeomorphic to [0, 1] and ∂Ci is a singleton. Moreover,

since each Ci is closed in C,

∂M = ∂C = β*
sC \ C =

r⊔
i=1

β*
sCi \ Ci =

r⊔
i=1

∂Ci,

and, in particular, ∂M is a finite set. Even more, M is semialgebraically homeo-
morphic to M0 = M \Bn(0, ε/2) and β*

sM0
∼= β*

sM is homeomorphic to ClRn+2(M0),
which is a semialgebraic set. �

Remark 4.20. Roughly speaking, if the semialgebraic subset M≥2 ⊂ M is compact,
then the semialgebraic Stone–Čech compactification β*

sM is obtained by adding to
M a different ending point at each open half-branch of M . In particular, if M is a
semialgebraic curve, then M≥2 = ∅ is a compact set. Thus, 4.19 applies to M and
so β*

sM is homeomorphic to a semialgebraic set.

5. Topological properties of the remainder

The analysis of the topological properties of the remainder of the Stone–Čech
compactification of a completely regular topological space comes back to the pioneer
work of Gillman–Jerison (see [GJ, §6, §9, §10, §14]). We study in this last section
the same kind of properties in the semialgebraic context, paying special attention
to the finiteness of the number of connected components of ∂M = β*

sM \M . Notice
that the remainder is rarely a semialgebraic set. In fact, this happens if and only
if ∂M is a finite set (see 5.17).

(5.1) Connected components of ∂M . We first prove the finiteness of the
number of connected components of the remainder ∂M of the semialgebraic Stone–
Čech compactification of a semialgebraic set M . In fact, we prove a stronger result,
namely, the existence of a semialgebraic compactification X of M whose remainder
X \ M shares the number of connected components with ∂M . Moreover, in case
M is locally compact we show that such a number coincides with the number of
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connected components of the germ at infinity of M , where it is seen as a subset of
its one point semialgebraic compactification (see 4.17).

We will first observe that in fact the number of connected components of ∂M is
greater than or equal to the number of connected components of X \M for every
semialgebraic compactification X of M .

Lemma 5.2. Let X ⊂ Rm be a semialgebraic compactification of a semialgebraic
set M ⊂ Rn. Then, the number of connected components of ∂M is greater than or
equal to the number of connected components of X \M .

Proof. By 4.6, there exists a surjective continuous map ρ : β*
sM → X which is the

identity over M . By 4.3, the restriction ρ|∂M : ∂M → X \ M is continuous and
surjective. Therefore, the inverse image of each connected component of X \M is
open and closed in ∂M ; hence, it is a union of connected components of ∂M . This
proves the result. �

For our purposes it will be fruitful to use some properties concerning the density

in ∂M of the collection ∂̃M of all free maximal ideals associated to semialgebraic
paths. Namely

(5.3) Free maximal ideals associated to semialgebraic paths. Let M ⊂ Rn

be a semialgebraic set and let α : (0, 1] → M be a semialgebraic path which cannot
be extended to a continuous map [0, 1] → M . By [FG1, 2.5], the set

m∗
α = {f ∈ S∗(M) : lim

t→0
(f ◦ α)(t) = 0}

is a maximal ideal of S∗(M). Since α cannot be extended to a continuous path
[0, 1] → M , the ideal m∗

α is free.
The collection of all free maximal ideals of S∗(M) defined as above is denoted

by ∂̃M (see [Fe2] for further details), and as we will see it is a dense subset of ∂M .
In fact, we have:

Proposition 5.4. Let M ⊂ Rn be a semialgebraic set. Then:

(i) Let f1, . . . , fr ∈ S∗(M), and for each i = 1, . . . , r let f̂i : β*
sM → R be

the unique continuous extension of fi to β*
sM . Then, (f̂1, . . . , f̂r)(∂̃M) =

(f̂1, . . . , f̂r)(∂M).

(ii) The set ∂̃M is dense in ∂M .

Proof. All along the proof we may assume, by 2.1, that M ⊂ Bn(0, 1).
(i) Let m∗ ∈ ∂M . Since ClRn(M) is a semialgebraic compactification of M , there

exists a surjective continuous map ρ : β*
sM → ClRn(M) which is the identity on M .

By 4.3, p0 = ρ(m∗) ∈ ClRn(M) \M . Consider the proper map

Ψ = (ρ, f̂) : β*
sM → Rn+r

where we abbreviate f = (f1, . . . , fr) and f̂ = (f̂1, . . . , f̂r). The image of the

restriction Ψ|M is the graph Γ of f because f̂i(m
∗
p) = fi(p) for each p ∈ M , and

since Ψ is proper one gets

imΨ = Ψ(Clβ*
sM

(M)) = ClRn+r (Ψ(M)) = ClRn+r (Γ).

Let q0 = Ψ(m∗) = (ρ(m∗), f̂(m∗)) = (p0, a0) ∈ ClRn+r (Γ) \ Γ ⊂ Rn × Rr; see
4.3(i). By the Curve Selection Lemma [BCR, 2.5.5], there exist semialgebraic paths
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α : [0, 1] → Rn and ν : [0, 1] → Rr such that α((0, 1]) ⊂ M , ν|(0, 1] = (f ◦ α)|(0, 1]
and (α(0), ν(0)) = (p0, a0) = q0. Finally, we deduce that

a0 = ν(0) = lim
t→0

ν(t) = lim
t→0

(f ◦ α)(t) = f̂(m∗
α),

where m∗
α ∈ ∂̃M because limt→0 α(t) = p0 �∈ M .

(ii) We have to check that for every f ∈ S∗(M) such that Dβ*
sM

(f) �⊂ M , the

intersection Dβ*
sM

(f) ∩ ∂̃M �= ∅. Otherwise, ∂̃M ⊂ Zβ*
sM

(f), and we consider

the continuous function f̂ : β*
sM → R such that f̂ |M = f . Then, by part (i),

{0} = f̂(∂̃M) = f̂(∂M), or equivalently, Dβ*
sM

(f) ⊂ M , a contradiction. �

Now, we compute the number of connected components of ∂M for a semialgebraic
set M ⊂ Rn which is comprised in between an open ball and its closure in Rn.
Namely, we obtain the following result whose proof is inspired in [GJ, 6.10].

Lemma 5.5. Let us abbreviate B = Bn(0, 1) and B = Bn(0, 1), and let M ⊂ Rn

be a semialgebraic set such that B ⊂ M ⊂ B. Then, the number of connected
components of ∂M equals the number of connected components of the semialgebraic
set B \M .

Proof. First, by 5.2, the number of connected components of B \M is less than or
equal to the number of connected components of ∂M .

To prove the converse inequality let ρ : β*
sM → B be the unique continuous

surjective map whose restriction to M is the identity. It is enough to check that
given two points m∗

1,m
∗
2 ∈ ∂M such that p = ρ(m∗

1) and q = ρ(m∗
2) belong to

the same connected component C of B \ M , then m∗
1 and m∗

2 belong to the same
connected component of ∂M .

Indeed, by [BCR, 2.4.5, 2.5.13], there exists a semialgebraic path α : [0, 1] → C
connecting p with q. Let Y = α([0, 1]) ⊂ C, which is a compact semialgebraic set.
By 2.2, there exists u ∈ S∗(Rn) such that ZRn(u) = Y . It suffices to prove that
the set T = Zβ*

sM
(u|M ) is connected, since it contains m∗

1 and m∗
2. This last is so

because

m
∗
i ∈ ρ−1(ZRn(u)) = Zβ*

sM
(u ◦ ρ) = Zβ*

sM
(u|M ) = T.

Note that T ⊂ ∂M , because ZM (u) = ∅. Moreover, T is compact because it is a
closed subset of β*

sM .

(5.5.1) Suppose that T is not connected. Then, there exist two disjoint nonempty
closed subsets C1, C2 � T such that T = C1 � C2. Of course, both C1 and C2

are also open subsets in T . Thus, there exists a family of semialgebraic functions
{fi}i∈I ⊂ S∗(M) such that C1 = T ∩

⋃
i∈I Dβ*

sM
(fi). Since C1 is compact, there

exists a finite set J ⊂ I such that

C1 = T ∩
⋃
i∈J

Dβ*
sM

(fi) = T ∩ Dβ*
sM

(f),

where f =
∑

i∈J f2
i ∈ S∗(M). Therefore, the semialgebraic function g2 = u2+f2 ∈

S∗(M) satisfies C2 = Zβ*
sM

(g2). With the same argument, there exists a function

g1 ∈ S∗(M) such that C1 = Zβ*
sM

(g1). Since C1 and C2 are disjoint, the sum

g21 + g22 is a unit in S∗(M). Therefore, its inverse h = 1/(g21 + g22) ∈ S∗(M). The

unique continuous extension ĥ1 : β*
sM → R of the bounded semialgebraic function

h1 = g21h = g21/(g
2
1+g22) ∈ S∗(M) vanishes identically on C1 and ĥ1|C2

≡ 1. By 5.4,
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there exist two semialgebraic paths α1, α2 : [0, 1] → Rn such that αi((0, 1]) ⊂ M ,
α1(0) = p, α2(0) = q and

lim
s→0

(h1 ◦ αi)(s) =

{
0 if i = 1,

1 if i = 2.

(5.5.2) For each positive integer m ≥ 2, consider the open semialgebraic neigh-
bourhood Vm = {x ∈ M : dist(x, Y ) < 1/m} of Y in M . Pick two points am ∈
Bn(p, 1/m) ∩ α1((0, 1]) and bm ∈ Bn(q, 1/m) ∩ α2((0, 1]) satisfying

α1((0, α
−1
1 (am)]) ⊂ Bn(p, 1/m) and α2((0, α

−1
2 (bm)]) ⊂ Bn(q, 1/m).

Consider, for each λ ∈ [0, 1], the connected semialgebraic set Yλ = {λx : x ∈ Y },
which is semialgebraically path connected by [BCR, 2.5.13]. Take λm = 1 − 1

2m
and choose two points cm ∈ Bn(p, 1/m) ∩ Yλm

and dm ∈ Bn(q, 1/m) ∩ Yλm
. Since

both sets Bn(p, 1/m)∩B and Bn(q, 1/m)∩B are semialgebraically path connected,
there exist semialgebraic paths

η1 : [0, 1] → Bn(p, 1/m) ∩B and η2 : [0, 1] → Bn(q, 1/m) ∩B

which connect, respectively, am with cm and bm with dm. Next, since Yλm
is semial-

gebraically path connected, we find a semialgebraic path η3 : [0, 1] → B connecting
cm and dm. By suitably gluing the previous semialgebraic paths α1|(0, α−1

1 (am)],

η1, η3, η2 and α2|(0, α−1
2 (bm)] we construct, for each m ≥ 2, a semialgebraic path

γm : (0, 1) → M such that

im γm ⊂ Vm, lim
s→0

(h1 ◦ γm)(s) = 0, and lim
s→1

(h1 ◦ γm)(s) = 1.

Hence, for each m ≥ 2, there exists a point qm ∈ Vm such that h1(qm) = 1
2 . By the

compactness of B the set Q = {qm}m≥2 has a cluster point q0 ∈ B. In fact, q0 ∈ Y ,
because limm→+∞ d(qm, Y ) = 0 and, of course, we may assume that {qm}m≥2

converges to q0. Thus, u(q0) = 0 since q0 ∈ Y , and so the sequence {u(qm)}m≥2

converges to 0.
On the other hand, β*

sM being compact, there exists a cluster point m∗ ∈ β*
sM of

Q. Since {u(qm)}m≥2 converges to 0, the unique continuous extension û : β*
sM → R

of u satisfies û(m∗) = 0. Therefore, m∗ ∈ T , and ĥ1(m
∗) = 1/2 because h1(qm) =

1/2 for all m ≥ 2. This is a contradiction because h1|T just takes the values 0 and
1. Thus, T is connected, and we are done. �

For our purpose of computing the number of connected components of the re-
mainder ∂M we use the results about triangulations of compact semialgebraic sets
already introduced in 2.5.

Lemma 5.6. Let M ⊂ Rn be a semialgebraic set. Then, ∂M has finitely many
connected components.

Proof. First, by 2.1, we may assume that M is bounded and so X = ClRn(M)
is compact. By 2.6, there exist a finite simplicial complex K = (σi)

p
i=1 and a

semialgebraic homeomorphism Φ : |K| → X such that M is the union of some
Φ(σ0

i ). We may assume that Φ(σ0
i )∩M �= ∅ exactly for i = 1, . . . , s. This implies,

by the choice of |K|, that Φ(σ0
i ) ⊂ M for i = 1, . . . , s. Hence,

Φ(σ0
i ) ⊂ Si = M ∩ Φ(σi) ⊂ Φ(σi)
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for i = 1, . . . , s. Note that Si is a closed subset of M for i = 1, . . . , s and that
M =

⋃s
i=1 Si. Then, β*

sM =
⋃s

i=1 Clβ*
sM

(Si) and since Si is closed in M , we get

∂M =
⋃s

i=1(Clβ*
sM

(Si)\Si). By 3.1.4, Clβ*
sM

(Si)\Si is homeomorphic to β*
sSi \Si.

Thus, all reduces to check that β*
sSi \ Si has finitely many connected components

for i = 1, . . . , s. But this follows from 5.5 and the fact that a simplex is a compact
semialgebraic manifold with boundary, semialgebraically homeomorphic to a closed
ball of its same dimension. �

After 5.2 and 5.6 it is a natural question to decide if the number of connected
components of ∂M equals the number of connected components of the remainder
of some semialgebraic compactification of M . We answer this question in the affir-
mative in 5.8, whose proof is rather involved. Before that we need a preliminary
result.

Lemma 5.7. Let N ⊂ M ⊂ Rn be semialgebraic sets such that N is closed and
nowhere dense in M . If ∂M �= ∅, then ∂M �⊂ Clβ*

sM
(N).

Proof. First, by 2.1, we may assume that M is bounded. Since ∂M �= ∅, M is not
compact, and so there exists a point p ∈ ClRn(M) \ M . Moreover, since M \ N
is dense in M , we have ClRn(M \ N) = ClRn(M). Thus, by the Curve Selection
Lemma [BCR, 2.5.5] there exists a semialgebraic path α : [0, 1] → Rn such that
α(0) = p and C = α((0, 1]) ⊂ M \ N . Note that C is a closed semialgebraic
subset of M disjoint with N . Hence, by 2.4, there exists f ∈ S∗(M) such that

f |C = 0 and f |N = 1. In particular, the continuous extension f̂ : β*
sM → R of f

satisfies that m∗
α ∈ Clβ*

sM
(C) ⊂ Zβ*

sM
(f̂) and Clβ*

sM
(N) ⊂ Zβ*

sM
(f̂−1). Therefore,

m∗
α ∈ ∂M \ Clβ*

sM
(N), as wanted. �

Theorem 5.8 (Realization of the connected components of β*
sM). Let M ⊂ Rn be

a semialgebraic set. Then, there exists a semialgebraic compactification X ⊂ Rm

of M such that the number of connected components of ∂M equals the number of
connected components of X \M .

The next example was inspiring for the proof of 5.8.

Example 5.9. Consider the semialgebraic sets

Qk = {−1 ≤ x+ ky ≤ 1, −1 ≤ x− ky ≤ 1}
for k = 1, 2. Let M = Q1 \ ((−1, 1)× {0}) and M1 = (Q1 \Q2) ∪ {(−1, 0), (1, 0)}.
Notice that M and M1 are semialgebraically homeomorphic; thus, β*

sM
∼= β*

sM1.
By 5.2, the number of connected components of ∂M ∼= ∂M1, which is the number of
connected components of ClR2(M1) \M1, is ≥ 2. On the other hand, M = C1∪C2,
where each Ci = M ∩ {(−1)iy ≥ 0} is a closed subset of M . Notice that, by
3.1.4, ∂M = ∂C1 � ∂C2 and, by 5.5, ∂Ci is connected for i = 1, 2. Thus, the
number of connected components of ∂M is 2 and X = ClR2(M1) is a semialgebraic
compactification of M whose remainder X \M1 has the same number of connected
components as ∂M .

Proof of Theorem 5.8. We divide the proof into two steps. First, we claim:

Step 1. Let C be a union of connected components of ∂M and let B = ∂M \ C
be the union of the remaining connected components of ∂M . Then, there exists

f ∈ S∗(M) such that f̂ |C ≡ 0 and f̂ is strictly positive on B.
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Once this is done we will finish with:

Step 2. There exists a semialgebraic compactification X ⊂ Rm of M such that the
number of connected components of ∂M equals the number of connected compo-
nents of X \M .

In fact, suppose for a while that Step 1 is proved and recall that ∂M has, by 5.6,
finitely many connected components, say C1, . . . , C�. For each index i = 1, . . . , �,
define Bi =

⋃
j 	=i Cj . Since Ci and Bi satisfy the hypothesis of Step 1 there exists

fi ∈ S∗(M) such that f̂i|Ci
≡ 0 and f̂i|Bi

is strictly positive. By 4.1, there exist
a semialgebraic compactification X = ClRn+�(graph(f1, . . . , f�)) of M and for each

index i a semialgebraic extension f̃i : X → R of fi. By 4.6, there exists a surjective

continuous map ρ : β*
sM → X which is the identity on M and f̂i = f̃i ◦ρ. Moreover,

the restriction ρ|∂M : ∂M → X \M is proper and surjective, as we proved in 4.3,
and so each image ρ(Ci) is connected and closed in X \M . Thus, by 5.2 all reduces
to check that ρ(Ci) ∩ ρ(Cj) = ∅ for i �= j. Suppose there exists a common point

x ∈ ρ(Ci) ∩ ρ(Cj). Then, f̃i(x) = 0 because x ∈ ρ(Ci), but f̃i(x) > 0 since
x ∈ ρ(Bi), a contradiction.

(5.8.1) Therefore, all reduces to prove Step 1. First, by 2.1, we may assume as
always that M is bounded and, by 4.6, there exists a continuous surjective map
ρ : β*

sM → X = ClRn(M) which is the identity on M . By 4.3, ρ(∂M) = X \M .
We apply 2.9 to the compact semialgebraic set X = ClRn(M) and the family of

semialgebraic sets F = {M,X \ M,Mlc, Y = M \ Mlc}, where Mlc is the largest
dense and locally compact semialgebraic subset of M (see 4.15). Thus, there exists
a semialgebraic triangulation (K,Φ) of X compatible with F such that, for each
simplex σ ∈ K which is not a face of other simplex of K, either σ ⊂ Φ−1(M) or
there exists a proper face τ of σ satisfying τ0 ⊂ σ \ Φ−1(M) ⊂ τ .

To simplify notation we identify in what follows X and the elements of F with
their respective inverse images under Φ. Note that X is the union of the closed
simplices σ which are not a face of another simplex of K, and we denote them by
σ1, . . . , σs.

For each i = 1, . . . , s, the intersection Si = σi ∩ M is a closed subset of M
such that either Si = σi or Si � σi and there exists a proper face τi of σi with
τ0i ⊂ σi \M ⊂ τi. By 3.1.4, we may identify β*

sSi ≡ Clβ*
sM

(Si), and in this way, Si

being closed in M , we get

∂Si = β*
sSi \ Si = β*

sSi \M = β*
sSi ∩ (β*

sM \M) = β*
sSi ∩ ∂M.

Both intersections C∩∂Si and B∩∂Si are either empty or finite unions of connected
components of ∂Si, because B and C are open and closed subsets of ∂M . On the
other hand, each ∂Si is, by 2.9 and 5.5, connected, because σi \ Si is connected
too. Hence, for each index i = 1, . . . , s either C ∩ ∂Si = ∅ or C ∩ ∂Si = ∂Si, which
is connected. Also the intersections B ∩ ∂Si for i = 1, . . . , s are either empty or
coincide with ∂Si, and, whenever ∂Si is nonempty, B ∩ ∂Si = ∂Si if and only if
C ∩ ∂Si = ∅.

Consequently, we may assume that C ∩ ∂Si = ∂Si �= ∅ just for i = 1, . . . , r ≤ s,
B ∩ ∂Si = ∂Si �= ∅ just for i = r + 1, . . . , t ≤ s and ∂Si = ∅ for i = t + 1, . . . , s.
Moreover, C =

⋃r
i=1 ∂Si and B =

⋃t
i=r+1 ∂Si.

(5.8.2) On the other hand, σ0
i is an open subset of M for i = 1, . . . , s, because

σi is not a face of another simplex of K. In particular, since Mlc is dense in M
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and (K,Φ) is compatible with F , we deduce that σ0
i ⊂ Mlc for i = 1, . . . , s. Thus,

Yi = Y ∩Si = Si\Mlc is closed and nowhere dense in Si because it does not intersect
σ0
i . Hence, from 5.7 it follows that ∂Si �⊂ Clβ*

sM
(Yi) = Clβ*

sM
(Si) ∩ Clβ*

sM
(Y ) for

i = 1, . . . , t, where the last equality follows from 3.1.4.

(5.8.3) After this preparation we introduce the numerical invariant

�C = max{ht(m∗) : m∗ ∈ C} ≤ dimM

and we proceed by induction on �C . Notice that, by [Fe1, 7.2], �C ≥ 1, and we are
going to prove first that Step 1 holds true in case �C = 1.

(5.8.4) Fix i = 1, . . . , r and let us see that Si has dimension 1.
By 5.8.2 there exists m∗ ∈ ∂Si \ Clβ*

sM
(Y ) ⊂ C. Then, ρ(m∗) = p ∈ σi \ Si.

Clearly, m∗ �∈ Clβ*
sM

(B) because B and C are closed disjoint subsets of ∂M . By

4.10, there exists g ∈ S∗(M) with ĝ(m∗) = 1 and ĝ|Cl
β*
sM

(B∪Y ) ≡ 0; let Γ = graph(g)

and X1 = ClRn+1(Γ). By 4.1, there exists g ∈ S∗(X1) such that g ◦ (π|Γ) = g|Γ,
where π : Rn+1 → Rn is the projection onto the first n coordinates. Since X1 is
a semialgebraic compactification of M there exists, by 4.6, a continuous surjective
map γ : β*

sM → X1 which is the identity on M . A straightforward computation
shows that ρ = π ◦ γ (see 5.8.1). Then, the point q = γ(m∗) ∈ X1 satisfies
π(q) = π(γ(m∗)) = ρ(m∗) = p, and so dimq X1 ≥ dimp X. Moreover, g(q) =
g(γ(m∗)) = ĝ(m∗) = 1 and

q ∈ γ(∂Si \ Clβ*
sM

(Y )) ⊂ ClX1
(Si) \ (Si ∪ ClX1

(Y )) ⊂ X1 \ (M ∪ ClX1
(Y )).

By [Fe1, 7.1], there exists a maximal ideal n∗ ∈ ∂M such that g �∈ n∗ and

ht(n∗) = dimq X1 ≥ dimp X ≥ dimp Si = dimSi ≥ 1.

On the other hand, n∗ ∈ C = ∂M \ B, because g �∈ n∗ and ĝ|B ≡ 0. Whence
ht(n∗) ≤ �C = 1, and this implies dimSi = 1.

Once 5.8.4 is proved, we approach the proof of Step 1 in case �C = 1. Recall

that we must construct a function f ∈ S∗(M) such that f̂ |C ≡ 0 and f̂ |B is strictly
positive. To that end, we write M = M≥2 ∪ L, where M≥2 is the set of points at
which M has local dimension ≥ 2 (see 4.18) and L is the closure in M of the set of
points at which M has local dimension ≤ 1. In fact, M≥2 ∩ L is either empty or a
finite set.

Since M≥2 and L are closed semialgebraic subsets of M , we may write, by using
3.1.4, β*

sM = Clβ*
sM

(M≥2) ∪ Clβ*
sM

(L) = β*
sM

≥2 ∪ β*
sL. Since dimSi = 1 for

i = 1, . . . , r and each σi is not a face of another simplex of K, we deduce that
Si ⊂ L for i = 1, . . . , r. Thus, C ⊂ ∂L, and this last is a finite set (see 4.20) with,
say, c elements, that we denote ∂L = {m∗

k : 1 ≤ k ≤ c}. Moreover, by 3.1.4(ii), we
have

β*
sM

≥2 ∩ β*
sL = Clβ*

sM
(M≥2) ∩ Clβ*

sM
(L) = Clβ*

sM
(M≥2 ∩ L) = M≥2 ∩ L,

because M≥2 ∩ L is a finite set. Hence, ∂L ∩ β*
sM

≥2 ⊂ (M≥2 ∩ L) \ L = ∅ and so
C ⊂ ∂L\β*

sM
≥2. Since L is a semialgebraic curve, β*

sL is also a semialgebraic curve
(see 4.20). In fact, one can check that for each point m∗

k ∈ ∂L there exists a closed
semialgebraic subset Ak ⊂ L \M≥2 = M \M≥2 of M , which is homeomorphic to
the interval [0, 1), and such that Clβ*

sM
(Ak) is a neighbourhood of m∗

k in β*
sM . We

may also assume that the neighbourhoods Ak are pairwise disjoint. By 2.3 there
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exists f ∈ S∗(M) such that

f |M≥2 ≡ 1 and f |Ak
≡

{
1 if m∗

k �∈ C,

0 if m∗
k ∈ C.

Thus, f̂ |B ≡ 1 > 0 and f̂ |C ≡ 0. This finishes the proof of Step 1 in case �C = 1.

(5.8.5) Suppose that Step 1 is true for �C ≤ d− 1 and let us see that it is also true
for �C = d.

Indeed, let G =
⋃r

i=1 σ
0
i which is an open subset of M . For each i = 1, . . . , r,

consider the skeleton εi = σi\σ0
i of σi and let Ei = εi∩M = εi∩Si, which we call the

skeleton of Si. By the choice of the triangulation (K,Φ) in 5.8.1, dimEi = dimSi−1
for i = 1, . . . , r. Let us define the following closed semialgebraic subsets of M :

M1 =

r⋃
i=1

Si, M2 =

t⋃
i=r+1

Si and M3 =

s⋃
i=t+1

Si =

s⋃
i=t+1

σi.

Notice that M3 is compact and ∂M = ∂M1 ∪ ∂M2, with C = ∂M1 and B = ∂M2.
Let E =

⋃r
i=1 Ei ⊂ M1 which is a closed subset of M of dimension dimE =

dimM1 − 1. Thus,

C1 = ∂E ⊂ ∂M1 = C and M0 = M \G = E ∪M2 ∪M3.

Therefore, ∂M0 = ∂E ∪ ∂M2 = C1 ∪ B. Our next goal is to see that �C1
=

�C − 1. To that end it suffices to prove that �C = dimM1. Once this is done, and
proceeding similarly with the suitable simplices which constitute E, one deduces
�C1

= dimE = dimM1 − 1 = �C − 1.

(5.8.6) We begin by proving that �C ≤ dimM1. Let m
∗ ∈ C = ∂M1 be a maximal

ideal of S∗(M). Then,

m∗ �∈ Clβ*
sM

(M2 ∪M3) = M2 ∪M3 ∪B,

because M = M1 ∪ M2 ∪ M3, ∂M3 = ∅ and B = ∂M2. By 4.10 there exists
g1 ∈ S∗(M) such that ĝ1|Cl

β*
sM

(M2∪M3) ≡ 0 and ĝ1(m
∗) = 1. Let p0 � · · · � p� = m∗

be a chain of prime ideals of S∗(M) which does not admit refinements and such
that � = ht(m∗). For each j = 1, . . . , �, let fj ∈ pj \ pj−1. By 4.1 there exist
a semialgebraic compactification X2 of M and bounded semialgebraic functions
g2, Fj ∈ S∗(X2) such that g2|M = g1 and each Fj |M = fj . Therefore, the prime
ideals qi = pi ∩ S(X2) satisfy Fj ∈ qj \ qj−1, and so there exists a chain of prime
ideals q0 � · · · � q� = m∗

x in S∗(X2) for some point x ∈ X2 such that g2(x) �= 0.
This last is so because ĝ1(m

∗) = 1 implies g1 �∈ m∗. Hence, x ∈ X2\ClX2
(M2∪M3),

because ĝ1|Cl
β*
sM

(M2∪M3) ≡ 0. Moreover, from [FG2, 4.2], ht(m∗
x) = dimx X2, and

X2 \ ClX2
(M2 ∪M3)

= ClX2
(M1 ∪M2 ∪M3) \ ClX2

(M2 ∪M3) = ClX2
(M1) \ ClX2

(M2 ∪M3).

Consequently,

ht(m∗) ≤ ht(m∗
x) = dimx X2 = dimx(X2 \ ClX2

(M2 ∪M3))

= dimx(ClX2
(M1) \ ClX2

(M2 ∪M3)) ≤ dimClX2
(M1) = dimM1,

which implies �C ≤ dimM1.

(5.8.7) We must now prove the converse inequality �C ≥ dimM1; hence, the
equality �C = dimM1. To that end it suffices to show the existence of a maximal
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ideal n∗ ∈ C such that ht(n∗) = dimM1. After reordering the indices i = 1, . . . , r
we can suppose that dimM1 = dimS1. Let us choose a point

p1 ∈ ClRn(S1) \ S1 ⊂ ClRn(σ0
1) \ σ0

1 .

By the Curve Selection Lemma [BCR, 2.5.5] there exists a semialgebraic path α :
[0, 1] → Rn such that α(0) = p1 and α((0, 1]) ⊂ σ0

1 . Note that as we observed in
5.8.2, σ0

1 ∩ Y = ∅ and so α((0, 1]) ⊂ M \ Y . By 2.4, there exists g3 ∈ S∗(M) such
that g3 ◦ α ≡ 1 and g3|M\σ0

1
≡ 0. Thus,

m∗
α ∈ β*

sM \ (S1 ∪ Clβ*
sM

(M \ S1) ∪ Clβ*
sM

(Y )) ⊂ ∂S1 \ Clβ*
sM

(Y ).

By 4.1 there exists a semialgebraic compactification X3 = ClRn+1(graph(g3)) ⊂
Rn+1 of M such that g3 admits a semialgebraic extension to X3. Using 2.3 once
more there exists a semialgebraic extension g3 of g3 to the whole Rn+1. By 4.6,
there exists a continuous surjective map γ1 : β*

sM → X3 which is the identity on
M . Then, if π : Rn+1 → Rn denotes the projection onto the first n coordinates,
ρ = π ◦ γ1 and the point q1 = γ1(m

∗
α) ∈ X3 satisfies π(q1) = p1. Hence, dimq1 X3 ≥

dimp1
X. Moreover, g3(q1) = g3(γ1(m

∗
α)) = ĝ3(m

∗
α) = 1. Note that, S1 being closed

in M , we have ClX3
(S1) \ S1 ⊂ X3 \M , and so

q1 ∈ γ1(∂S1 \ Clβ*
sM

(Y )) ⊂ ClX3
(S1) \ (S1 ∪ ClX3

(Y )) ⊂ X3 \ (M ∪ ClX3
(Y )).

By [Fe1, 7.1], there exists a maximal ideal n∗ ∈ ∂M such that g3 �∈ n∗ and

ht(n∗) = dimq1 X3 ≥ dimp1
X ≥ dimp S1 = dimS1 = dimM1.

Since g3 �∈ n∗, then n∗ �∈ B ⊂ Clβ*
sM

(M \ S1) ⊂ Zβ*
sM

(ĝ3), and this implies n∗ ∈ C.
Thus,

dimM1 ≤ ht(n∗) ≤ �C ≤ dimM1

and we conclude �C = dimM1, as claimed.

(5.8.8) Applying the inductive hypothesis to C1 there exists a ∈ S(M \ G) such
that â|C1

= 0 and â|B is strictly positive. Thus, it is enough to check that we can

extend a to a bounded semialgebraic function b : M → R such that b̂|C ≡ 0.
The restriction ai = a|Ei

admits, by 2.3, a semialgebraic extension Ai ∈ S∗(Si).
By 4.1, there is a semialgebraic compactification Ti = ClRn+1(graph(Ai)) of Si to
which we can extend Ai. Let us denote by ãi the semialgebraic extension of ai to
ClTi

(Ei). Moreover, by the uniqueness of the continuous extensions, the function
âi : β

*
sEi → R factorizes through ClTi

(Ei) ⊂ Ti via ãi. Thus, ãi vanishes identically
on ClTi

(Ei) \ Ei = ClTi
(Ei) \ Si. Since Ei ∪ (Ti \ Si) = Ti \ (Si \ Ei) = Ti \ σ0

i

is a closed subset of Ti and ai|Ei∩(Ti\Si) = ai|Ei\Si
≡ 0, there exists, by 2.3, a

semialgebraic function Gi ∈ S∗(Ti) such that Gi|Ei
= ai and Gi|Ti\Si

≡ 0. Thus,
extending a by Gi|Si

on each Si for i = 1, . . . , r, and since

Si ∩ Sj = σi ∩ σj ∩M = εi ∩ εj ∩M = Ei ∩Ej

for 1 ≤ i < j ≤ r, we get the desired function b ∈ S∗(M) with the property that

b̂|C = 0. Since b extends a, we also know that b̂|B is strictly positive, and we are
done. �

(5.10) Connected components of ∂M for locally compact M . Next, we ex-
plain how to compute the number of connected components of ∂M for a locally
compact semialgebraic set M by means of its one point semialgebraic compactifica-
tion. SinceM is locally compact, we may assume, by 4.17, thatM∪{0} is a compact
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set. Next, by [BCR, 9.3.6], there exist ε > 0 and a semialgebraic homeomorphism
ϕ : Bn(0, ε) → Bn(0, ε) such that:

(i) ‖ϕ(y)‖ = ‖y‖ for every y ∈ Bn(0, ε),
(ii) ϕ|Sn−1(0, ε) is the identity map,

(iii) ϕ−1(M ∩ Bn(0, ε)) is the cone of vertex 0 and basis M ∩ Sn−1(0, ε), with
its vertex excluded.

Let us also denote ϕ : Rn → Rn as the extension of such homeomorphism to the
whole Rn by using the identity map outside Bn(0, ε), and we identify M with ϕ(M).
After this preparatory work, and with the notation above, we enunciate:

Theorem 5.11. Let M ⊂ Rn be a locally compact semialgebraic set embedded in
Rn as stated in 5.10. Then, the number of connected components of ∂M coincides
with the number of connected components of M ∩ Sn−1(0, ε), which also equals the
number of connected components of the germ M0 of M at the origin of Rn.

Before proving this, we need a preliminary result inspired in [GJ, 6.10] which is
quite similar to 5.5 but simpler.

Lemma 5.12. Let X ⊂ Rn be a compact and connected semialgebraic subset of the
unit sphere Sn−1(0, 1). Let Y0 = {tx ∈ Rn : x ∈ X and t ∈ [0, 1]} be the cone of
basis X and vertex the origin of Rn, and let M = Y0 \{0}. Then, ∂M is connected.

Proof. First note that Y0 is the image of the continuous map

[0, 1]×X → Rn, (t, x) �→ tx.

Hence, Y0 is compact and therefore M is locally compact. Thus, by 4.4, M is open
in β*

sM and so ∂M is a compact set. Suppose that ∂M is not connected. Then, there
exist two disjoint nonempty closed subsets C1, C2 ⊂ ∂M such that ∂M = C1 �C2.
Proceeding similarly to 5.5.1, there exists h1 ∈ S∗(M) whose unique extension

ĥ1 : β*
sM → R to β*

sM vanishes identically on C1 and ĥ1|C2
≡ 1. By 5.4, there exist

two semialgebraic paths α1, α2 : [0, 1] → Rn such that αi((0, 1]) ⊂ M , αi(0) = 0
and

lim
s→0

(h1 ◦ αi)(s) =

{
0 if i = 1,

1 if i = 2.

Denote Xt = {tx : x ∈ X} for each t ∈ [0, 1], which is a connected semialgebraic
set since X is as well. Thus, each Xt is, by [BCR, 2.5.13], semialgebraically path
connected. On the other hand, let δ > 0 such that imαi ∩ Xt is not empty for
all 0 < t < δ and i = 1, 2. Fix 0 < t < δ and take pit ∈ imαi ∩ Xt such that
αi(s) ∈

⋃
λ∈(0, t) Xλ for all s ∈ (0, α−1

i (pit)).

Since Xt is semialgebraically path connected, there exists a semialgebraic path
νt : [0, 1] → Xt with νt(0) = p1t and νt(1) = p2t. By suitably gluing the semialge-
braic paths α1|(0, α−1

1 (p1t)]
, νt and α2|(0, α−1

2 (p2t)]
, we construct, for each 0 < t < δ,

a semialgebraic path γt : (0, 1) → M such that

im γt ⊂
⋃

λ∈(0, t)

Xλ, lim
s→0

(h1 ◦ γt)(s) = 0, and lim
s→1

(h1 ◦ γt)(s) = 1.

Hence, for each 0 < t < δ, there exists a point qt ∈
⋃

λ∈(0, t) Xλ such that h1(qt) =

1/2. Notice that for every 0 < t < δ, we have ‖qt‖ = λ for some 0 < λ < t. By the
compactness of β*

sM there exists a cluster point m∗ ∈ ∂M of the set {qt : 0 < t < δ}.
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Thus, ĥ1(m
∗) = 1/2, and this is a contradiction because ĥ1|∂M just attains the

values 0 and 1. Consequently, ∂M is connected. �
Proof of Theorem 5.11. We keep the notation introduced in statement 5.10. Let
X = ClRn(M \Bn(0, ε)), which is a compact set. Let M1, . . . ,Mr be the connected
components of M ∩ Bn(0, ε). Note that each Mi ∪ {0} is a cone with vertex the
origin and whose basis is a connected component of M ∩ Sn−1(0, ε). Conversely,
given a connected component Ci of M ∩ Sn−1(0, ε), let Ki be the cone with vertex
the origin and basis Ci. Then, Ki \ {0} is a connected component of M ∩ Bn(0, ε)
and we may assume that Ki = Mi for i = 1, . . . , r.

We write M = X ∪N , where N = M1 ∪ · · · ∪Mr. Hence,

β*
sM = Clβ*

sM
(X) ∪ Clβ*

sM
(N).

Notice that, by 3.1.4, β*
sX

∼= Clβ*
sM

(X) and β*
sN

∼= Clβ*
sM

(N) because X and N

are closed in M and, since X is compact, β*
sX = X. Therefore, after identifying

β*
sN with Clβ*

sM
(N), we have β*

sM = X ∪ β*
sN , and since Clβ*

sM
(N) ∩M = N ,

∂M = β*
sM \M = (X ∪ β*

sN) \M = β*
sN \N = ∂N.

Now, by 3.1.5, β*
sN

∼= β*
sM1 � · · · � β*

sMr, and therefore

∂M ∼= (β*
sM1 \M1) � · · · � (β*

sMr \Mr) = ∂M1 � · · · � ∂Mr.

Each Mi is locally compact since it is a closed subset of the locally compact space
N . Thus, ∂Mi is compact and therefore it is closed in ∂M . Consequently, the
disjoint sets ∂Mi are open and closed in ∂M . Hence, the connected components
of ∂M are the collection of all connected components of the sets ∂Mi. Thus, all
reduces to check that each ∂Mi is connected. This follows at once from 5.12, because
Mi ∪ {0} is the cone with vertex the origin and basis a connected component of
M ∩ Sn−1(0, ε). �

Once we know that the number of connected components of the remainder ∂M
is finite (see 5.6), we are ready to prove that it is also locally connected. Moreover,
we will also determine under what conditions on M the remainder ∂M is locally
compact.

(5.13) Local connectedness and local compactness of ∂M . Let M ⊂ Rn be
a semialgebraic set. We begin by proving the local connectedness of ∂M .

Proof. Let m∗ ∈ ∂M and let V be an open neighbourhood of m∗ in ∂M . Since β*
sM

is locally compact, there exists f ∈ S∗(M) such that

m
∗ ∈ Dβ*

sM
(f) ∩ ∂M ⊂ Clβ*

sM
(Dβ*

sM
(f)) ∩ ∂M ⊂ V.

Moreover, as one can check almost straightforwardly,

Clβ*
sM

(Dβ*
sM

(f)) = Clβ*
sM

(DM (f)).

Next, consider the semialgebraic set T = ClM (DM (f)) = Clβ*
sM

(DM (f)) ∩M . By

3.1.4, β*
sT = Clβ*

sM
(T ) ⊂ β*

sM . Moreover, since T is closed inM , Clβ*
sM

(T )∩M = T
and so

∂T = β*
sT \ T = Clβ*

sM
(T ) \M = Clβ*

sM
(T ) ∩ ∂M = Clβ*

sM
(DM (f)) ∩ ∂M

has, by 5.6, finitely many connected components, C1, . . . , Cr, which are therefore
open and closed subsets in ∂T . Let C1 ⊂ ∂T be the connected component of ∂T
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containing m∗. Since ∂T = Clβ*
sM

(T )∩∂M is closed in ∂M , the union C =
⋃r

i=2 Ci

is a closed subset of ∂M such that m∗ �∈ C. Notice that

W = (Dβ*
sM

(f) ∩ ∂M) \ C ⊂ (Clβ*
sM

(DM (f)) ∩ ∂M) \ C = ∂T \ C = C1 ⊂ V,

and W is an open neighbourhood of m∗ in ∂M . Hence, C1 is a connected neigh-
bourhood of m∗ contained in V , which proves that ∂M is locally connected. �

We now determine under what conditions ∂M is locally compact. Indeed, with
the notation already introduced in 4.15, we have

Proposition 5.14. Let M ⊂ Rn be a semialgebraic set. Then, ∂M is locally
compact if and only if ρ1(M) is compact.

Proof. Recall first that, by 4.15, the set ρ1(M) does not depend on the immersion
of M in Rn, because ρ1(M) = M \ Mlc and Mlc equals the set of points of M
which have a compact neighbourhood in M . Hence, we may assume, by 2.1, that
M is bounded. Let X = ClRn(M), which is a semialgebraic compactification of
M . Thus, by 4.6, there exists a surjective continuous map ρ : β*

sM → X which is
the identity on M . By 3.1.4, its restriction ρ|∂M : ∂M → X \ M is proper and
surjective.

Now, if ∂M is locally compact, then ρ0(M) = X \M = ρ(∂M) is, by [Bo, Cor.
§10.4, page 106], locally compact too. Thus, by 4.15, ρ1(X \M) = ρ1(ρ0(M)) = ∅.
Therefore,

ClRn(ρ1(M)) \ ρ1(M) = ρ0(ρ1(M)) = ρ0(ρ0(ρ0(M))) = ρ1(ρ0(M)) = ∅,

and so ρ1(M) ⊂ X is closed in Rn. Since X is compact, ρ1(M) is compact too.
Conversely, suppose that Y = ρ1(M) is compact and write Mlc = M \ Y , which

is, by 4.15, locally compact. By 4.14 ∂Mlc is a closed subset of the compact space
β*
sMlc. Thus, ∂Mlc is compact, and so it is locally compact. Moreover, by 3.1.4,

Clβ*
sM

(Y ) = β*
sY = Y because Y is compact. Denote j : Mlc ↪→ M as the inclusion

map. By [FG3, 6.7] the map β*
sj|β*

sMlc\(β*
sj)

−1(Y ) : β
*
sMlc \ (β*

sj)
−1(Y ) → β*

sM \ Y is

a homeomorphism. Thus, ∂M = (β*
sM \ Y ) \Mlc is homeomorphic to

(β*
sMlc \Mlc) \ (β*

sj)
−1(Y ) = ∂Mlc \ (β*

sj)
−1(Y ),

which is locally compact because it is an open subset of the locally compact space
∂Mlc. Consequently, ∂M is locally compact. �
Remark 5.15. Let M ⊂ Rn be a semialgebraic set. Then, ∂M is compact if and
only if M is open in β*

sM or, equivalently, if M is locally compact (see 4.14).

(5.16) Nonsemialgebraicity of β*
sM . Our next purpose is to characterize those

semialgebraic sets whose semialgebraic Stone–Čech compactification is homeomor-
phic to a semialgebraic set, in this way completing 4.19. We show that this happens
very rarely.

Proposition 5.17. Let M ⊂ Rn be a semialgebraic set and let β*
sM be its semial-

gebraic Stone–Čech compactification. The following assertions are equivalent:

(i) The semialgebraic set M≥2 is compact.
(ii) The remainder ∂M = β*

sM \M is a finite set.
(iii) β*

sM is homeomorphic to a semialgebraic set.
(iv) β*

sM is metrizable.
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Proof. The implication (i) =⇒ (ii) follows from 4.19 and (iii) =⇒ (iv) is immediate.
(ii) =⇒ (iii) By 5.8, there exists a semialgebraic compactification X of M such

that the number of connected components of ∂M equals the number of connected
components of X \M . By 4.6, there exists a continuous map ρ : β*

sM → X such
that ρ|M = idM and, by 4.3(i), X \ M = ρ(∂M) is a finite set, because so is
∂M . Since the (finite) number of connected components (and so the number of
elements) of both sets ∂M and X \M coincide and ρ(∂M) = X \M , the restriction
ρ|∂M : ∂M → X \M is a bijection. Hence, ρ : β*

sM → X is a continuous bijection
between a compact set and a Hausdorff space, that is, ρ is a homeomorphism.
Therefore, β*

sM is homeomorphic to the semialgebraic set X.
(iv) =⇒ (i) Let us prove that if M≥2 is not compact, then β*

sM is not metrizable.
As is well known, to prove that a separable space is not metrizable just requires
checking that its topology does not admit a countable basis. So it is convenient
in our case to first show the separability of β*

sM . Since M is dense in βsM , it
suffices to prove that M is separable. By [BCR, 2.9.10], M is the disjoint union
of a finite number of Nash submanifolds N , each of them Nash diffeomorphic to
an open hypercube (0, 1)dimN . Hence, since each hypercube is separable, the same
holds for each N and so for M .

Suppose now, by way of contradiction, that β*
sM is metrizable, and so it admits

a countable basis. By 2.1, we may assume that M is bounded, and there exists, by
4.16, a point

p ∈ ClRn(M≥2) \ (ClRn(ρ1(M
≥2)) ∪M≥2).

Observe that p �∈ M , because M≥2 is closed in M , and denote X = ClRn(M).
By 2.6, there exists semialgebraic triangulation (K,Φ) of X compatible with the
family F = {M,X \ M, {p}}. We identify X with |K|, M with Φ−1(M) and p
with Φ−1(p). Let σ be a simplex of K of dimension d ≥ 2 such that p is one of its
vertices and σ0 is contained in M . We may assume that p is the origin and that
σ \ {p} ⊂ {xd > 0, xd+1 = 0, . . . , xn = 0}. Consider the noncountable set

S = {a ∈ Rd−1 : ∃ ε > 0 | (at, t, 0, . . . , 0) ∈ σ ∀ t ∈ [0, ε]},

and define, for each a ∈ S, the maximal ideal of S∗(M) given by

m
∗
a = {f ∈ S∗(M) : lim

t→0
f(at, t, 0, . . . , 0) = 0}

(see 5.3). Let us see that for all a ∈ S there exists fa ∈ S∗(M) such that f̂a(m
∗
a) < 0

and f̂a(m
∗
b) > 0 for all b ∈ S \ {a}. Let

fa(x) = max
{
− 1,

(x1 − a1xd)
2 + · · ·+ (xd−1 − ad−1xd)

2 − x4
d

(x1 − a1xd)2 + · · ·+ (xd−1 − ad−1xd)2 + x4
d + · · ·+ x4

n

}
.

A straightforward computation shows that |fa| ≤ 1 and therefore fa ∈ S∗(M). On

the other hand, f̂a(m
∗
a) = −1 < 0 and f̂a(m

∗
b) = 1 > 0 for all b �= a.

Consider the family of open sets Ua = Uβ*
sM

(−fa) in β*
sM . Note that m∗

a ∈ Ua

but m∗
b �∈ Ua for b �= a. Let B = {Bm}m≥1 be a countable basis of the topology of

β*
sM . For each a ∈ S there exists ma ≥ 1 such that m∗

a ∈ Bma
⊂ Ua, and since B

is countable but S is not countable, there exist distinct points a1, a2 ∈ S such that
ma1

= ma2
. Thus, m∗

a1
∈ Bma1

= Bma2
⊂ Ua2

, a contradiction, and so β*
sM is not

metrizable. �
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We have characterized in 5.17 the semialgebraic sets M whose semialgebraic
Stone–Čech compactification β*

sM is metrizable. The proof heavily relies on the
separability of β*

sM , which is an immediate consequence of the separability of M .
A natural question is to decide the metrizability of the remainder ∂M . In this
direction a first step should be to answer the following question whose expected
answer is stated just below in 5.19.

Question 5.18. Under which assumptions is the remainder ∂M a separable space?

(5.19) Let M ⊂ Rn be a semialgebraic set. Then,

β*
sM is metrizable ⇐⇒ ∂M is finite ⇐⇒ ∂M is separable.

The first equivalence in 5.19 is proved in 5.17, and the difficult point is to prove
that the separability of ∂M implies one (and so both) of the other conditions.

The next step should be to study the metrizability of the remainder ∂M . In the
absence of the separability assumption, to analyze the metrizability of ∂M one is
forced to use the classical Nagata-Smirnov metrizability theorem (see [Mu, §40]).
Such a result claims that the regularity of a topological space and the existence of a
countable and locally finite basis of its topology are equivalent to its metrizability.
Hence, the strategy used in 5.17 to approach the metrizability of β*

sM no longer
works and new ideas are needed. However, we expect that the following statement
holds.

(5.20) Let M ⊂ Rn be a semialgebraic set. Then,

β*
sM is metrizable ⇐⇒ ∂M is metrizable ⇐⇒ ∂M is finite.

To finish we study under what conditions β*
s commutes with finite products, in

the same vein as [GJ, §6].

Proposition 5.21. Let N ⊂ Rn and M ⊂ Rm be semialgebraic sets. Then, the
product β*

sM × β*
sN is homeomorphic to β*

s(M ×N) if and only if either M or N
are finite sets or both M and N are compact.

Proof. ⇐=) Since the roles of M and N are interchangeable, we begin by proving
that if N is finite, say with k elements, then β*

sM × β*
sN

∼= β*
s(M ×N). Note that

M × N is semialgebraically homeomorphic to M × {1, . . . , k}. Thus, the product

M ×N ∼=
⊔k

j=1M × {j} and we deduce, from 3.1.5 and 4.4, that

β*
s(M ×N) = β*

s

( k⊔
j=1

M × {j}
)
∼=

k⊔
j=1

β*
sM × {j} = β*

sM ×N = β*
sM × β*

sN.

On the other hand, if M and N are compact, then M ×N is compact too and,
by 4.4, β*

s(M ×N) ∼= M ×N ∼= β*
sM × β*

sN .
=⇒) For the converse, we may assume that M and N are infinite sets and M

is bounded (by 2.1) but not compact. Let us see that β*
sM × β*

sN �∼= β*
s(M × N).

Indeed, since M is not compact, it contains, by the Curve Selection Lemma [BCR,
2.5.5], a semialgebraic set C1 ⊂ M semialgebraically homeomorphic to (0, 1] which
is closed in M . Also, since dimN ≥ 1, there exists, again by the Curve Selection
Lemma [BCR, 2.5.5], a closed semialgebraic set C2 ⊂ N which is semialgebraically
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homeomorphic to [0, 1]. The set C1×C2 is a closed subset of M ×N . Suppose that
β*
sM × β*

sN
∼= β*

s(M ×N). Then, by 3.1.4(ii),

β*
s(C1 × C2) ∼= Clβ*

s(M×N)(C1 × C2) ∼= Clβ*
sM×β*

sN
(C1 × C2)

= Clβ*
sM

(C1)× Clβ*
sN

(C2) ∼= β*
sC1 × β*

sC2.

By 4.9, β*
sCi

∼= [0, 1]. Therefore,

β*
s(C1 × C2) ∼= β*

sC1 × β*
sC2

∼= [0, 1]2.

In particular, β*
s(C1 ×C2) is homeomorphic to a semialgebraic set. Hence, by 5.17,

the set C1 × C2
∼= (0, 1] × [0, 1] of points of C1 × C2 of local dimension ≥ 2 is

compact, a contradiction. Therefore, β*
sM × β*

sN �∼= β*
s(M ×N). �
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