

ECUACIONES ALGEBRAICAS Ficha Docente

ASIGNATURA

Nombre de asignatura (Código GeA): ECUACIONES ALGEBRAICAS (900228)

Créditos: 6

Créditos presenciales: 2,40 Créditos no presenciales: 3,60

Semestre: 5

PLAN/ES DONDE SE IMPARTE

Titulación: DOBLE GRADO EN INGENIERÍA INFORMÁTICA - MATEMÁTICAS Plan: DOBLE GRADO EN INGENIERÍA INFORMÁTICA - MATEMÁTICAS (2019)

Curso: 4 Ciclo: 1 Carácter: Obligatoria

Duración/es: Primer cuatrimestre (actas en Feb. y Jul.)

Idioma/s en que se imparte: Español

Módulo/Materia: /

Titulación: DOBLE GRADO EN INGENIERÍA INFORMÁTICA - MATEMÁTICAS Plan: DOBLE GRADO EN INGENIERÍA INFORMÁTICA - MATEMÁTICAS (2019)

Curso: 4 Ciclo: 1 Carácter: Obligatoria

Duración/es: Primer cuatrimestre (actas en Feb. y Jul.)

Idioma/s en que se imparte: Español

Módulo/Materia: /

PROFESOR COORDINADOR

Nombre	Departamento	Centro	Área	Categoría	Correo electrónico	Teléfono
GONZALEZ	Álgebra, Geometría	Facultad de			pdperezg@ucm.es	
PEREZ, PEDRO DANIEL	y Topología	Ciencias Matemáticas				

PROFESORADO

Nombre Departamento		Centro	Correo electrónico	Teléfono
FERNANDO GALVAN, JOSE	Algebra, Geometría y	Facultad de Ciencias	josefer@ucm.es	
FRANCISCO	Topología	Matemáticas		

SINOPSIS

BREVE DESCRIPTOR:

Introduccion a la teoria de cuerpos y la teoria de Galois

REQUISITOS:

Se recomienda haber superado la asignatura de Ecuaciones Algebraicas.

OBJETIVOS:

Ser capaces de aprender los conceptos basicos de la teoria de cuerpos y de la teoria de Galois.

COMPETENCIAS:

Generales

CG1, CG2, CG3, CG4 (véase la descripción de las competencias en la ficha de la titulación).

Transversales:

CT1, CT2, CT3, CT4, CT5 (véase la descripción de las competencias en la ficha de la titulación).

Específicas:

CE1, CE2, CE3, CE4, CE6, CE7 (véase la descripción de las competencias en la ficha de la titulación)

Otras:

CONTENIDOS TEMÁTICOS:

- 1. Polinomios en varias variables. Las funciones simétricas elementales. Fórmulas de Cardano. Polinomios simétricos: teorema fundamental. Resultante y discriminante.
- 2. Extensiones de cuerpos. Extensiones algebraicas y trascendentes. Cuerpo de descomposición; existencia y unicidad. Teorema

ECUACIONES ALGEBRAICAS Ficha Docente

del elemento primitivo.

- 3. Cuerpos finitos: elementos primitivos. El cuerpo de p\u00e3n elementos esta formado por las ra\u00edces del polinomio t\u00e4\u00edp\u00e3n-t.
- 4. Grupo de Galois de una extension finita. Las extensiones de Galois son los cuerpos de descomposición. Teorema fundamental de la teoría de Galois.
- 5. Grupos resolubles y extensiones radicales. Teorema de Abel-Galois: Un polinomio es resoluble por radicales si y solo si su grupo de Galois es resoluble.
- 6. Grupo de Galois de los polinomios t^n-a, de los polinomios ciclotómicos y de los polinomios de grado 2, 3 y 4. El problema inverso: el grupo simétrico S_p y los grupos cíclicos finitos como grupos de Galois sobre Q. La ecuación general de grado n.

ACTIVIDADES DOCENTES:

Clases teóricas:

Si

Seminarios:

1 hora semanal de resolución de problemas por parte del profesor.

Clases prácticas:

Si

Trabajos de campo:

No

Prácticas clínicas:

No

Laboratorios:

No

Exposiciones:

Presentaciones:

Sí

Otras actividades:

TOTAL:

EVALUACIÓN:

Para obtener información acerca del aprovechamiento de cada alumno a lo largo del curso se tendrán en cuenta la elaboración de trabajos, exposiciones en clase, pruebas escritas, entregas de problemas y la evaluación in situ del estudiante en base a su participación en la clase. La evaluación de estas actividades supondrá al menos un 20% de la calificación final pudiendo llegar hasta un 40% si hubiera circunstancias que así lo aconsejaran. El resto de la calificación, entre el 80% y el 60%, será en base al examen final.

BIBLIOGRAFÍA BÁSICA:

D.A. Cox: Galois Theory, Wiley, 2004.

- J.F. Fernando, J.M Gamboa: Ecuaciones Algebraicas. Extensiones de cuerpos y teoría de Galois. Editorial Sanz y Torres. Madrid: 2017
- I. Stewart: Galois Theory, Chapman & Hall, 2003.

Bibliografia complementaria:

- E. Artin: Galois Theory, Notre Dame, 1942 (Dover, 1998).
- F. Delgado, C. Fuertes, S. Xambo, Introducción al Algebra, vol. 1,2 y 3, Univ. de Valladolid, 2000.
- J.M. Gamboa, J.M Ruiz, Anillos y cuerpos conmutativos, 3a edición, Cuadernos de la UNED, 2000.
- T.W. Hungerford, Algebra, Graduate Texts in Mathematics 73, Springer¿Verlag, 1974.
- R. Lidl H. Niederreiter: Intro to finite fields and their applications. Cambridge University Press, 3º edition (2000).
- K. Spindler: Abstract Algebra with Applications, Marcel Dekker, 1994.
- J. P. Tignol: Galois Theory of Algebraic Equations, World Scientific, 2001.

ECUACIONES ALGEBRAICAS Ficha Docente

OTRA INFORMACIÓN RELEVANTE

ECUACIONES ALGEBRÁICAS Ficha Docente

ASIGNATURA

Nombre de asignatura (Código GeA): ECUACIONES ALGEBRÁICAS (900483)

Créditos: 6

Créditos presenciales: 2,40 Créditos no presenciales: 3,60

Semestre: 5

PLAN/ES DONDE SE IMPARTE

Titulación: DOBLE GRADO EN MATEMÁTICAS Y FÍSICA **Plan**: DOBLE GRADO EN MATEMÁTICAS Y FÍSICA (2019)

Curso: 4 Ciclo: 1 Carácter: Obligatoria

Duración/es: Primer cuatrimestre (actas en Feb. y Jul.)

Idioma/s en que se imparte: Español

Módulo/Materia: /

Titulación: DOBLE GRADO EN MATEMÁTICAS Y FÍSICA Plan: DOBLE GRADO EN MATEMÁTICAS Y FÍSICA (2019)

Curso: 4 Ciclo: 1 Carácter: Obligatoria

Duración/es: Primer cuatrimestre (actas en Feb. y Jul.)

Idioma/s en que se imparte: Español

Módulo/Materia: /

PROFESOR COORDINADOR

Nombre	Departamento	Centro	Área	Categoría	Correo electrónico	Teléfono
GONZALEZ	Álgebra, Geometría	Facultad de			pdperezg@ucm.es	
PEREZ, PEDRO DANIEL	y Topología	Ciencias Matemáticas				

PROFESORADO

Nombre Departamento		Centro	Correo electrónico	Teléfono
FERNANDO GALVAN, JOSE FRANCISCO	Álgebra, Geometría y Topología	Facultad de Ciencias Matemáticas	josefer@ucm.es	

SINOPSIS

BREVE DESCRIPTOR:

Introduccion a la teoria de cuerpos y la teoria de Galois

REQUISITOS:

Se recomienda haber superado la asignatura de Estructuras Algebraicas.

OBJETIVOS:

Ser capaces de aprender los conceptos basicos de la teoria de cuerpos y de la teoria de Galois.

COMPETENCIAS:

Generales

CG1, CG2, CG3, CG4 (véase la descripción de las competencias en la ficha de la titulación)

Transversales:

CT1, CT2, CT3, CT4, CT5 (véase la descripción de las competencias en la ficha de la titulación)

Específicas:

CE1, CE2, CE3, CE4, CE6, CE7 (véase la descripción de las competencias en la ficha de la titulación)

Otras:

CONTENIDOS TEMÁTICOS:

- 1. Polinomios en varias variables. Las funciones simétricas elementales. Fórmulas de Cardano. Polinomios simétricos: teorema fundamental. Resultante y discriminante.
- 2. Extensiones de cuerpos. Extensiones algebraicas y trascendentes. Cuerpo de descomposición; existencia y unicidad. Teorema

ECUACIONES ALGEBRÁICAS Ficha Docente

del elemento primitivo.

- 3. Cuerpos finitos: elementos primitivos. El cuerpo de p\u00e3n elementos esta formado por las ra\u00edces del polinomio t\u00e4\u00edp\u00e3n-t.
- 4. Grupo de Galois de una extension finita. Las extensiones de Galois son los cuerpos de descomposición. Teorema fundamental de la teoría de Galois.
- 5. Grupos resolubles y extensiones radicales. Teorema de Abel-Galois: Un polinomio es resoluble por radicales si y sólo si su grupo de Galois es resoluble.
- 6. Grupo de Galois de los polinomios t^n-a, de los polinomios ciclotómicos y de los polinomios de grado 2, 3 y 4. El problema inverso: el grupo simétrico S_p y los grupos cíclicos finitos como grupos de Galois sobre Q. La ecuación general de grado n.

ACTIVIDADES DOCENTES:

Claene	teóricas:
Ciases	teoricas:

Si

Seminarios:

1 hora semanal de resolución de problemas por parte del profesor.

Clases prácticas:

Si

Trabajos de campo:

No

Prácticas clínicas:

No

Laboratorios:

No

Exposiciones:

Presentaciones:

Sí

- --

Otras actividades:

TOTAL:

EVALUACIÓN:

Para obtener información acerca del aprovechamiento de cada alumno a lo largo del curso se tendrán en cuenta la elaboración de trabajos, exposiciones en clase, pruebas escritas, entregas de problemas y la evaluación in situ del estudiante en base a su participación en la clase. La evaluación de estas actividades supondrá al menos un 20% de la calificación final pudiendo llegar hasta un 40% si hubiera circunstancias que así lo aconsejaran. El resto de la calificación, entre el 80% y el 60%, será en base al examen final.

BIBLIOGRAFÍA BÁSICA:

D.A. Cox: Galois Theory, Wiley, 2004.

- J.F. Fernando, J.M Gamboa: Ecuaciones Algebraicas. Extensiones de cuerpos y teoría de Galois. Editorial Sanz y Torres. Madrid: 2017
- I. Stewart: Galois Theory, Chapman & Hall, 2003.

Bibliografia complementaria:

- E. Artin: Galois Theory, Notre Dame, 1942 (Dover, 1998).
- F. Delgado, C. Fuertes, S. Xambo, Introducción al Algebra, vol. 1,2 y 3, Univ. de Valladolid, 2000.
- J.M. Gamboa, J.M Ruiz, Anillos y cuerpos conmutativos, 3a edición, Cuadernos de la UNED, 2000.
- T.W. Hungerford, Algebra, Graduate Texts in Mathematics 73, Springer¿Verlag, 1974.
- R. Lidl H. Niederreiter: Intro to finite fields and their applications. Cambridge University Press, 3º edition (2000).
- K. Spindler: Abstract Algebra with Applications, Marcel Dekker, 1994.
- J. P. Tignol: Galois Theory of Algebraic Equations, World Scientific, 2001.

Curso Académico 2025-26 ECUACIONES ALGEBRÁICAS

Ficha Docente

OTRA INFORMACIÓN RELEVANTE