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occasion of his seventieth birthday. The editors would like to express their thanks
to the contributors and their very especial gratitude to José Maŕıa for his example
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ABSTRACT

In this work we present a new polynomial map f := (f1, f2) : R2 ! R2 whose
image is the open quadrant Q := {x > 0, y > 0} ⇢ R2. The proof of this fact
involves arguments of topological nature that avoid hard computer calculations.
In addition each polynomial fi 2 R[x, y] has degree  16 and only 11 monomials,
becoming the simplest known map solving the open quadrant problem.
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1. Introduction

Although it is usually said that the first work in Real Geometry is due to Harnack
[13], who obtained an upper bound for the number of connected components of a non-
singular real algebraic curve in terms of its genus, modern Real Algebraic Geometry
was born with Tarski’s article [15], where it is proved that the image of a semialgebraic
set under a polynomial map is a semialgebraic set. We are interested in studying what
might be called the ‘inverse problem’. In the 1990 Oberwolfach Reelle algebraische
Geometrie week [12] the second author proposed:

Problem 1.1 Characterize the (semialgebraic) subsets of Rm that are either polyno-
mial or regular images of Rn.

A map f := (f1, . . . , fm) : Rn
! Rm is a polynomial map if its components

fk 2 R[x] := R[x1, . . . , xn] are polynomials. Analogously, f is a regular map if its
components can be represented as quotients fk = gk

hk
of two polynomials gk, hk 2 R[x]

such that hk never vanishes on Rn. A subset S ⇢ Rn is semialgebraic when it admits a
description by a finite boolean combination of polynomial equalities and inequalities.

Open semialgebraic sets deserve a special attention in connection with the real
Jacobian Conjecture [14]. In particular the second author stated in [12] the ‘open
quadrant problem’:

Problem 1.2 Determine whether the open quadrant Q := {x > 0, y > 0} of R2 is a
polynomial image of R2.

This problem stimulated the interest of many specialists in the field. However,
only after twelve years a first solution was found in [4] and presented by the first
author in the 2002 Oberwolfach Reelle algebraische Geometrie week [2].

The open quadrant problem was the germ of a more systematic study of ‘Polyno-
mial and regular images of Euclidean spaces’ developed by the authors during the last
decade and which was the topic of the Ph.D. Thesis of the third author [16]. Since
then we have worked on this issue with two main objectives:

• Finding obstructions to be an either polynomial or regular image.

• Proving (constructively) that large families of semialgebraic sets with piecewise
linear boundary (convex polyhedra, their interiors, complements and the in-
teriors of their complements) are either polynomial or regular images of some
Euclidean space. The positive answer to the open quadrant problem has been
a recurrent starting point for this approach.

In [4, 5] we presented the first steps to approach Problem 1.1. A complete solution
to Problem 1.1 for the one-dimensional case appears in [3], whereas in [6, 8, 9, 17, 18]
we approached constructive results concerning the representation as either polynomial
or regular images of the semialgebraic sets with piecewise linear boundary commented
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above. Articles [7, 10] are of di↵erent nature because we find in them new obstructions
for a subset of Rm to be either a polynomial or a regular image of Rn. In the first one
we found some properties of the di↵erence Cl(S) \ S while in the second it is shown
that the set of points at infinite of a polynomial image of Rn is a connected set.

The constructive solution to the open quadrant problem provided in [4] involves
quite complicated computer calculations that the third author never liked. In fact
he provided in his Ph.D. Thesis a di↵erent topological proof for the map proposed
in [4], together with an algebraic proof involving a di↵erent polynomial map. This
map has inspired the first and third authors for a short algebraic proof of the open
quadrant problem involving a new polynomial map [11] and has led us to look for a
polynomial map with optimal algebraic structure whose image is the open quadrant.
It is important to establish clearly the meaning of ‘optimal algebraic structure’ [11,
§3(A)]. It is natural to wonder how a polynomial map looks like when completely
expanded and how it compares with other polynomial maps. We care about the total
degree of the involved polynomial map (the sum of the degrees of its components)
and its total number of (non-zero) monomials. We would like to find a polynomial
map with the less possible total degree and the less possible number of monomials.
The example in [4] has total degree 56 and its total number of monomials is 168. The
polynomial map in [11] has total degree 72 and its total number of monomials is 350.
In this work we will prove:

Theorem 1.3 The open quadrant Q is the image of the polynomial map

f : R2
! R2, (x, y) 7! ((x2y4+x4y2�y2�1)2+x6y4, (x6y2+x2y2�x2

�1)2+x6y4).

This polynomial map has total degree 28 and its total number of monomials is 22,
which certainly improves the already known explicit solutions to the open quadrant
problem. It has been constructed following a similar strategy to that in [4, §3]. Our
experience approaching this problem suggests us that this map is surely close to have
the optimal desired algebraic structure.

The article is organized as follows. In Section 2 we present all basic notions and
topological preliminaries used in Section 3 to prove Theorem 1.3.

2. Topological preliminaries

Denote the closed disc of center the origin and radius A > 0 of the plane R2 with DA.
A warped disc is a subset DA,⇠ := {z = ⇠(x, y), x2+y2  A2

} ⇢ R3 where ⇠ : R2
! R

is a continuous function. Consider the homeomorphism

⇣ : R3
! R3, (x, y, z) 7! (x, y, z � ⇠(x, y))

that maps DA,⇠ onto DA ⇥ {0}. The image of DA,⇠ under a permutation of the
variables of R3 will be also called a warped disc.
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⇣

Figure 1: The homeomorphism ⇣ for ⇠(x, y) :=
p
B2

�min(y2, B2) acting on R3.

For each " > 0 consider the open neighborhood

DA(") := {x2 + y2 < (A+ ")2}⇥ (�", ") ⇢ R3

of DA. Clearly, DA,⇠(") := ⇣�1(DA(")) is an open neighborhood of DA,⇠ in R3.

Definition 2.1 A (continuous) path ↵ : [a, b] ! R3 meets transversally once the
warped disc DA,⇠ if there exist s0 2 (a, b) and " > 0 such that J := ↵�1(DA,⇠(")) =
(s0 � ", s0 + ") is an open subinterval of [a, b] and (⇣ � ↵)|J(t) = (0, 0, t� s0).

Remark 2.2 If the path ↵ : [a, b] ! R3 meets transversally once the warped disc
DA,⇠, then ↵([a, b]) \ @DA,⇠ = ?.

Let C be a topological space homeomorphic to a closed disc and let � : C ! R3

be a continuous map. The restriction @� := �|@C is called the boundary map of �.
We say that the boundary map @� meets transversally once a warped disc DA,⇠ ⇢ R3

if there exists a parameterization � of @C such that ↵ := � � � meets transversally
once the warped disc DA,⇠.
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Given a path-connected topological space X and a point x0 2 X we denote the
fundamental group of X at the base point x0 with ⇡1(X,x0). Each path ↵ starting
and ending at x0 is called a loop with base point x0 and represents an element of
⇡1(X,x0), that we denote with [↵].

Lemma 2.3 Let DA,⇠ be a warped disc of R3 and let X := R3
\ @DA,⇠. Let ↵ :

[a, b] ! X be a loop with base point x0 2 X that meets transversally once DA,⇠. Then
[↵] is a generator of ⇡1(X,x0) ⇠= Z.

Proof. Keep the notations introduced above. Let s0 2 (a, b) and " > 0 be such that

J := ↵�1(DA,⇠(")) = (s0 � ", s0 + ")

is an open subinterval of [a, b] and (⇣ � ↵)|J(t) = (0, 0, t� s0). After a reparameteri-
zation of ↵ we may assume s0 = 0.

As ⇣ is a homeomorphism of R3, we will prove the statement for � := ⇣ � ↵,
Y := R3

\ @DA and the base point y0 := �(�") = (0, 0,�"). Consider the path
� : [0, 1] ! R3 given by

�(t) :=

8
><

>:

(3(A+ ")t, 0, ") if 0  t  1
3 ,

(A+ ", 0, "� (t� 1
3 )6") if 1

3 < t  2
3 ,

(A+ "� 3(A+ ")(t� 2
3 ), 0,�") if 2

3 < t  1.

y

x

z

DA

y0

DA(✏)

�

�

Figure 2: The path � meets transversally once the disk DA.
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Write �0 := �|J and �1 := �|[",b] ⇤ �|[a,�"]. We claim:

[�] = [�0 ⇤ �1] = [�0 ⇤ �] · [�
�1

⇤ �1] = g · e = g,

where e and g are respectively the identity element and a generator of ⇡1(Y, y0) ⇠= Z.
The loop ��1

⇤ �1 with base point y0 is contained in R3
\ DA, which is a simply

connected space. Consequently, [��1
⇤ �1] = e in ⇡1(Y, y0).

The class [�0 ⇤ �] generates ⇡1(Y, y0). Indeed, Y has as deformation retract the
set Z := @DA(") [ I" where I" := {(0, 0)} ⇥ {�"  z  "}. It is an exercise of
algebraic topology to show that [�0 ⇤ �] is a generator of ⇡1(Z, y0) ⇠= ⇡1(Y, y0) ⇠= Z,
as required. ⇤

Lemma 2.4 Let � : C ! X be a continuous map and assume that C is homeomor-
phic to a closed disc. Let � : [a, b] ! @C be a parameterization starting and ending
at z0 2 @C. Then [� � �] is the identity element of ⇡1(X,�(z0)).

Proof. Let  : C ! {x2 + y2  1} be a homeomorphism. The continuous map

H : [0, 1]⇥ [a, b] ! X, (⇢, t) 7! (� �  �1)(⇢ · ( � �)(t) + (1� ⇢) ·  (z0)))

is a homotopy map between � � � and the constant path, as required. ⇤

Proposition 2.5 Let C be a topological space homeomorphic to a closed disc and
� : C ! R3 a continuous map. Assume @� : @C ! R3 meets transversally once a
warped disc D ⇢ R3. Then @D \ �(Int(C)) 6= ?.

Proof. Assume by contradiction @D \ �(Int(C)) = ?. As @� meets transversally
once D, the image �(@C) does not intersect @D by Remark 2.2. Thus, �(C) ⇢ X :=
R3

\ @D. Let � : [a, b] ! @C be a parameterization starting and ending at z0 2 @C
such that � � � meets transversally once D. By Lemma 2.4 the class [� � �] is the
identity element of ⇡1(X,�(z0)). However, by Lemma 2.3 the class [���] is a generator
of ⇡1(X,�(z0)) ⇠= Z, which is a contradiction. Consequently, @D \ �(Int(C)) 6= ?, as
required. ⇤

3. Proof of Theorem 1.3

Observe first that the map f in the statement of Theorem 1.3 is the composition
f2 � f1 of the polynomial maps

f1 : R2
! R2, (x, y) 7! (x2, y2),

f2 : R2
! R2, (x, y) 7! ((xy2 + x2y � y � 1)2 + x3y2, (x3y + xy � x� 1)2 + x3y2).

As f1(R2) is the closed quadrant Q := {x � 0, y � 0}, we have to prove the equality

f2(Q) = Q. (3.1)
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The inclusion f2(Q) ⇢ Q is straightforward because both components of f2 are strictly
positive on Q. It only remains to show the inclusion

Q ⇢ f2(Q). (3.2)

3.1. Reduction of the proof of inclusion (3.2)

Consider the (continuous) semialgebraic maps

g : Q ! R3, (x, y) 7! (xy2 + x2y � y � 1, x3/2y, x3y + xy � x� 1)

h : R3
! R2, (x, y, z) 7! (x2 + y2, y2 + z2).

As f2 = h�g, we have to show that for each tuple (A2, B2) 2 Q there exists (x0, y0) 2 Q
such that (h � g)(x0, y0) = (A2, B2). This is equivalent to check that the intersection
h�1({(A2, B2)}) \ g(Q) is non-empty.

Denote S := g(Q) and fix values B � A > 0. It holds that sets

h�1({(A2, B2)}) = {x2 + y2 = A2, y2 + z2 = B2
},

h�1({(B2, A2)}) = {y2 + z2 = A2, x2 + y2 = B2
}

contain respectively the boundaries of the warped discs

D1 : z = ⇠1(x, y), x2 + y2  A2, (3.3)

D2 : x = ⇠2(y, z), y2 + z2  A2, (3.4)

for the (continuous) semialgebraic functions

⇠1 : R2
! R, (x, y) 7!

p
B2

�min{y2, B2
}, (3.5)

⇠2 : R2
! R, (y, z) 7!

p
B2

�min{y2, B2
}. (3.6)

Consequently, we are reduced to prove:

3.1.1. For fixed values B � A > 0 the intersections @D1 \ S and @D2 \ S are
non-empty.

3.2. Proof of Statement 3.1.1

Write R := [0,+1) ⇥ (0, p2 ) and R := [0,+1) ⇥ [0, p2 ]. Consider the map � :=
(�1,�2,�3) : R2

! R3 where

�1(⇢, ✓) := cos ✓ sin ✓(cos ✓ � sin ✓)2

+ ⇢(2 cos4 ✓ sin ✓ + cos ✓ sin4 ✓ + cos5 ✓) + ⇢2 cos5 ✓ sin ✓,

�2(⇢, ✓) :=
p

cos ✓ sin ✓(cos ✓ + sin ✓ + ⇢ cos ✓ sin ✓),

�3(⇢, ✓) := ⇢ sin ✓.

Let us prove now some properties of the map � and the sets R and R:
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3.2.1. �(R) ⇢ S.

Proof. The analytic map

 : R ! Q, (⇢, ✓) 7!

✓
sin ✓

cos ✓
,
(cos ✓ + sin ✓ + ⇢ cos ✓ sin ✓) cos2 ✓

sin ✓

◆
,

satisfies  (R) ⇢ Q and g �  = �|R. Consequently, �(R) ⇢ S, as required. ⇤

3.2.2. The inequality �21(⇢, ✓)+�
2
3(⇢, ✓) �

⇢2

4 holds for each (⇢, ✓) 2 R. Consequently,

dist(�(⇢, ✓),0) �
⇢

2
(3.7)

for each (⇢, ✓) 2 R.

Proof. As ⇢, cos ✓, sin ✓ are � 0 on R, we have

�1(⇢, ✓) � ⇢ cos ✓(cos4 ✓ + sin4 ✓) = ⇢ cos ✓(1� 2 cos2 ✓ sin2 ✓)

= ⇢ cos ✓

✓
1�

sin2(2✓)

2

◆
�

⇢

2
cos ✓.

In addition, �3(⇢, ✓) = ⇢ sin ✓ � ⇢
2 sin ✓, so

�21(⇢, ✓) + �23(⇢, ✓) �
⇢2

4
cos2 ✓ +

⇢2

4
sin2 ✓ =

⇢2

4
,

as required. ⇤

3.2.3. The map � satisfies �(0, ✓) = �(0, p2 � ✓) for ✓ 2 [0, p2 ]. Fix M > 0 and

consider the rectangle RM := [0,M ]⇥ [0, p2 ]. Denote �M := �|RM
. Identify the points

(0, ✓) and (0, p2 � ✓) for ✓ 2 [0, p2 ] and endow the quotient space R̃M with the quotient

topology. Observe that the interior Int(R̃M ) of R̃M as a topological manifold with
boundary is the quotient space R̃M obtained identifying the points (0, ✓) and (0, p2�✓)
of RM := [0,M)⇥ (0, p2 ), where ✓ 2 (0, p2 ).

The canonical projection ⇡M : RM ! R̃M is continuous. As �M is compatible
with ⇡M , there exists a continuous map �̃M : R̃M ! R3 such that the following
diagram is commutative. In addition, �̃M (R̃M ) = �(RM ) ⇢ S.

RM RM

R̃M R̃M R3

�M⇡M⇡M |RM

�̃M
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Figure 3: Left and right views of �M (RM ) ⇢ S.

3.2.4. R̃M is homeomorphic to a disc and its boundary is the set

⇡M ({⇢ = M} [ {✓ = 0} [ {✓ = p
2}).

Proof. Identify R2 with C (interchanging the order of the variables (⇢, ✓) (✓, ⇢))
and consider the continuous map

µ : C ! C, z := ✓ +
p

�1⇢ 7! w := u+
p

�1v = ( 4pz � 1)2.

The restriction µ|{⇢>0} : {⇢ > 0} ! C \ ([0,+1)⇥ {0}) is a homeomorphism and the

image of RM \ {⇢ = 0} is

TM :=
�
(u, v) 2 R2 : ( ⇡v

8M )2 � ( 4Mp )2  u  1� ( v2 )
2
 
\ ([0, 1]⇥ {0}).

The closure TM of TM is a compact convex set (as it is a closed bounded intersection
of two convex sets). By [1, Cor.11.3.4] TM is homeomorphic to a closed disc. In
addition

µ|{⇢=0} : {⇢ = 0} ! [0,+1)⇥ {0}, ✓ 7! ( 4p✓ � 1)2

transforms the segment [0, p2 ]⇥{0} onto the interval [0, 1]. The preimage of t0 2 [0, 1]
under µ|{⇢=0} is

{✓1 := p
4 (1 +

p

t0), ✓2 := p
4 (1�

p

t0)}.

As ✓1 = p
2 � ✓2, the map � := µ|RM

: RM ! TM factors through R̃M and

there exists a continuous map �̃ : R̃M ! TM such that the following diagram is
commutative.
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10

TM

• •

µ

0
p
2 ✓

p
4

M

RM
⇢

Figure 4: Behavior of the map µ : RM ! TM .

RM RM

R̃M R̃M SM

�⇡M⇡M |RM

�̃

The map �̃ is continuous and bijective and it maps the compact set R̃M onto the

Hausdor↵ space TM , so it is a homeomorphism. Consequently, R̃M is homeomorphic
to a disc and its boundary is ⇡M ({⇢ = M} [ {✓ = 0} [ {✓ = p

2}), as required. ⇤

3.2.5. Fix B � A > 0 and consider the warped discs D1 and D2 introduced in (3.3)

and (3.4). Then there exists M > 0 such that the boundary map @�̃M : @R̃M ! R3

meets transversally once both discs D1 and D2.

Proof. As D1 and D2 are bounded set, there exists M0 > 0 such that D1 [D2 ⇢

{k(x, y, z)k < M0}. Take M := 4M0 and consider the set R̃M and the continuous
map �̃M introduced in paragraph 3.2.3.

We claim: the boundary map @�̃M : @R̃M ! R3 meets transversally once D1.
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Figure 5: The boundary map @�̃M : @R̃M ! R3 meets transversally once D1.

Consider the parameterization of @R̃M given by

�1(t) :=

8
><

>:

⇡M (t, p2 ), if 0  t  M,

⇡M (M,M + p
2 � t), if M < t  M + p

2 ,

⇡M (2M + p
2 � t, 0), if M + p

2 < t  2M + p
2 .

We have

↵1(t) := �̃M � �1(t) =

8
><

>:

�(t, p2 ), if 0  t  M,

�(M,M + p
2 � t), if M < t  M + p

2 ,

�(2M + p
2 � t, 0), if M + p

2 < t  2M + p
2 .

Choose 0 < " < min{B,M0 �B} and consider the homeomorphism

⇣1 : R3
! R3, (x, y, z) 7! (x, y, z � ⇠1(x, y)),

where ⇠1 is the (continuous) semialgebraic function introduced in (3.5). Denote
D1(") := ⇣�1

1 (DA(")). It is enough to check:

↵�1
1 (D1(")) = (B � ", B + ").

Pick p0 := ↵1(t0) 2 Im(↵1). We distinguish three cases:

(i) If 0  t0  M , then ⇣1(p0) = (⇣1 � �)(t0, 0) = (0, 0, t0 � B). Consequently,
⇣1(p0) 2 DA(") if and only if �B < �" < t0 �B < " < M �B.
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0

✓

p
2

⇢ M
•

•

identified!

�1(t)

0

✓

p
2

⇢ M
•

•

identified!

�2(t)

Figure 6: Behavior of the paths �1 and �2.

(ii) If M < t0  M + p
2 , we have by (3.7)

dist(p0,0) �
M
2 = 2M0 >

p

2M0 > dist(q,0)

for each q 2 D1("). Therefore p0 /2 D1(").

(iii) If M + p
2 < t0  2M + p

2 , then

p0 = ↵1(t0) = �(2M + p
2 � t0, 0) = (2M + p

2 � t0, 0, 0),

so ⇣1(p0) = (2M + p
2 � t0, 0,�B). As " < B, it holds ⇣1(p0) 62 DA("), so

p0 62 D1(").

We conclude ↵�1
1 (D1(")) = (B � ", B + "), so ↵1 meets transversally once D1.

Analogously one shows: the boundary map @�̃M : @R̃M ! R3 meets transversally
once D2.

Consider in this case the parameterization of @R̃M given by

�2(t) :=

8
><

>:

⇡M (t, 0), if 0  t  M,

⇡M (M, t�M), if M < t  M + p
2 ,

⇡M (2M + p
2 � t, p2 ), if M + p

2 < t  2M + p
2 .

We have

↵2(t) := �̃M � �2(t) =

8
><

>:

�(t, 0), if 0  t  M,

�(M, t�M), if M < t  M + p
2 ,

�(2M + p
2 � t, p2 ), if M + p

2 < t  2M + p
2 .
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Figure 7: The boundary map @�̃M : @R̃M ! R3 meets transversally once D2.

Proceed as above keeping the same values for A and " and using in this case the
homeomorphism

⇣2 : R3
! R3, (x, y, z) 7! (z, y, x� ⇠2(z, y)),

where ⇠2 is the (continuous) semialgebraic function introduced in (3.6), to prove that
↵2 meets transversally once the warped disk D2. ⇤

3.2.6. By 3.2.4 R̃M is homeomorphic to a closed disc. By Proposition 2.5 applied

to the continuous map �̃M : R̃M ! R3 and 3.2.5, we deduce that the boundaries of
both warped discs D1 and D2 meet �M (RM ) ⇢ S. Thus, 3.1.1 holds, as required. ⇤
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