

ON THE SET OF LOCAL EXTREMA OF A SUBANALYTIC FUNCTION

José F. Fernando • Universidad Complutense de Madrid, (arXiv:1803.06017)

MTM2014-55565-P & MTM2017-82105-P

MT&A

2018

Introduction

Let \mathfrak{F} be a category of subanalytic subsets of real analytic manifolds that is closed under elementary set-theoretical operations (locally finite unions, difference and product) and basic topological operations (taking connected components and closures). Fix a real analytic manifold M and denote $\mathfrak{F}(M)$ the family of the subsets of M that belong to \mathfrak{F} . Let $f: X \to \mathbb{R}$ be a subanalytic function on a subset $X \in \mathfrak{F}(M)$.

Main Problem. Under which conditions does the set Max(f) of local maxima of f belong to $\mathfrak{F}(M)$?

If \mathfrak{F} is an o-minimal structure (so we forget about locally finite unions), the answer is clearly affirmative as Max(f) is a definable set. The solution to the problem requires further work for a category \mathfrak{F} of subanalytic sets that does not constitute an o-minimal structure.

Basic definitions

Let \mathfrak{M} be the class of real analytic manifolds. Let $M \in \mathfrak{M}$ and $S, X \subset M$.

- S is *semianalytic* if $S_x = \bigcup_{\text{finite}} \{f = 0, g_1 > 0, \dots, g_r > 0\}, f, g_i \in \mathcal{O}_{M,x}, x \in M.$
- S is *basic C-semianalytic* if $S := \{f = 0, g_1 > 0, \dots, g_r > 0\}$: $f, g_i \in \mathcal{O}(M)$.
- S is *C*-semianalytic if it is a locally finite union of basic *C*-semianalytic sets.
- X is *subanalytic* if it is locally a project. of a relatively compact semianalytic set.

Some relevant examples

Lemma 1. Let \mathfrak{S} be an o-minimal structure. Let $S \subset \mathbb{R}^n$ and $f : S \to \mathbb{R}$ be definable (w.r.t. \mathfrak{S}). Then Max(f) is definable and f(Max(f)) is a finite set.

Example 1 (o-minimal structure \mathbb{R}_{an} : A main tool).

• $f: [-1,1]^n \to \mathbb{R}$ is a *restricted analytic function* if it admits an analytic contin-

A weak category \mathfrak{F} is a collection of families $\mathfrak{F}(M)$ of subanalytic subsets of M satisfying:

• $M \in \mathfrak{F}(M)$.

- If $S_1, S_2 \in \mathfrak{F}(M)$, then $S_1 \setminus S_2 \in \mathfrak{F}(M)$.
- If $\{S_i\}_{i\in I} \subset \mathfrak{F}(M)$ is a locally finite family in M, then $\bigcup_{i\in I} S_i \in \mathfrak{F}(M)$.
- If $S \in \mathfrak{F}(M)$ and $T \in \mathfrak{F}(N)$, then $S \times T \in \mathfrak{F}(M \times N)$.
- If $S \in \mathfrak{F}(M)$, then its connected components and $\mathrm{Cl}(S)$ belong to $\mathfrak{F}(M)$.

 \mathfrak{F} contains algebraic intersections if $M \cap X \in \mathfrak{F}(M) \ \forall X \subset \mathbb{R}^n$ alg. set, $\forall M \in \mathfrak{M}$.

Some weak categories that contain algebraic intersections: Subanalytic sets, Semianalytic sets and C-semianalytic sets.

Main results

Fix a weak category \mathfrak{F} (e.g., subanalytic sets, semianalytic sets or *C*-semianalytic sets). **Definitions.** Let $f: X \to \mathbb{R}$ be a function on $X \in \mathfrak{F}(M)$. We say that:

- f is an \mathfrak{F} -function if the graph $\Gamma(f) \in \mathfrak{F}(M \times \mathbb{R})$.
- f behaves well on fibers if inverse images under f of intervals belong to $\mathfrak{F}(M)$.
- f is M-compact if $f(K \cap X)$ is bounded for each compact subset $K \subset M$.

Remark. Max_{λ}(f) := Max(f) \cap {f = λ } = {f = λ } \setminus Cl({f > λ }) \in $\mathfrak{F}(M)$ if f behaves well on fibers. In addition, $Max(f) = \bigsqcup_{\lambda \in \mathbb{R}} Max_{\lambda}(f)$.

Theorem 1. Let $f: X \to \mathbb{R}$ be a continuous subanalytic function on $X \in \mathfrak{F}(M)$ that behaves well on fibers. The following are equivalent:

(i) $\operatorname{Max}(f) \in \mathfrak{F}(M)$.

(ii) The family of the connected components of Max(f) is locally finite in M.

The family $\{ \operatorname{Max}_{\lambda}(f) \}_{\lambda \in \mathbb{R}}$ is locally finite in M. (iii)

(iv) The family $\{ \operatorname{Max}_{\lambda}(f) \}_{\lambda \in \mathbb{R}}$ is locally isolated in M.

uation to an open neighborhood of $[-1, 1]^n$ in \mathbb{R}^n .

• $X \subset \mathbb{R}^n$ is a *global subanalytic subset* of \mathbb{R}^n if there exists a semialgebraic homeomorphism $g: \mathbb{R}^n \to (-1, 1)^n$ such that g(X) is a subanalytic subset of \mathbb{R}^n .

The global subanalytic sets are the collection of definable sets in the o-minimal structure \mathbb{R}_{an} generated by the restricted analytic functions.

Corollary 1. If $X \subset \mathbb{R}^n$ is a global subanalytic set and $f: X \to \mathbb{R}$ is a definable function of \mathbb{R}_{an} , then $Max(f) \in \mathbb{R}_{an}(\mathbb{R}^n)$ and f(Max(f)) is a finite set.

Example 2. Let $X_m := \{m\mathbf{x} \ge \mathbf{y} > (m-1)\mathbf{x} > 0\}$ and $X := \{\mathbf{x} > 0, \mathbf{y} > 0\} =$ $\bigsqcup_{m>1} X_m$. Consider the continuous function

$$g: X = \bigsqcup_{k \ge 1} (X_{2k} \cup X_{2k-1}) \to \mathbb{R}, \ (x, y) \mapsto \begin{cases} \frac{y}{x} - k & \text{if } (x, y) \in X_{2k}, \\ k - 1 & \text{if } (x, y) \in X_{2k-1} \end{cases}$$

whose graph is $\Gamma := \bigsqcup_{k \ge 1} (\Gamma_{2k} \cup \Gamma_{2k-1})$, where

 $\Gamma_{2k-1} := X_{2k-1} \times \{k-1\}$ and $\Gamma_{2k} := \{2k\mathbf{x} \ge \mathbf{y} > (2k-1)\mathbf{x} > 0, \mathbf{xz} = \mathbf{y} - k\mathbf{x}\}.$

Thus, g is C-semianalytic but Max(g) is not subanalytic.

Example 3. Let $g : \mathbb{R}^2 \to \mathbb{R}^3$, $(x_1, x_2) \mapsto (x_1, x_1 x_2, x_1 e^{x_2})$ and $X := g([-1, 1]^2) \setminus (x_1, x_2, x_1 e^{x_2})$ $\{(0,0,0)\}$, which is not a semianalytic subset of \mathbb{R}^2 . Consider the continuous function

$$f: X \to \mathbb{R}, \ (x_1, x_2, x_3) \mapsto \frac{x_2}{x_1},$$

whose graph is a C-semianalytic subset of \mathbb{R}^4 . Thus, f is a C-semianalytic function and it does not behave well on fibers (even as a subanalytic function).

Example 4. Define $Z_1 := \{ \|\mathbf{x}\| \ge 1 \}, Z_m := \{ \frac{1}{m} \le \|\mathbf{x}\| < \frac{1}{m-1} \}$ for $m \ge 2$ and $Z := \mathbb{R}^n \setminus \{0\} = \bigsqcup_{k>1} Z_k$. Consider the non *M*-compact continuous function

$$g: Z \to \mathbb{R}, \ x \mapsto \begin{cases} k-1 & \text{if } x \in Z_{2k-1}, \\ \frac{1}{\|x\|} - k & \text{if } x \in Z_{2k}. \end{cases}$$

The graph of g is $\Gamma_g := \bigsqcup_{k>1} (\Gamma_{2k} \cup \Gamma_{2k-1})$, where

$$\Gamma_{2k-1} := Z_{2k-1} \times \{k-1\}$$
 and $\Gamma_{2k} := \{2k \ge \frac{1}{\|\mathbf{x}\|} > 2k-1, \mathbf{z} = \frac{1}{\|\mathbf{x}\|} - k\}$

The set Γ_g is a *C*-semianalytic subset of \mathbb{R}^n because $\{\Gamma_{2k-1}, \Gamma_{2k}\}_{k\geq 1}$ is locally finite in

Theorem 2. Let $f : X \to \mathbb{R}$ be an M-compact subanalytic function. Then f behaves well on fibers and $\{Max_{\lambda}(f)\}_{\lambda \in \mathbb{R}}$ is locally finite in M. Consequently, each $\operatorname{Max}_{\lambda}(f)$ and $\operatorname{Max}(f)$ are subanalytic subsets of M.

Lemma 2. Let $f: X \to \mathbb{R}$ be a continuous subanalytic function on a closed subanalytic set. Then $\{\operatorname{Max}_{\lambda}(f)\}_{\lambda\in\mathbb{R}}$ is locally finite and each $\operatorname{Max}_{\lambda}(f)$ and Max(f) are subanalytic sets.

Corollary 2. Let \mathfrak{F} be either the category of semianalytic or C-semianalytic sets and $f: X \to \mathbb{R}$ the restriction to $X \in \mathfrak{F}(M)$ of an analytic function on M. Then $\{ Max_{\lambda}(f) \}_{\lambda \in \mathbb{R}}$ is locally finite in $M \text{ and } \operatorname{Max}_{\lambda}(f), \operatorname{Max}(f) \in \mathfrak{F}(M) \text{ for each } \lambda \in \mathbb{R}.$

Proposition 1 (Sharpness of results). Let \mathfrak{F} be a weak category that contains algebraic intersections and $X \in \mathfrak{F}(M)$ a non-closed subset of M. Then there exists a continuous \mathfrak{F} -function $f: X \to \mathbb{R}$ that behaves well on fibers but $\{Max_{\lambda}(f)\}_{\lambda \in \mathbb{R}}$ is not locally finite in M. Thus, $\operatorname{Max}_{\lambda}(f) \in \mathfrak{F}(M)$ for each $\lambda \in \mathbb{R}$, whereas $\operatorname{Max}(f) \notin \mathfrak{F}(M)$.

 \mathbb{R}^n . The set $\operatorname{Max}(g) = \bigsqcup_{k>1} Z_{2k-1}$ is not subanalytic because the family of its connected components is not locally finite in \mathbb{R}^n .

Related Results

Let $f: X \to \mathbb{R}$ be a function. We say that f is *open* if it maps open subsets of X onto open subsets of \mathbb{R} . The function f is open at $x \in X$ if f(x) belongs to $\operatorname{Int}(f(U))$ for each open neighborhood $U \subset X$ of x. Thus, f is open if and only if it is open at every point $x \in X$.

Lemma 3 (Non-openness points, [2]). If X is a locally connected topological space and a function $f: X \to \mathbb{R}$ is continuous, the set $\operatorname{Extr}(f)$ of points of local extrema of f coincides with the set $\operatorname{NOp}(f)$ of its non-openness points.

If \mathfrak{F} is a weak category and $f : X \to \mathbb{R}$ is a continuous subanalytic function on a closed set $X \in \mathfrak{F}(M)$ that behaves well on fibers, $\operatorname{NOp}(f) \in \mathfrak{F}(M)$ and $\operatorname{Op}(f) := X \setminus \operatorname{Extr}(f) \in \mathfrak{F}(M)$.

Selected References

- [1] F. Acquistapace, F. Broglia, J.F. Fernando: On globally defined semianalytic sets. Math. Ann. (2016).
- [2] M. Balcerzak, M. Popławski, J. Wódka: Local extrema and nonopenness points of continuous functions. Amer. Math. Monthly (2017).
- [3] A. Barone-Netto, G. Gorni, G. Zampieri: Local extrema of analytic functions. NoDEA Nonlinear Differential Equations Appl. (1996).
- [4] E. Bierstone, P.D. Milman: Semianalytic and subanalytic sets. Inst. Hautes Études Sci. Publ. Math. (1988).
- [F] J.F. Fernando: On the irreducible components of globally defined semianalytic sets. Math. Z. (2016).