Polynomial and Regular Images of \mathbb{R}^{n}
José F. Fernando and Carlos Ueno (joint work with J.M. Gamboa) 2015

Introduction

A map $f:=\left(f_{1}, \ldots, f_{m}\right): \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is polynomial if its components f_{k} are polynomials. Analogously, f is regular if its components can be represented as quotients $f_{k}=\frac{g_{k}}{h_{k}}$ of two polynomials g_{k}, h_{k} such that h_{k} never vanishes on \mathbb{R}^{n}. By Tarski-Seidenberg's principle the image of an either polynomial or regular map is a semialgebraic set, that is, it has a description by a finite boolean combination of polynomial equalities and inequalities. In 1990 Oberwolfach reelle algebraische Geometrie week Gamboa proposed:

Main Problem. Characterize the semialgebraic sets in \mathbb{R}^{m} which are either polynomial or regular images of some \mathbb{R}^{n}
Two approaches to this problem: (1) Explicit construction of polynomial and regular representations for large families of semialgebraic sets, so far with piecewise linear boundary; and (2) Search for obstructions to be polynomial/regular images of \mathbb{R}^{n}. Potential applications. Optimization, Positivstellensätze or parametrizations of semialgebraic sets.

The Open Quadrant Problem

Is the set $\mathbb{Q}:=\{x>0, y>0\} \subset \mathbb{R}^{2}$ a polynomial image of \mathbb{R}^{2} ? Answer: YES
First solution. The initial answer was presented in 2002 Oberwolfach reelle algebraische Geometrie week. Required computer assistance for Sturm's algorithm.
Second solution. The shortest proof (sketched below).

$f_{1}(x, y):=\left((x y-1)^{2}+x^{2},(x y-1)^{2}+y^{2}\right), \quad f_{2}(x, y):=\left(x, y(x y-2)^{2}+x(x y-1)^{2}\right), \quad f_{3}(x, y):=\left(x(x y-2)^{2}+\frac{1}{2} x y^{2}, y\right)$.
Third solution. The sparsest (known) polynomial map. A topological argument shows that the image of the map below is Q.
$f(x, y):=\left(\left(x^{2} y^{4}+x^{4} y^{2}-y^{2}-1\right)^{2}+x^{6} y^{4},\left(x^{6} y^{2}+x^{2} y^{2}-x^{2}-1\right)^{2}+x^{6} y^{4}\right)$.

On Convex Polyhedra

Theorem 1. An n-dimensional convex polyhedron and its interior are regular images of $\mathbb{R}^{n}(n \geq 2)$.

Definition. Let $\mathcal{K} \subset \mathbb{R}^{n}$ be a convex polyhedron. Its recession cone is

$$
\overrightarrow{\mathrm{C}}(\mathcal{K}):=\left\{\vec{v} \in \mathbb{R}^{n}: p+\lambda \vec{v} \in \mathcal{K} \quad \forall p \in \mathcal{K}, \quad \lambda \geq 0\right\}
$$

Theorem 2. Let $\mathcal{K} \subset \mathbb{R}^{n}$ be an unbounded, n-dimensional convex polyhedron whose recession cone $\overrightarrow{\mathcal{C}}(\mathcal{K})$ is n-dimensional. Then \mathcal{K} is a polynomial image of \mathbb{R}^{n}. In addition, if \mathcal{K} has not bounded facets, then $\operatorname{Int}(\mathcal{K})$ is also a polynomial image of \mathbb{R}^{n}.
Theorem 3. Let $\mathcal{K} \subset \mathbb{R}^{n}$ be an n-dimensional convex polyhedron that is not affinely equivalent to a layer $[-a, a] \times \mathbb{R}^{n-1}$. Then the semialgebraic sets $\mathbb{R}^{n} \backslash \mathcal{K}$ and $\mathbb{R}^{n} \backslash \operatorname{Int}(\mathcal{K})$ are polynomial images of \mathbb{R}^{n}.

Full picture for convex polyhedra

Definition of p and r invariants:

$\mathrm{p}(\mathcal{S}):=\min \left\{n \in \mathbb{N}: \mathcal{S}=f\left(\mathbb{R}^{n}\right), f\right.$ polynomial $\}$
$\mathrm{r}(\mathcal{S}):=\min \left\{n \in \mathbb{N}: \mathcal{S}=f\left(\mathbb{R}^{n}\right), f\right.$ regular $\}$

$\overline{\mathcal{K}} \text { conv. pol. }$	\mathcal{K} bou	nded		nbounded
$\mathcal{S}=\mathbb{R}^{n} \backslash \mathcal{K}$	$n=1$	$n \geq 2$	$n=1$	$n \geq 2$
$\mathrm{r}(\mathcal{K})$	1	n	1	n
$\mathrm{r}(\operatorname{Int}(\mathcal{K}))$	2		2	
$\mathrm{p}(\mathcal{K})$	$+\infty$		1	$n,+\infty$
$\mathrm{p}(\operatorname{Int}(\mathcal{K}))$			2	$n, n+1,+\infty$
$\mathrm{r}(\mathcal{S})$	$+\infty$	n	2	n
$\mathrm{r}(\overline{\mathcal{S}})$			1	
$\mathrm{p}(\mathcal{S})$			2	
$\mathrm{p}(\overline{\mathcal{S}})$			1	

General Properties

Basic properties. A regular image of \mathbb{R}^{n} is connected, irreducible and pure dimensional. Polynomial images are in addition either unbounded or singletons and have either unbounded or singleton projections.
Advanced Properties. The set of points at infinity of $\mathcal{S} \subset \mathbb{R}^{n} \subset \mathbb{R}^{n}$ is

$$
\mathcal{S}_{\infty}:=\mathrm{Cl}_{\mathbb{R}^{p}}(\mathcal{S}) \cap \mathrm{H}_{\infty}(\mathbb{R}) \quad\left(\mathrm{H}_{\infty}(\mathbb{R}) \text { hyperplane at infinity }\right)
$$

Theorem 4. Let $\mathcal{S} \subset \mathbb{R}^{m}$ be a polynomial image of \mathbb{R}^{n}. Then $\mathcal{S}_{\infty} \neq \emptyset$ is connected.
Remark. This condition does not hold in general for regular images.
Theorem 5. Let $\mathcal{S} \subset \mathbb{R}^{m}$ be an n-dimensional polynomial image of \mathbb{R}^{n}. Let \mathcal{T} be the set of points of dimension $n-1$ of $\mathrm{Cl}(\mathcal{S}) \backslash \mathcal{S}$. We have:
(i) For any $x \in \mathcal{T}$ there is a non-constant polynomial image Γ of \mathbb{R} such that $x \in \Gamma \subset \overline{\mathcal{T}}^{\text {zar }} \cap \mathrm{Cl}(\mathcal{S})$.
(ii) If $n=2, \mathcal{T} \subset \bigcup_{i=1}^{r} \Gamma_{i} \subset \overline{\mathcal{T}}^{\text {aar }} \cap \mathrm{Cl}(\mathcal{S})$ where each Γ_{i} is a polynomial image of \mathbb{R}.

Which of the following open sets are polynomial images of \mathbb{R}^{2} ?

Characterization for the 1-Dimensional Case

Let $\mathcal{S} \subset \mathbb{R}^{m}$ be a 1 -dimensional semialgebraic set.

Theorem 6. The following assertions are equivalent:
(i) \mathcal{S} is a polynomial image of \mathbb{R}^{n} for some $n \geq 1$.
(ii) \mathcal{S} is irreducible, unbounded and $\mathrm{Cl}_{\mathbb{C P}^{\mathrm{Z}}(\mathcal{S})}^{2 \mathrm{~S}}$ is an invariant rational curve such that $\mathrm{C}_{\mathbb{C P}^{m}}^{\mathrm{zar}}(\mathcal{S}) \cap \mathrm{H}_{\infty}(\mathbb{C})=\{p\}$ and the germ $\mathrm{Cl}_{\mathbb{C}^{\mathbb{P}}}^{\mathrm{zar}}(\mathcal{S})_{p}$ is irreducible.
If that is the case, $\mathrm{p}(\mathcal{S}) \leq 2$. In addition, $\mathrm{p}(\mathcal{S})=1 \Longleftrightarrow \mathcal{S}$ is closed in \mathbb{R}^{m}.
Theorem 7. The following assertions are equivalent:
(i) \mathcal{S} is a regular image of \mathbb{R}^{n} for some $n \geq 1$.
(ii) \mathcal{S} is irreducible and $\mathrm{Cl}_{\mathbb{R}^{m}}^{\text {zar }}(\mathcal{S})$ is a rational curve.

If that is the case, then $\mathrm{r}(\mathcal{S}) \leq 2$. In addition, $\mathrm{r}(\mathcal{S})=1 \Longleftrightarrow$ either $\mathrm{Cl}_{\mathbb{R}^{m} m}(\mathcal{S})=\mathcal{S}$, or $\mathrm{Cl}_{\mathbb{R}^{p m}}(\mathcal{S}) \backslash \mathcal{S}=\{p\}$ and the analytic closure of the germ \mathcal{S}_{p} is irreducible.

\mathcal{S}	\mathbb{R} or $[0,+\infty)$	\nexists	$[0,1)$	$(0,+\infty)$	$(0,1)$	Any non-rational algebraic curve
$\mathrm{r}(\mathcal{S})$	1	1	1	2	2	$+\infty$
$\mathrm{p}(\mathcal{S})$	1	2	$+\infty$	2	$+\infty$	$+\infty$

Related Problems

A map $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is Nash if each component of f is a Nash function, that is, a smooth function with semialgebraic graph. Let $\mathcal{S} \subset \mathbb{R}^{m}$ be a semialgebraic set of dimension d.
Shiota's conjecture. \mathcal{S} is a Nash image of \mathbb{R}^{d} if and only if \mathcal{S} is pure dimensional and there exists an analytic path $\alpha:[0,1] \rightarrow \mathcal{S}$ whose image meets all connected components of the set of regular points of \mathcal{S}.
Corollary 8. Assume \mathcal{S} is pure dimensional, irreducible and with arc-symmetric closure. Then \mathcal{S} is a Nash image of \mathbb{R}^{d}.
Corollary 9. Assume \mathcal{S} is Nash path connected. Then \mathcal{S} is the projection of an irreducible algebraic set $X \subset \mathbb{R}^{n}$ whose connected components are Nash diffeomorphic to \mathbb{R}^{d}. In addition, each connected component of X maps onto \mathcal{S}.

Selected References

[1] J.F. Fernando: On the one-dimensional polynomial and regular images of \mathbb{R}^{n}. J. Pure Appl. Algebra (2014)
[2] J.F. Fernando, J.M. Gamboa: Polynomial images of \mathbb{R}^{n}. J. Pure Appl. Algebra (2003)
[3] J.F. Fernando, J.M. Gamboa: Polynomial and regular images of \mathbb{R}^{n}. Israel J. Math. (2006)
[4] J.F. Fernando, J.M. Gamboa, C. Ueno: On convex polyhedra as regular images of \mathbb{R}^{n}. Proc. London Math. Soc. (2011)
[5] J.F. Fernando, C. Ueno: On the set of points at infinity of a polynomial image of \mathbb{R}^{n}. Disc. ε Comp. Geometry (2014).
[6] J.F. Fernando, C. Ueno: On complements of convex polyhedra as polynomial and regular images of \mathbb{R}^{n}. Int. Math. Res. Notices (2014)

