

Polynomial and Regular Images of \mathbb{R}^n

José F. Fernando and Carlos Ueno (joint work with J.M. Gamboa) Universidad Complutense de Madrid • Università di Pisa

Introduction

A map $f := (f_1, \ldots, f_m) : \mathbb{R}^n \to \mathbb{R}^m$ is polynomial if its components f_k are polynomials. Analogously, f is regular if its components can be represented as quotients $f_k = \frac{g_k}{h_k}$ of two polynomials g_k, h_k such that h_k never vanishes on \mathbb{R}^n . By Tarski-Seidenberg's principle the image of an either polynomial or regular map is a semialgebraic set, that is, it has a description by a finite boolean combination of polynomial equalities and inequalities. In 1990 Oberwolfach reelle algebraicsche Geometrie week Gamboa proposed:

Main Problem. Characterize the semialgebraic sets in \mathbb{R}^m which are either polynomial or regular images of some \mathbb{R}^n .

Two approaches to this problem: (1) Explicit construction of polynomial and regular representations for large families of semialgebraic sets, so far with piecewise linear boundary; and (2) Search for obstructions to be polynomial/regular images of \mathbb{R}^n . Potential applications. Optimization, Positivstellensätze or parametrizations of semialgebraic sets.

Theorem 4. Let $S \subset \mathbb{R}^m$ be a polynomial image of \mathbb{R}^n . Then $S_{\infty} \neq \emptyset$ is connected.

 $f_1(x,y) := ((xy-1)^2 + x^2, (xy-1)^2 + y^2), \quad f_2(x,y) := (x, y(xy-2)^2 + x(xy-1)^2), \quad f_3(x,y) := (x(xy-2)^2 + \frac{1}{2}xy^2, y).$

Third solution. The sparsest (known) polynomial map. A topological argument shows that the image of the map below is Q.

 $f(x,y) := ((x^2y^4 + x^4y^2 - y^2 - 1)^2 + x^6y^4, (x^6y^2 + x^2y^2 - x^2 - 1)^2 + x^6y^4).$

On Convex Polyhedra

Theorem 1. An *n*-dimensional convex polyhedron and its interior are regular images of \mathbb{R}^n $(n \ge 2)$.

Definition. Let $\mathcal{K} \subset \mathbb{R}^n$ be a convex polyhedron. Its recession cone is

 $\vec{\mathcal{C}}(\mathcal{K}) := \{ \vec{v} \in \mathbb{R}^n : p + \lambda \vec{v} \in \mathcal{K} \mid \forall p \in \mathcal{K}, \ \lambda \ge 0 \}.$

Theorem 2. Let $\mathcal{K} \subset \mathbb{R}^n$ be an unbounded, n-dimensional convex polyhedron whose recession cone $\vec{\mathcal{C}}(\mathcal{K})$ is n-dimensional. Then \mathcal{K} is a polynomial image of \mathbb{R}^n . In addition, if \mathcal{K} has not bounded facets, then $Int(\mathcal{K})$ is also a polynomial image of \mathbb{R}^n .

Theorem 3. Let $\mathcal{K} \subset \mathbb{R}^n$ be an n-dimensional convex polyhedron that is not affinely equivalent to a layer $[-a, a] \times \mathbb{R}^{n-1}$. Then the semialgebraic sets $\mathbb{R}^n \setminus \mathcal{K}$ and $\mathbb{R}^n \setminus \text{Int}(\mathcal{K})$ are polynomial images of \mathbb{R}^n . **Remark.** This condition does not hold in general for regular images.

Theorem 5. Let $S \subset \mathbb{R}^m$ be an n-dimensional polynomial image of \mathbb{R}^n . Let \mathfrak{T} be the set of points of dimension n - 1 of $Cl(S) \setminus S$. We have:

(i) For any $x \in \mathcal{T}$ there is a non-constant polynomial image Γ of \mathbb{R} such that $x \in \Gamma \subset \overline{\mathcal{T}}^{zar} \cap Cl(\mathfrak{S}).$

(ii) If n = 2, $\mathfrak{T} \subset \bigcup_{i=1}^{r} \Gamma_i \subset \overline{\mathfrak{T}}^{\operatorname{zar}} \cap \operatorname{Cl}(\mathfrak{S})$ where each Γ_i is a polynomial image of \mathbb{R} .

Which of the following open sets are polynomial images of \mathbb{R}^2 ?

Characterization for the 1-Dimensional Case

Let $\mathcal{S} \subset \mathbb{R}^m$ be a 1-dimensional semialgebraic set.

Theorem 6. The following assertions are equivalent: (i) S is a polynomial image of \mathbb{R}^n for some $n \ge 1$. (ii) S is irreducible, unbounded and $\operatorname{Cl}_{\mathbb{CP}^m}^{\operatorname{zar}}(S)$ is an invariant rational curve such that $\operatorname{Cl}_{\mathbb{CP}^m}^{\operatorname{zar}}(S) \cap \mathsf{H}_{\infty}(\mathbb{C}) = \{p\}$ and the germ $\operatorname{Cl}_{\mathbb{CP}^m}^{\operatorname{zar}}(S)_p$ is irreducible.

If that is the case, $p(S) \leq 2$. In addition, $p(S) = 1 \iff S$ is closed in \mathbb{R}^m .

Theorem 7. The following assertions are equivalent: (i) S is a regular image of \mathbb{R}^n for some $n \ge 1$. (ii) S is irreducible and $\operatorname{Cl}_{\mathbb{RP}^m}^{\operatorname{zar}}(S)$ is a rational curve.

If that is the case, then $r(S) \leq 2$. In addition, $r(S) = 1 \iff either \operatorname{Cl}_{\mathbb{RP}^m}(S) = S$, or $\operatorname{Cl}_{\mathbb{RP}^m}(S) \setminus S = \{p\}$ and the analytic closure of the germ S_p is irreducible.

S	$\mathbb{R} \text{ or } [0, +\infty)$	∄	[0,1)	$(0, +\infty)$	(0,1)	Any non-rational algebraic curve
r(8)	1	1	1	2	2	$+\infty$
p(S)	1	2	$+\infty$	2	$+\infty$	$+\infty$

Full picture for convex polyhedra

Definition of p and r invariants: $p(S) := \min\{n \in \mathbb{N} : S = f(\mathbb{R}^n), f \text{ polynomial}\}$ $r(S) := \min\{n \in \mathbb{N} : S = f(\mathbb{R}^n), f \text{ regular}\}$

${\mathfrak K}$ conv. pol.	K bo	unded	${\mathfrak K}$ unbounded	
$\mathbb{S}=\mathbb{R}^n\setminus\mathcal{K}$	n = 1	$n \ge 2$	n = 1	$n \ge 2$
$\mathrm{r}(\mathcal{K})$	1	~	1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
$r(Int(\mathcal{K}))$	2	71	2	Tt
$p(\mathcal{K})$		•	1	$n, +\infty$
$p(Int(\mathcal{K}))$	$+\infty$		2	$n, n+1, +\infty$
r(S)			2	
$r(\overline{S})$		22	1	
p(S)	$+\infty$	\mathcal{T}	2	\mathcal{T}
$p(\overline{S})$			1	

Related Problems

A map $f : \mathbb{R}^n \to \mathbb{R}^m$ is *Nash* if each component of f is a *Nash function*, that is, a smooth function with semialgebraic graph. Let $S \subset \mathbb{R}^m$ be a semialgebraic set of dimension d.

Shiota's conjecture. S is a Nash image of \mathbb{R}^d if and only if S is pure dimensional and there exists an analytic path $\alpha : [0, 1] \to S$ whose image meets all connected components of the set of regular points of S.

Corollary 8. Assume S is pure dimensional, irreducible and with arc-symmetric closure. Then S is a Nash image of \mathbb{R}^d .

Corollary 9. Assume S is Nash path connected. Then S is the projection of an irreducible algebraic set $X \subset \mathbb{R}^n$ whose connected components are Nash diffeomorphic to \mathbb{R}^d . In addition, each connected component of X maps onto S.

Selected References

- [1] J.F. Fernando: On the one-dimensional polynomial and regular images of \mathbb{R}^n . J. Pure Appl. Algebra (2014)
- [2] J.F. Fernando, J.M. Gamboa: Polynomial images of \mathbb{R}^n . J. Pure Appl. Algebra (2003)
- [3] J.F. Fernando, J.M. Gamboa: Polynomial and regular images of \mathbb{R}^n . Israel J. Math. (2006)
- [4] J.F. Fernando, J.M. Gamboa, C. Ueno: On convex polyhedra as regular images of \mathbb{R}^n . *Proc. London Math. Soc.* (2011)
- [5] J.F. Fernando, C. Ueno: On the set of points at infinity of a polynomial image of \mathbb{R}^n . Disc. & Comp. Geometry (2014).
- [6] J.F. Fernando, C. Ueno: On complements of convex polyhedra as polynomial and regular images of \mathbb{R}^n . Int. Math. Res. Notices (2014)